From ddbeebb887cff61b087a48738650832bc62c9e83 Mon Sep 17 00:00:00 2001
From: bunnei <bunneidev@gmail.com>
Date: Tue, 21 Jul 2015 20:08:49 -0400
Subject: [PATCH] Common: Ported over boilerplate x86 JIT code from
 Dolphin/PPSSPP.

---
 src/citra/CMakeLists.txt    |    2 +-
 src/citra_qt/CMakeLists.txt |    2 +-
 src/common/CMakeLists.txt   |   14 +-
 src/common/abi.cpp          |  680 ++++++++++++
 src/common/abi.h            |   78 ++
 src/common/code_block.h     |   87 ++
 src/common/common_funcs.h   |    2 +-
 src/common/fake_emitter.h   |  465 ++++++++
 src/common/platform.h       |    2 +-
 src/common/x64_emitter.cpp  | 1989 +++++++++++++++++++++++++++++++++++
 src/common/x64_emitter.h    | 1067 +++++++++++++++++++
 11 files changed, 4382 insertions(+), 6 deletions(-)
 create mode 100644 src/common/abi.cpp
 create mode 100644 src/common/abi.h
 create mode 100644 src/common/code_block.h
 create mode 100644 src/common/fake_emitter.h
 create mode 100644 src/common/x64_emitter.cpp
 create mode 100644 src/common/x64_emitter.h

diff --git a/src/citra/CMakeLists.txt b/src/citra/CMakeLists.txt
index 918687312..1d6aac9a9 100644
--- a/src/citra/CMakeLists.txt
+++ b/src/citra/CMakeLists.txt
@@ -14,7 +14,7 @@ set(HEADERS
 create_directory_groups(${SRCS} ${HEADERS})
 
 add_executable(citra ${SRCS} ${HEADERS})
-target_link_libraries(citra core common video_core)
+target_link_libraries(citra core video_core common)
 target_link_libraries(citra ${GLFW_LIBRARIES} ${OPENGL_gl_LIBRARY} inih)
 if (MSVC)
     target_link_libraries(citra getopt)
diff --git a/src/citra_qt/CMakeLists.txt b/src/citra_qt/CMakeLists.txt
index 47aaeca24..0c0515054 100644
--- a/src/citra_qt/CMakeLists.txt
+++ b/src/citra_qt/CMakeLists.txt
@@ -71,7 +71,7 @@ if (APPLE)
 else()
     add_executable(citra-qt ${SRCS} ${HEADERS} ${UI_HDRS})
 endif()
-target_link_libraries(citra-qt core common video_core qhexedit)
+target_link_libraries(citra-qt core video_core common qhexedit)
 target_link_libraries(citra-qt ${OPENGL_gl_LIBRARY} ${CITRA_QT_LIBS})
 target_link_libraries(citra-qt ${PLATFORM_LIBRARIES})
 
diff --git a/src/common/CMakeLists.txt b/src/common/CMakeLists.txt
index cef5081c5..600193858 100644
--- a/src/common/CMakeLists.txt
+++ b/src/common/CMakeLists.txt
@@ -2,6 +2,7 @@
 configure_file("${CMAKE_CURRENT_SOURCE_DIR}/scm_rev.cpp.in" "${CMAKE_CURRENT_SOURCE_DIR}/scm_rev.cpp" @ONLY)
 
 set(SRCS
+            abi.cpp
             break_points.cpp
             emu_window.cpp
             file_util.cpp
@@ -20,10 +21,12 @@ set(SRCS
             )
 
 set(HEADERS
+            abi.h
             assert.h
             bit_field.h
             break_points.h
             chunk_file.h
+            code_block.h
             color.h
             common_funcs.h
             common_paths.h
@@ -58,10 +61,17 @@ set(HEADERS
 
 if(_M_X86)
     set(SRCS ${SRCS}
-             cpu_detect_x86.cpp)
+            cpu_detect_x86.cpp
+            x64_emitter.cpp)
+
+    set(HEADERS ${HEADERS}
+            x64_emitter.h)
 else()
     set(SRCS ${SRCS}
-             cpu_detect_generic.cpp)
+            cpu_detect_generic.cpp)
+
+    set(HEADERS ${HEADERS}
+            fake_emitter.h)
 endif()
 
 create_directory_groups(${SRCS} ${HEADERS})
diff --git a/src/common/abi.cpp b/src/common/abi.cpp
new file mode 100644
index 000000000..d1892ad48
--- /dev/null
+++ b/src/common/abi.cpp
@@ -0,0 +1,680 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#include "x64_emitter.h"
+#include "abi.h"
+
+using namespace Gen;
+
+// Shared code between Win64 and Unix64
+
+// Sets up a __cdecl function.
+void XEmitter::ABI_EmitPrologue(int maxCallParams)
+{
+#ifdef _M_IX86
+    // Don't really need to do anything
+#elif defined(_M_X86_64)
+#if _WIN32
+    int stacksize = ((maxCallParams + 1) & ~1) * 8 + 8;
+    // Set up a stack frame so that we can call functions
+    // TODO: use maxCallParams
+    SUB(64, R(RSP), Imm8(stacksize));
+#endif
+#else
+#error Arch not supported
+#endif
+}
+
+void XEmitter::ABI_EmitEpilogue(int maxCallParams)
+{
+#ifdef _M_IX86
+    RET();
+#elif defined(_M_X86_64)
+#ifdef _WIN32
+    int stacksize = ((maxCallParams+1)&~1)*8 + 8;
+    ADD(64, R(RSP), Imm8(stacksize));
+#endif
+    RET();
+#else
+#error Arch not supported
+
+
+#endif
+}
+
+#ifdef _M_IX86 // All32
+
+// Shared code between Win32 and Unix32
+void XEmitter::ABI_CallFunction(const void *func) {
+    ABI_AlignStack(0);
+    CALL(func);
+    ABI_RestoreStack(0);
+}
+
+void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
+    ABI_AlignStack(1 * 2);
+    PUSH(16, Imm16(param1));
+    CALL(func);
+    ABI_RestoreStack(1 * 2);
+}
+
+void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
+    ABI_AlignStack(1 * 2 + 1 * 4);
+    PUSH(16, Imm16(param2));
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(1 * 2 + 1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
+    ABI_AlignStack(1 * 4);
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
+    ABI_AlignStack(2 * 4);
+    PUSH(32, Imm32(param2));
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
+    ABI_AlignStack(3 * 4);
+    PUSH(32, Imm32(param3));
+    PUSH(32, Imm32(param2));
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
+    ABI_AlignStack(3 * 4);
+    PUSH(32, ImmPtr(param3));
+    PUSH(32, Imm32(param2));
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4) {
+    ABI_AlignStack(4 * 4);
+    PUSH(32, ImmPtr(param4));
+    PUSH(32, Imm32(param3));
+    PUSH(32, Imm32(param2));
+    PUSH(32, Imm32(param1));
+    CALL(func);
+    ABI_RestoreStack(4 * 4);
+}
+
+void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
+    ABI_AlignStack(1 * 4);
+    PUSH(32, ImmPtr(param1));
+    CALL(func);
+    ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
+    ABI_AlignStack(2 * 4);
+    PUSH(32, arg2);
+    PUSH(32, ImmPtr(param1));
+    CALL(func);
+    ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
+    ABI_AlignStack(3 * 4);
+    PUSH(32, arg3);
+    PUSH(32, arg2);
+    PUSH(32, ImmPtr(param1));
+    CALL(func);
+    ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
+    ABI_AlignStack(3 * 4);
+    PUSH(32, Imm32(param3));
+    PUSH(32, ImmPtr(param2));
+    PUSH(32, ImmPtr(param1));
+    CALL(func);
+    ABI_RestoreStack(3 * 4);
+}
+
+// Pass a register as a parameter.
+void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
+    ABI_AlignStack(1 * 4);
+    PUSH(32, R(reg1));
+    CALL(func);
+    ABI_RestoreStack(1 * 4);
+}
+
+// Pass two registers as parameters.
+void XEmitter::ABI_CallFunctionRR(const void *func, Gen::X64Reg reg1, Gen::X64Reg reg2)
+{
+    ABI_AlignStack(2 * 4);
+    PUSH(32, R(reg2));
+    PUSH(32, R(reg1));
+    CALL(func);
+    ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
+{
+    ABI_AlignStack(2 * 4);
+    PUSH(32, Imm32(param2));
+    PUSH(32, arg1);
+    CALL(func);
+    ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
+{
+    ABI_AlignStack(3 * 4);
+    PUSH(32, Imm32(param3));
+    PUSH(32, Imm32(param2));
+    PUSH(32, arg1);
+    CALL(func);
+    ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
+{
+    ABI_AlignStack(1 * 4);
+    PUSH(32, arg1);
+    CALL(func);
+    ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
+{
+    ABI_AlignStack(2 * 4);
+    PUSH(32, arg2);
+    PUSH(32, arg1);
+    CALL(func);
+    ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+    // Note: 4 * 4 = 16 bytes, so alignment is preserved.
+    PUSH(EBP);
+    PUSH(EBX);
+    PUSH(ESI);
+    PUSH(EDI);
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+    POP(EDI);
+    POP(ESI);
+    POP(EBX);
+    POP(EBP);
+}
+
+unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
+    frameSize += 4; // reserve space for return address
+    unsigned int alignedSize =
+#ifdef __GNUC__
+        (frameSize + 15) & -16;
+#else
+        (frameSize + 3) & -4;
+#endif
+    return alignedSize;
+}
+
+
+void XEmitter::ABI_AlignStack(unsigned int frameSize) {
+// Mac OS X requires the stack to be 16-byte aligned before every call.
+// Linux requires the stack to be 16-byte aligned before calls that put SSE
+// vectors on the stack, but since we do not keep track of which calls do that,
+// it is effectively every call as well.
+// Windows binaries compiled with MSVC do not have such a restriction*, but I
+// expect that GCC on Windows acts the same as GCC on Linux in this respect.
+// It would be nice if someone could verify this.
+// *However, the MSVC optimizing compiler assumes a 4-byte-aligned stack at times.
+    unsigned int fillSize =
+        ABI_GetAlignedFrameSize(frameSize) - (frameSize + 4);
+    if (fillSize != 0) {
+        SUB(32, R(ESP), Imm8(fillSize));
+    }
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int frameSize) {
+    unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize);
+    alignedSize -= 4; // return address is POPped at end of call
+    if (alignedSize != 0) {
+        ADD(32, R(ESP), Imm8(alignedSize));
+    }
+}
+
+#else //64bit
+
+// Common functions
+void XEmitter::ABI_CallFunction(const void *func) {
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
+    MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+        && distance <  0xFFFFFFFF80000000ULL) {
+            // Far call
+            MOV(64, R(RAX), ImmPtr(func));
+            CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    MOV(32, R(ABI_PARAM3), Imm32(param3));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    MOV(64, R(ABI_PARAM3), ImmPtr(param3));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
+    MOV(32, R(ABI_PARAM1), Imm32(param1));
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    MOV(32, R(ABI_PARAM3), Imm32(param3));
+    MOV(64, R(ABI_PARAM4), ImmPtr(param4));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
+    MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
+    MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+    if (!arg2.IsSimpleReg(ABI_PARAM2))
+        MOV(32, R(ABI_PARAM2), arg2);
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
+    MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+    if (!arg2.IsSimpleReg(ABI_PARAM2))
+        MOV(32, R(ABI_PARAM2), arg2);
+    if (!arg3.IsSimpleReg(ABI_PARAM3))
+        MOV(32, R(ABI_PARAM3), arg3);
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
+    MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+    MOV(64, R(ABI_PARAM2), ImmPtr(param2));
+    MOV(32, R(ABI_PARAM3), Imm32(param3));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+// Pass a register as a parameter.
+void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
+    if (reg1 != ABI_PARAM1)
+        MOV(32, R(ABI_PARAM1), R(reg1));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+// Pass two registers as parameters.
+void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
+    if (reg2 != ABI_PARAM1) {
+        if (reg1 != ABI_PARAM1)
+            MOV(64, R(ABI_PARAM1), R(reg1));
+        if (reg2 != ABI_PARAM2)
+            MOV(64, R(ABI_PARAM2), R(reg2));
+    } else {
+        if (reg2 != ABI_PARAM2)
+            MOV(64, R(ABI_PARAM2), R(reg2));
+        if (reg1 != ABI_PARAM1)
+            MOV(64, R(ABI_PARAM1), R(reg1));
+    }
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
+{
+    if (!arg1.IsSimpleReg(ABI_PARAM1))
+        MOV(32, R(ABI_PARAM1), arg1);
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
+{
+    if (!arg1.IsSimpleReg(ABI_PARAM1))
+        MOV(32, R(ABI_PARAM1), arg1);
+    MOV(32, R(ABI_PARAM2), Imm32(param2));
+    MOV(64, R(ABI_PARAM3), Imm64(param3));
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
+{
+    if (!arg1.IsSimpleReg(ABI_PARAM1))
+        MOV(32, R(ABI_PARAM1), arg1);
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
+{
+    if (!arg1.IsSimpleReg(ABI_PARAM1))
+        MOV(32, R(ABI_PARAM1), arg1);
+    if (!arg2.IsSimpleReg(ABI_PARAM2))
+        MOV(32, R(ABI_PARAM2), arg2);
+    u64 distance = u64(func) - (u64(code) + 5);
+    if (distance >= 0x0000000080000000ULL
+     && distance <  0xFFFFFFFF80000000ULL) {
+        // Far call
+        MOV(64, R(RAX), ImmPtr(func));
+        CALLptr(R(RAX));
+    } else {
+        CALL(func);
+    }
+}
+
+unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
+    return frameSize;
+}
+
+#ifdef _WIN32
+
+// The Windows x64 ABI requires XMM6 - XMM15 to be callee saved.  10 regs.
+// But, not saving XMM4 and XMM5 breaks things in VS 2010, even though they are volatile regs.
+// Let's just save all 16.
+const int XMM_STACK_SPACE = 16 * 16;
+
+// Win64 Specific Code
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+    //we only want to do this once
+    PUSH(RBX);
+    PUSH(RSI);
+    PUSH(RDI);
+    PUSH(RBP);
+    PUSH(R12);
+    PUSH(R13);
+    PUSH(R14);
+    PUSH(R15);
+    ABI_AlignStack(0);
+
+    // Do this after aligning, because before it's offset by 8.
+    SUB(64, R(RSP), Imm32(XMM_STACK_SPACE));
+    for (int i = 0; i < 16; ++i)
+        MOVAPS(MDisp(RSP, i * 16), (X64Reg)(XMM0 + i));
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+    for (int i = 0; i < 16; ++i)
+        MOVAPS((X64Reg)(XMM0 + i), MDisp(RSP, i * 16));
+    ADD(64, R(RSP), Imm32(XMM_STACK_SPACE));
+
+    ABI_RestoreStack(0);
+    POP(R15);
+    POP(R14);
+    POP(R13);
+    POP(R12);
+    POP(RBP);
+    POP(RDI);
+    POP(RSI);
+    POP(RBX);
+}
+
+// Win64 Specific Code
+void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
+    PUSH(RCX);
+    PUSH(RDX);
+    PUSH(RSI);
+    PUSH(RDI);
+    PUSH(R8);
+    PUSH(R9);
+    PUSH(R10);
+    PUSH(R11);
+    // TODO: Callers preserve XMM4-5 (XMM0-3 are args.)
+    ABI_AlignStack(0);
+}
+
+void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
+    ABI_RestoreStack(0);
+    POP(R11);
+    POP(R10);
+    POP(R9);
+    POP(R8);
+    POP(RDI);
+    POP(RSI);
+    POP(RDX);
+    POP(RCX);
+}
+
+void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
+    SUB(64, R(RSP), Imm8(0x28));
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
+    ADD(64, R(RSP), Imm8(0x28));
+}
+
+#else
+// Unix64 Specific Code
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+    PUSH(RBX);
+    PUSH(RBP);
+    PUSH(R12);
+    PUSH(R13);
+    PUSH(R14);
+    PUSH(R15);
+    PUSH(R15); //just to align stack. duped push/pop doesn't hurt.
+    // TODO: XMM?
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+    POP(R15);
+    POP(R15);
+    POP(R14);
+    POP(R13);
+    POP(R12);
+    POP(RBP);
+    POP(RBX);
+}
+
+void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
+    PUSH(RCX);
+    PUSH(RDX);
+    PUSH(RSI);
+    PUSH(RDI);
+    PUSH(R8);
+    PUSH(R9);
+    PUSH(R10);
+    PUSH(R11);
+    PUSH(R11);
+}
+
+void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
+    POP(R11);
+    POP(R11);
+    POP(R10);
+    POP(R9);
+    POP(R8);
+    POP(RDI);
+    POP(RSI);
+    POP(RDX);
+    POP(RCX);
+}
+
+void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
+    SUB(64, R(RSP), Imm8(0x08));
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
+    ADD(64, R(RSP), Imm8(0x08));
+}
+
+#endif // WIN32
+
+#endif // 32bit
diff --git a/src/common/abi.h b/src/common/abi.h
new file mode 100644
index 000000000..bb9f7c95f
--- /dev/null
+++ b/src/common/abi.h
@@ -0,0 +1,78 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#pragma once
+
+#include "common_types.h"
+
+// x86/x64 ABI:s, and helpers to help follow them when JIT-ing code.
+// All convensions return values in EAX (+ possibly EDX).
+
+// Linux 32-bit, Windows 32-bit (cdecl, System V):
+// * Caller pushes left to right
+// * Caller fixes stack after call
+// * function subtract from stack for local storage only.
+// Scratch:      EAX ECX EDX
+// Callee-save:  EBX ESI EDI EBP
+// Parameters:   -
+
+// Windows 64-bit
+// * 4-reg "fastcall" variant, very new-skool stack handling
+// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
+// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
+// Scratch:      RAX RCX RDX R8 R9 R10 R11
+// Callee-save:  RBX RSI RDI RBP R12 R13 R14 R15
+// Parameters:   RCX RDX R8 R9, further MOV-ed
+
+// Linux 64-bit
+// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
+// Scratch:      RAX RCX RDX RSI RDI R8 R9 R10 R11
+// Callee-save:  RBX RBP R12 R13 R14 R15
+// Parameters:   RDI RSI RDX RCX R8 R9
+
+#ifdef _M_IX86 // 32 bit calling convention, shared by all
+
+// 32-bit don't pass parameters in regs, but these are convenient to have anyway when we have to
+// choose regs to put stuff in.
+#define ABI_PARAM1 RCX
+#define ABI_PARAM2 RDX
+
+// There are no ABI_PARAM* here, since args are pushed.
+// 32-bit bog standard cdecl, shared between linux and windows
+// MacOSX 32-bit is same as System V with a few exceptions that we probably don't care much about.
+
+#elif _M_X86_64 // 64 bit calling convention
+
+#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
+
+#define ABI_PARAM1 RCX
+#define ABI_PARAM2 RDX
+#define ABI_PARAM3 R8
+#define ABI_PARAM4 R9
+
+#else  //64-bit Unix (hopefully MacOSX too)
+
+#define ABI_PARAM1 RDI
+#define ABI_PARAM2 RSI
+#define ABI_PARAM3 RDX
+#define ABI_PARAM4 RCX
+#define ABI_PARAM5 R8
+#define ABI_PARAM6 R9
+
+#endif // WIN32
+
+#endif // X86
diff --git a/src/common/code_block.h b/src/common/code_block.h
new file mode 100644
index 000000000..9ef7296d3
--- /dev/null
+++ b/src/common/code_block.h
@@ -0,0 +1,87 @@
+// Copyright 2013 Dolphin Emulator Project
+// Licensed under GPLv2
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include "common_types.h"
+#include "memory_util.h"
+
+// Everything that needs to generate code should inherit from this.
+// You get memory management for free, plus, you can use all emitter functions without
+// having to prefix them with gen-> or something similar.
+// Example implementation:
+// class JIT : public CodeBlock<ARMXEmitter> {}
+template<class T> class CodeBlock : public T, NonCopyable
+{
+private:
+    // A privately used function to set the executable RAM space to something invalid.
+    // For debugging usefulness it should be used to set the RAM to a host specific breakpoint instruction
+    virtual void PoisonMemory() = 0;
+
+protected:
+    u8 *region;
+    size_t region_size;
+
+public:
+    CodeBlock() : region(nullptr), region_size(0) {}
+    virtual ~CodeBlock() { if (region) FreeCodeSpace(); }
+
+    // Call this before you generate any code.
+    void AllocCodeSpace(int size)
+    {
+        region_size = size;
+        region = (u8*)AllocateExecutableMemory(region_size);
+        T::SetCodePtr(region);
+    }
+
+    // Always clear code space with breakpoints, so that if someone accidentally executes
+    // uninitialized, it just breaks into the debugger.
+    void ClearCodeSpace()
+    {
+        PoisonMemory();
+        ResetCodePtr();
+    }
+
+    // Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
+    void FreeCodeSpace()
+    {
+#ifdef __SYMBIAN32__
+        ResetExecutableMemory(region);
+#else
+        FreeMemoryPages(region, region_size);
+#endif
+        region = nullptr;
+        region_size = 0;
+    }
+
+    bool IsInSpace(const u8 *ptr)
+    {
+        return (ptr >= region) && (ptr < (region + region_size));
+    }
+
+    // Cannot currently be undone. Will write protect the entire code region.
+    // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
+    void WriteProtect()
+    {
+        WriteProtectMemory(region, region_size, true);
+    }
+
+    void ResetCodePtr()
+    {
+        T::SetCodePtr(region);
+    }
+
+    size_t GetSpaceLeft() const
+    {
+        return region_size - (T::GetCodePtr() - region);
+    }
+
+    u8 *GetBasePtr() {
+        return region;
+    }
+
+    size_t GetOffset(const u8 *ptr) const {
+        return ptr - region;
+    }
+};
diff --git a/src/common/common_funcs.h b/src/common/common_funcs.h
index 83b47f61e..6fd2b06b2 100644
--- a/src/common/common_funcs.h
+++ b/src/common/common_funcs.h
@@ -35,7 +35,7 @@
 
 #ifndef _MSC_VER
 
-#if defined(__x86_64__) || defined(_M_X64)
+#if defined(__x86_64__) || defined(_M_X86_64)
 #define Crash() __asm__ __volatile__("int $3")
 #elif defined(_M_ARM)
 #define Crash() __asm__ __volatile__("trap")
diff --git a/src/common/fake_emitter.h b/src/common/fake_emitter.h
new file mode 100644
index 000000000..d6d96a51e
--- /dev/null
+++ b/src/common/fake_emitter.h
@@ -0,0 +1,465 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
+
+#pragma once
+
+#include <vector>
+#include <stdint.h>
+
+#include "assert.h"
+#include "common_types.h"
+
+// TODO: Check if Pandora still needs signal.h/kill here. Symbian doesn't.
+
+// VCVT flags
+#define TO_FLOAT      0
+#define TO_INT        1 << 0
+#define IS_SIGNED     1 << 1
+#define ROUND_TO_ZERO 1 << 2
+
+namespace FakeGen
+{
+enum FakeReg
+{
+    // GPRs
+    R0 = 0, R1, R2, R3, R4, R5,
+    R6, R7, R8, R9, R10, R11,
+
+    // SPRs
+    // R13 - R15 are SP, LR, and PC.
+    // Almost always referred to by name instead of register number
+    R12 = 12, R13 = 13, R14 = 14, R15 = 15,
+    R_IP = 12, R_SP = 13, R_LR = 14, R_PC = 15,
+
+
+    // VFP single precision registers
+    S0, S1, S2, S3, S4, S5, S6,
+    S7, S8, S9, S10, S11, S12, S13,
+    S14, S15, S16, S17, S18, S19, S20,
+    S21, S22, S23, S24, S25, S26, S27,
+    S28, S29, S30, S31,
+
+    // VFP Double Precision registers
+    D0, D1, D2, D3, D4, D5, D6, D7,
+    D8, D9, D10, D11, D12, D13, D14, D15,
+    D16, D17, D18, D19, D20, D21, D22, D23,
+    D24, D25, D26, D27, D28, D29, D30, D31,
+
+    // ASIMD Quad-Word registers
+    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
+    Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
+
+    // for NEON VLD/VST instructions
+    REG_UPDATE = R13,
+    INVALID_REG = 0xFFFFFFFF
+};
+
+enum CCFlags
+{
+    CC_EQ = 0, // Equal
+    CC_NEQ, // Not equal
+    CC_CS, // Carry Set
+    CC_CC, // Carry Clear
+    CC_MI, // Minus (Negative)
+    CC_PL, // Plus
+    CC_VS, // Overflow
+    CC_VC, // No Overflow
+    CC_HI, // Unsigned higher
+    CC_LS, // Unsigned lower or same
+    CC_GE, // Signed greater than or equal
+    CC_LT, // Signed less than
+    CC_GT, // Signed greater than
+    CC_LE, // Signed less than or equal
+    CC_AL, // Always (unconditional) 14
+    CC_HS = CC_CS, // Alias of CC_CS  Unsigned higher or same
+    CC_LO = CC_CC, // Alias of CC_CC  Unsigned lower
+};
+const u32 NO_COND = 0xE0000000;
+
+enum ShiftType
+{
+    ST_LSL = 0,
+    ST_ASL = 0,
+    ST_LSR = 1,
+    ST_ASR = 2,
+    ST_ROR = 3,
+    ST_RRX = 4
+};
+enum IntegerSize
+{
+    I_I8 = 0,
+    I_I16,
+    I_I32,
+    I_I64
+};
+
+enum
+{
+    NUMGPRs = 13,
+};
+
+class FakeXEmitter;
+
+enum OpType
+{
+    TYPE_IMM = 0,
+    TYPE_REG,
+    TYPE_IMMSREG,
+    TYPE_RSR,
+    TYPE_MEM
+};
+
+// This is no longer a proper operand2 class. Need to split up.
+class Operand2
+{
+    friend class FakeXEmitter;
+protected:
+    u32 Value;
+
+private:
+    OpType Type;
+
+    // IMM types
+    u8    Rotation; // Only for u8 values
+
+    // Register types
+    u8 IndexOrShift;
+    ShiftType Shift;
+public:
+    OpType GetType()
+    {
+        return Type;
+    }
+    Operand2() {}
+    Operand2(u32 imm, OpType type = TYPE_IMM)
+    {
+        Type = type;
+        Value = imm;
+        Rotation = 0;
+    }
+
+    Operand2(FakeReg Reg)
+    {
+        Type = TYPE_REG;
+        Value = Reg;
+        Rotation = 0;
+    }
+    Operand2(u8 imm, u8 rotation)
+    {
+        Type = TYPE_IMM;
+        Value = imm;
+        Rotation = rotation;
+    }
+    Operand2(FakeReg base, ShiftType type, FakeReg shift) // RSR
+    {
+        Type = TYPE_RSR;
+        ASSERT_MSG(type != ST_RRX, "Invalid Operand2: RRX does not take a register shift amount");
+        IndexOrShift = shift;
+        Shift = type;
+        Value = base;
+    }
+
+    Operand2(FakeReg base, ShiftType type, u8 shift)// For IMM shifted register
+    {
+        if(shift == 32) shift = 0;
+        switch (type)
+        {
+        case ST_LSL:
+            ASSERT_MSG(shift < 32, "Invalid Operand2: LSL %u", shift);
+            break;
+        case ST_LSR:
+            ASSERT_MSG(shift <= 32, "Invalid Operand2: LSR %u", shift);
+            if (!shift)
+                type = ST_LSL;
+            if (shift == 32)
+                shift = 0;
+            break;
+        case ST_ASR:
+            ASSERT_MSG(shift < 32, "Invalid Operand2: ASR %u", shift);
+            if (!shift)
+                type = ST_LSL;
+            if (shift == 32)
+                shift = 0;
+            break;
+        case ST_ROR:
+            ASSERT_MSG(shift < 32, "Invalid Operand2: ROR %u", shift);
+            if (!shift)
+                type = ST_LSL;
+            break;
+        case ST_RRX:
+            ASSERT_MSG(shift == 0, "Invalid Operand2: RRX does not take an immediate shift amount");
+            type = ST_ROR;
+            break;
+        }
+        IndexOrShift = shift;
+        Shift = type;
+        Value = base;
+        Type = TYPE_IMMSREG;
+    }
+    u32 GetData()
+    {
+        switch(Type)
+        {
+        case TYPE_IMM:
+            return Imm12Mod(); // This'll need to be changed later
+        case TYPE_REG:
+            return Rm();
+        case TYPE_IMMSREG:
+            return IMMSR();
+        case TYPE_RSR:
+            return RSR();
+        default:
+            ASSERT_MSG(false, "GetData with Invalid Type");
+            return 0;
+        }
+    }
+    u32 IMMSR() // IMM shifted register
+    {
+        ASSERT_MSG(Type == TYPE_IMMSREG, "IMMSR must be imm shifted register");
+        return ((IndexOrShift & 0x1f) << 7 | (Shift << 5) | Value);
+    }
+    u32 RSR() // Register shifted register
+    {
+        ASSERT_MSG(Type == TYPE_RSR, "RSR must be RSR Of Course");
+        return (IndexOrShift << 8) | (Shift << 5) | 0x10 | Value;
+    }
+    u32 Rm()
+    {
+        ASSERT_MSG(Type == TYPE_REG, "Rm must be with Reg");
+        return Value;
+    }
+
+    u32 Imm5()
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm5 not IMM value");
+        return ((Value & 0x0000001F) << 7);
+    }
+    u32 Imm8()
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm8Rot not IMM value");
+        return Value & 0xFF;
+    }
+    u32 Imm8Rot() // IMM8 with Rotation
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm8Rot not IMM value");
+        ASSERT_MSG((Rotation & 0xE1) != 0, "Invalid Operand2: immediate rotation %u", Rotation);
+        return (1 << 25) | (Rotation << 7) | (Value & 0x000000FF);
+    }
+    u32 Imm12()
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm12 not IMM");
+        return (Value & 0x00000FFF);
+    }
+
+    u32 Imm12Mod()
+    {
+        // This is an IMM12 with the top four bits being rotation and the
+        // bottom eight being an IMM. This is for instructions that need to
+        // expand a 8bit IMM to a 32bit value and gives you some rotation as
+        // well.
+        // Each rotation rotates to the right by 2 bits
+        ASSERT_MSG((Type == TYPE_IMM), "Imm12Mod not IMM");
+        return ((Rotation & 0xF) << 8) | (Value & 0xFF);
+    }
+    u32 Imm16()
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
+        return ( (Value & 0xF000) << 4) | (Value & 0x0FFF);
+    }
+    u32 Imm16Low()
+    {
+        return Imm16();
+    }
+    u32 Imm16High() // Returns high 16bits
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
+        return ( ((Value >> 16) & 0xF000) << 4) | ((Value >> 16) & 0x0FFF);
+    }
+    u32 Imm24()
+    {
+        ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
+        return (Value & 0x0FFFFFFF);
+    }
+};
+
+// Use these when you don't know if an imm can be represented as an operand2.
+// This lets you generate both an optimal and a fallback solution by checking
+// the return value, which will be false if these fail to find a Operand2 that
+// represents your 32-bit imm value.
+bool TryMakeOperand2(u32 imm, Operand2 &op2);
+bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse);
+bool TryMakeOperand2_AllowNegation(s32 imm, Operand2 &op2, bool *negated);
+
+// Use this only when you know imm can be made into an Operand2.
+Operand2 AssumeMakeOperand2(u32 imm);
+
+inline Operand2 R(FakeReg Reg)    { return Operand2(Reg, TYPE_REG); }
+inline Operand2 IMM(u32 Imm)    { return Operand2(Imm, TYPE_IMM); }
+inline Operand2 Mem(void *ptr)    { return Operand2((u32)(uintptr_t)ptr, TYPE_IMM); }
+//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
+#define STRUCT_OFF(str,elem) ((u32)((u32)&(str).elem-(u32)&(str)))
+
+
+struct FixupBranch
+{
+    u8 *ptr;
+    u32 condition; // Remembers our codition at the time
+    int type; //0 = B 1 = BL
+};
+
+typedef const u8* JumpTarget;
+
+// XXX: Stop polluting the global namespace
+const u32 I_8 = (1 << 0);
+const u32 I_16 = (1 << 1);
+const u32 I_32 = (1 << 2);
+const u32 I_64 = (1 << 3);
+const u32 I_SIGNED = (1 << 4);
+const u32 I_UNSIGNED = (1 << 5);
+const u32 F_32 = (1 << 6);
+const u32 I_POLYNOMIAL = (1 << 7); // Only used in VMUL/VMULL
+
+u32 EncodeVd(FakeReg Vd);
+u32 EncodeVn(FakeReg Vn);
+u32 EncodeVm(FakeReg Vm);
+
+u32 encodedSize(u32 value);
+
+// Subtracts the base from the register to give us the real one
+FakeReg SubBase(FakeReg Reg);
+
+// See A.7.1 in the Fakev7-A
+// VMUL F32 scalars can only be up to D15[0], D15[1] - higher scalars cannot be individually addressed
+FakeReg DScalar(FakeReg dreg, int subScalar);
+FakeReg QScalar(FakeReg qreg, int subScalar);
+
+enum NEONAlignment {
+    ALIGN_NONE = 0,
+    ALIGN_64 = 1,
+    ALIGN_128 = 2,
+    ALIGN_256 = 3
+};
+
+
+class NEONXEmitter;
+
+class FakeXEmitter
+{
+    friend struct OpArg;  // for Write8 etc
+private:
+    u8 *code, *startcode;
+    u8 *lastCacheFlushEnd;
+    u32 condition;
+
+protected:
+    inline void Write32(u32 value) {*(u32*)code = value; code+=4;}
+
+public:
+    FakeXEmitter() : code(0), startcode(0), lastCacheFlushEnd(0) {
+        condition = CC_AL << 28;
+    }
+    FakeXEmitter(u8 *code_ptr) {
+        code = code_ptr;
+        lastCacheFlushEnd = code_ptr;
+        startcode = code_ptr;
+        condition = CC_AL << 28;
+    }
+    virtual ~FakeXEmitter() {}
+
+    void SetCodePtr(u8 *ptr) {}
+    void ReserveCodeSpace(u32 bytes) {}
+    const u8 *AlignCode16() { return nullptr; }
+    const u8 *AlignCodePage() { return nullptr; }
+    const u8 *GetCodePtr() const { return nullptr; }
+    void FlushIcache() {}
+    void FlushIcacheSection(u8 *start, u8 *end) {}
+    u8 *GetWritableCodePtr() { return nullptr; }
+
+    CCFlags GetCC() { return CCFlags(condition >> 28); }
+    void SetCC(CCFlags cond = CC_AL) {}
+
+    // Special purpose instructions
+
+    // Do nothing
+    void NOP(int count = 1) {} //nop padding - TODO: fast nop slides, for amd and intel (check their manuals)
+
+#ifdef CALL
+#undef CALL
+#endif
+
+    void QuickCallFunction(FakeReg scratchreg, const void *func);
+    template <typename T> void QuickCallFunction(FakeReg scratchreg, T func) {
+        QuickCallFunction(scratchreg, (const void *)func);
+    }
+};  // class FakeXEmitter
+
+
+// Everything that needs to generate machine code should inherit from this.
+// You get memory management for free, plus, you can use all the MOV etc functions without
+// having to prefix them with gen-> or something similar.
+class FakeXCodeBlock : public FakeXEmitter
+{
+protected:
+    u8 *region;
+    size_t region_size;
+
+public:
+    FakeXCodeBlock() : region(NULL), region_size(0) {}
+    virtual ~FakeXCodeBlock() { if (region) FreeCodeSpace(); }
+
+    // Call this before you generate any code.
+    void AllocCodeSpace(int size) { }
+
+    // Always clear code space with breakpoints, so that if someone accidentally executes
+    // uninitialized, it just breaks into the debugger.
+    void ClearCodeSpace() { }
+
+    // Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
+    void FreeCodeSpace() { }
+
+    bool IsInSpace(const u8 *ptr) const
+    {
+        return ptr >= region && ptr < region + region_size;
+    }
+
+    // Cannot currently be undone. Will write protect the entire code region.
+    // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
+    void WriteProtect() { }
+    void UnWriteProtect() { }
+
+    void ResetCodePtr()
+    {
+        SetCodePtr(region);
+    }
+
+    size_t GetSpaceLeft() const
+    {
+        return region_size - (GetCodePtr() - region);
+    }
+
+    u8 *GetBasePtr() {
+        return region;
+    }
+
+    size_t GetOffset(const u8 *ptr) const {
+        return ptr - region;
+    }
+};
+
+}  // namespace
diff --git a/src/common/platform.h b/src/common/platform.h
index 0a912dda3..08aaa03a4 100644
--- a/src/common/platform.h
+++ b/src/common/platform.h
@@ -27,7 +27,7 @@
 ////////////////////////////////////////////////////////////////////////////////////////////////////
 // Platform detection
 
-#if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__)
+#if defined(__x86_64__) || defined(_M_X86_64) || defined(__aarch64__)
     #define EMU_ARCH_BITS 64
 #elif defined(__i386) || defined(_M_IX86) || defined(__arm__) || defined(_M_ARM)
     #define EMU_ARCH_BITS 32
diff --git a/src/common/x64_emitter.cpp b/src/common/x64_emitter.cpp
new file mode 100644
index 000000000..19db2e484
--- /dev/null
+++ b/src/common/x64_emitter.cpp
@@ -0,0 +1,1989 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#include <cstring>
+
+#include "logging/log.h"
+
+#include "assert.h"
+#include "x64_emitter.h"
+#include "abi.h"
+#include "cpu_detect.h"
+#include "memory_util.h"
+
+#define PRIx64 "llx"
+
+// Minimize the diff against Dolphin
+#define DYNA_REC JIT
+
+namespace Gen
+{
+
+struct NormalOpDef
+{
+    u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
+};
+
+// 0xCC is code for invalid combination of immediates
+static const NormalOpDef normalops[11] =
+{
+    {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD
+    {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC
+
+    {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB
+    {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB
+
+    {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND
+    {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR
+
+    {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR
+    {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV
+
+    {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from)
+    {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP
+
+    {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG
+};
+
+enum NormalSSEOps
+{
+    sseCMP         = 0xC2,
+    sseADD         = 0x58, //ADD
+    sseSUB         = 0x5C, //SUB
+    sseAND         = 0x54, //AND
+    sseANDN        = 0x55, //ANDN
+    sseOR          = 0x56,
+    sseXOR         = 0x57,
+    sseMUL         = 0x59, //MUL
+    sseDIV         = 0x5E, //DIV
+    sseMIN         = 0x5D, //MIN
+    sseMAX         = 0x5F, //MAX
+    sseCOMIS       = 0x2F, //COMIS
+    sseUCOMIS      = 0x2E, //UCOMIS
+    sseSQRT        = 0x51, //SQRT
+    sseRSQRT       = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
+    sseRCP         = 0x53, //RCP
+    sseMOVAPfromRM = 0x28, //MOVAP from RM
+    sseMOVAPtoRM   = 0x29, //MOVAP to RM
+    sseMOVUPfromRM = 0x10, //MOVUP from RM
+    sseMOVUPtoRM   = 0x11, //MOVUP to RM
+    sseMOVLPfromRM= 0x12,
+    sseMOVLPtoRM  = 0x13,
+    sseMOVHPfromRM= 0x16,
+    sseMOVHPtoRM  = 0x17,
+    sseMOVHLPS     = 0x12,
+    sseMOVLHPS     = 0x16,
+    sseMOVDQfromRM = 0x6F,
+    sseMOVDQtoRM   = 0x7F,
+    sseMASKMOVDQU  = 0xF7,
+    sseLDDQU       = 0xF0,
+    sseSHUF        = 0xC6,
+    sseMOVNTDQ     = 0xE7,
+    sseMOVNTP      = 0x2B,
+    sseHADD        = 0x7C,
+};
+
+
+void XEmitter::SetCodePtr(u8 *ptr)
+{
+    code = ptr;
+}
+
+const u8 *XEmitter::GetCodePtr() const
+{
+    return code;
+}
+
+u8 *XEmitter::GetWritableCodePtr()
+{
+    return code;
+}
+
+void XEmitter::ReserveCodeSpace(int bytes)
+{
+    for (int i = 0; i < bytes; i++)
+        *code++ = 0xCC;
+}
+
+const u8 *XEmitter::AlignCode4()
+{
+    int c = int((u64)code & 3);
+    if (c)
+        ReserveCodeSpace(4-c);
+    return code;
+}
+
+const u8 *XEmitter::AlignCode16()
+{
+    int c = int((u64)code & 15);
+    if (c)
+        ReserveCodeSpace(16-c);
+    return code;
+}
+
+const u8 *XEmitter::AlignCodePage()
+{
+    int c = int((u64)code & 4095);
+    if (c)
+        ReserveCodeSpace(4096-c);
+    return code;
+}
+
+// This operation modifies flags; check to see the flags are locked.
+// If the flags are locked, we should immediately and loudly fail before
+// causing a subtle JIT bug.
+void XEmitter::CheckFlags()
+{
+    ASSERT_MSG(!flags_locked, "Attempt to modify flags while flags locked!");
+}
+
+void XEmitter::WriteModRM(int mod, int reg, int rm)
+{
+    Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
+}
+
+void XEmitter::WriteSIB(int scale, int index, int base)
+{
+    Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
+}
+
+void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
+{
+    if (customOp == -1)       customOp = operandReg;
+#ifdef _M_X86_64
+    u8 op = 0x40;
+    // REX.W (whether operation is a 64-bit operation)
+    if (opBits == 64)         op |= 8;
+    // REX.R (whether ModR/M reg field refers to R8-R15.
+    if (customOp & 8)         op |= 4;
+    // REX.X (whether ModR/M SIB index field refers to R8-R15)
+    if (indexReg & 8)         op |= 2;
+    // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
+    if (offsetOrBaseReg & 8)  op |= 1;
+    // Write REX if wr have REX bits to write, or if the operation accesses
+    // SIL, DIL, BPL, or SPL.
+    if (op != 0x40 ||
+        (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
+        (opBits == 8 && (customOp & 0x10c) == 4))
+    {
+        emit->Write8(op);
+        // Check the operation doesn't access AH, BH, CH, or DH.
+        DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
+        DEBUG_ASSERT((customOp & 0x100) == 0);
+    }
+#else
+    DEBUG_ASSERT(opBits != 64);
+    DEBUG_ASSERT((customOp & 8) == 0 || customOp == -1);
+    DEBUG_ASSERT((indexReg & 8) == 0);
+    DEBUG_ASSERT((offsetOrBaseReg & 8) == 0);
+    DEBUG_ASSERT(opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1);
+    DEBUG_ASSERT(scale == SCALE_ATREG || bits != 8 || (offsetOrBaseReg & 0x10c) != 4);
+#endif
+}
+
+void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const
+{
+    int R = !(regOp1 & 8);
+    int X = !(indexReg & 8);
+    int B = !(offsetOrBaseReg & 8);
+
+    int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
+
+    // do we need any VEX fields that only appear in the three-byte form?
+    if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
+    {
+        u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 1) | pp;
+        emit->Write8(0xC5);
+        emit->Write8(RvvvvLpp);
+    }
+    else
+    {
+        u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
+        u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 1) | pp;
+        emit->Write8(0xC4);
+        emit->Write8(RXBmmmmm);
+        emit->Write8(WvvvvLpp);
+    }
+}
+
+void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
+    bool warn_64bit_offset) const
+{
+    if (_operandReg == INVALID_REG)
+        _operandReg = (X64Reg)this->operandReg;
+    int mod = 0;
+    int ireg = indexReg;
+    bool SIB = false;
+    int _offsetOrBaseReg = this->offsetOrBaseReg;
+
+    if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
+    {
+        // Oh, RIP addressing.
+        _offsetOrBaseReg = 5;
+        emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
+        //TODO : add some checks
+#ifdef _M_X86_64
+        u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
+        s64 distance = (s64)offset - (s64)ripAddr;
+        ASSERT_MSG(
+                     (distance < 0x80000000LL &&
+                      distance >=  -0x80000000LL) ||
+                     !warn_64bit_offset,
+                     "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")",
+                     ripAddr, offset);
+        s32 offs = (s32)distance;
+        emit->Write32((u32)offs);
+#else
+        emit->Write32((u32)offset);
+#endif
+        return;
+    }
+
+    if (scale == 0)
+    {
+        // Oh, no memory, Just a reg.
+        mod = 3; //11
+    }
+    else if (scale >= 1)
+    {
+        //Ah good, no scaling.
+        if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
+        {
+            //Okay, we're good. No SIB necessary.
+            int ioff = (int)offset;
+            if (ioff == 0)
+            {
+                mod = 0;
+            }
+            else if (ioff<-128 || ioff>127)
+            {
+                mod = 2; //32-bit displacement
+            }
+            else
+            {
+                mod = 1; //8-bit displacement
+            }
+        }
+        else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
+        {
+            SIB = true;
+            mod = 0;
+            _offsetOrBaseReg = 5;
+        }
+        else //if (scale != SCALE_ATREG)
+        {
+            if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
+            {
+                //So we have to fake it with SIB encoding :(
+                SIB = true;
+            }
+
+            if (scale >= SCALE_1 && scale < SCALE_ATREG)
+            {
+                SIB = true;
+            }
+
+            if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
+            {
+                SIB = true;
+                ireg = _offsetOrBaseReg;
+            }
+
+            //Okay, we're fine. Just disp encoding.
+            //We need displacement. Which size?
+            int ioff = (int)(s64)offset;
+            if (ioff < -128 || ioff > 127)
+            {
+                mod = 2; //32-bit displacement
+            }
+            else
+            {
+                mod = 1; //8-bit displacement
+            }
+        }
+    }
+
+    // Okay. Time to do the actual writing
+    // ModRM byte:
+    int oreg = _offsetOrBaseReg;
+    if (SIB)
+        oreg = 4;
+
+    // TODO(ector): WTF is this if about? I don't remember writing it :-)
+    //if (RIP)
+    //    oreg = 5;
+
+    emit->WriteModRM(mod, _operandReg&7, oreg&7);
+
+    if (SIB)
+    {
+        //SIB byte
+        int ss;
+        switch (scale)
+        {
+        case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
+        case SCALE_1: ss = 0; break;
+        case SCALE_2: ss = 1; break;
+        case SCALE_4: ss = 2; break;
+        case SCALE_8: ss = 3; break;
+        case SCALE_NOBASE_2: ss = 1; break;
+        case SCALE_NOBASE_4: ss = 2; break;
+        case SCALE_NOBASE_8: ss = 3; break;
+        case SCALE_ATREG: ss = 0; break;
+        default: ASSERT_MSG(0, "Invalid scale for SIB byte"); ss = 0; break;
+        }
+        emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
+    }
+
+    if (mod == 1) //8-bit disp
+    {
+        emit->Write8((u8)(s8)(s32)offset);
+    }
+    else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
+    {
+        emit->Write32((u32)offset);
+    }
+}
+
+// W = operand extended width (1 if 64-bit)
+// R = register# upper bit
+// X = scale amnt upper bit
+// B = base register# upper bit
+void XEmitter::Rex(int w, int r, int x, int b)
+{
+    w = w ? 1 : 0;
+    r = r ? 1 : 0;
+    x = x ? 1 : 0;
+    b = b ? 1 : 0;
+    u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
+    if (rx != 0x40)
+        Write8(rx);
+}
+
+void XEmitter::JMP(const u8 *addr, bool force5Bytes)
+{
+    u64 fn = (u64)addr;
+    if (!force5Bytes)
+    {
+        s64 distance = (s64)(fn - ((u64)code + 2));
+        ASSERT_MSG(distance >= -0x80 && distance < 0x80,
+                 "Jump target too far away, needs force5Bytes = true");
+        //8 bits will do
+        Write8(0xEB);
+        Write8((u8)(s8)distance);
+    }
+    else
+    {
+        s64 distance = (s64)(fn - ((u64)code + 5));
+
+        ASSERT_MSG(
+                     distance >= -0x80000000LL && distance < 0x80000000LL,
+                     "Jump target too far away, needs indirect register");
+        Write8(0xE9);
+        Write32((u32)(s32)distance);
+    }
+}
+
+void XEmitter::JMPptr(const OpArg &arg2)
+{
+    OpArg arg = arg2;
+    if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument");
+    arg.operandReg = 4;
+    arg.WriteRex(this, 0, 0);
+    Write8(0xFF);
+    arg.WriteRest(this);
+}
+
+//Can be used to trap other processors, before overwriting their code
+// not used in dolphin
+void XEmitter::JMPself()
+{
+    Write8(0xEB);
+    Write8(0xFE);
+}
+
+void XEmitter::CALLptr(OpArg arg)
+{
+    if (arg.IsImm()) ASSERT_MSG(0, "CALLptr - Imm argument");
+    arg.operandReg = 2;
+    arg.WriteRex(this, 0, 0);
+    Write8(0xFF);
+    arg.WriteRest(this);
+}
+
+void XEmitter::CALL(const void *fnptr)
+{
+    u64 distance = u64(fnptr) - (u64(code) + 5);
+    ASSERT_MSG(
+                 distance < 0x0000000080000000ULL ||
+                 distance >=  0xFFFFFFFF80000000ULL,
+                 "CALL out of range (%p calls %p)", code, fnptr);
+    Write8(0xE8);
+    Write32(u32(distance));
+}
+
+FixupBranch XEmitter::J(bool force5bytes)
+{
+    FixupBranch branch;
+    branch.type = force5bytes ? 1 : 0;
+    branch.ptr = code + (force5bytes ? 5 : 2);
+    if (!force5bytes)
+    {
+        //8 bits will do
+        Write8(0xEB);
+        Write8(0);
+    }
+    else
+    {
+        Write8(0xE9);
+        Write32(0);
+    }
+    return branch;
+}
+
+FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
+{
+    FixupBranch branch;
+    branch.type = force5bytes ? 1 : 0;
+    branch.ptr = code + (force5bytes ? 6 : 2);
+    if (!force5bytes)
+    {
+        //8 bits will do
+        Write8(0x70 + conditionCode);
+        Write8(0);
+    }
+    else
+    {
+        Write8(0x0F);
+        Write8(0x80 + conditionCode);
+        Write32(0);
+    }
+    return branch;
+}
+
+void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes)
+{
+    u64 fn = (u64)addr;
+    s64 distance = (s64)(fn - ((u64)code + 2));
+    if (distance < -0x80 || distance >= 0x80 || force5bytes)
+    {
+        distance = (s64)(fn - ((u64)code + 6));
+        ASSERT_MSG(
+                     distance >= -0x80000000LL && distance < 0x80000000LL,
+                     "Jump target too far away, needs indirect register");
+        Write8(0x0F);
+        Write8(0x80 + conditionCode);
+        Write32((u32)(s32)distance);
+    }
+    else
+    {
+        Write8(0x70 + conditionCode);
+        Write8((u8)(s8)distance);
+    }
+}
+
+void XEmitter::SetJumpTarget(const FixupBranch &branch)
+{
+    if (branch.type == 0)
+    {
+        s64 distance = (s64)(code - branch.ptr);
+        ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
+        branch.ptr[-1] = (u8)(s8)distance;
+    }
+    else if (branch.type == 1)
+    {
+        s64 distance = (s64)(code - branch.ptr);
+        ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
+        ((s32*)branch.ptr)[-1] = (s32)distance;
+    }
+}
+
+// INC/DEC considered harmful on newer CPUs due to partial flag set.
+// Use ADD, SUB instead.
+
+/*
+void XEmitter::INC(int bits, OpArg arg)
+{
+    if (arg.IsImm()) ASSERT_MSG(0, "INC - Imm argument");
+    arg.operandReg = 0;
+    if (bits == 16) {Write8(0x66);}
+    arg.WriteRex(this, bits, bits);
+    Write8(bits == 8 ? 0xFE : 0xFF);
+    arg.WriteRest(this);
+}
+void XEmitter::DEC(int bits, OpArg arg)
+{
+    if (arg.IsImm()) ASSERT_MSG(0, "DEC - Imm argument");
+    arg.operandReg = 1;
+    if (bits == 16) {Write8(0x66);}
+    arg.WriteRex(this, bits, bits);
+    Write8(bits == 8 ? 0xFE : 0xFF);
+    arg.WriteRest(this);
+}
+*/
+
+//Single byte opcodes
+//There is no PUSHAD/POPAD in 64-bit mode.
+void XEmitter::INT3() {Write8(0xCC);}
+void XEmitter::RET()  {Write8(0xC3);}
+void XEmitter::RET_FAST()  {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
+
+// The first sign of decadence: optimized NOPs.
+void XEmitter::NOP(size_t size)
+{
+    DEBUG_ASSERT((int)size > 0);
+    while (true)
+    {
+        switch (size)
+        {
+        case 0:
+            return;
+        case 1:
+            Write8(0x90);
+            return;
+        case 2:
+            Write8(0x66); Write8(0x90);
+            return;
+        case 3:
+            Write8(0x0F); Write8(0x1F); Write8(0x00);
+            return;
+        case 4:
+            Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00);
+            return;
+        case 5:
+            Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00);
+            Write8(0x00);
+            return;
+        case 6:
+            Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44);
+            Write8(0x00); Write8(0x00);
+            return;
+        case 7:
+            Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00);
+            Write8(0x00); Write8(0x00); Write8(0x00);
+            return;
+        case 8:
+            Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00);
+            Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+            return;
+        case 9:
+            Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84);
+            Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+            Write8(0x00);
+            return;
+        case 10:
+            Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F);
+            Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00);
+            Write8(0x00); Write8(0x00);
+            return;
+        default:
+            // Even though x86 instructions are allowed to be up to 15 bytes long,
+            // AMD advises against using NOPs longer than 11 bytes because they
+            // carry a performance penalty on CPUs older than AMD family 16h.
+            Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F);
+            Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00);
+            Write8(0x00); Write8(0x00); Write8(0x00);
+            size -= 11;
+            continue;
+        }
+    }
+}
+
+void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
+void XEmitter::CLC()  {CheckFlags(); Write8(0xF8);} //clear carry
+void XEmitter::CMC()  {CheckFlags(); Write8(0xF5);} //flip carry
+void XEmitter::STC()  {CheckFlags(); Write8(0xF9);} //set carry
+
+//TODO: xchg ah, al ???
+void XEmitter::XCHG_AHAL()
+{
+    Write8(0x86);
+    Write8(0xe0);
+    // alt. 86 c4
+}
+
+//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
+void XEmitter::LAHF() {Write8(0x9F);}
+void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);}
+
+void XEmitter::PUSHF() {Write8(0x9C);}
+void XEmitter::POPF()  {CheckFlags(); Write8(0x9D);}
+
+void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
+void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
+void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
+
+void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
+{
+    if (bits == 16)
+        Write8(0x66);
+    Rex(bits == 64, 0, 0, (int)reg >> 3);
+    Write8(byte + ((int)reg & 7));
+}
+
+void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
+{
+    if (bits == 16)
+        Write8(0x66);
+    Rex(bits==64, 0, 0, (int)reg >> 3);
+    Write8(byte1);
+    Write8(byte2 + ((int)reg & 7));
+}
+
+void XEmitter::CWD(int bits)
+{
+    if (bits == 16)
+        Write8(0x66);
+    Rex(bits == 64, 0, 0, 0);
+    Write8(0x99);
+}
+
+void XEmitter::CBW(int bits)
+{
+    if (bits == 8)
+        Write8(0x66);
+    Rex(bits == 32, 0, 0, 0);
+    Write8(0x98);
+}
+
+//Simple opcodes
+
+
+//push/pop do not need wide to be 64-bit
+void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
+void XEmitter::POP(X64Reg reg)  {WriteSimple1Byte(32, 0x58, reg);}
+
+void XEmitter::PUSH(int bits, const OpArg &reg)
+{
+    if (reg.IsSimpleReg())
+        PUSH(reg.GetSimpleReg());
+    else if (reg.IsImm())
+    {
+        switch (reg.GetImmBits())
+        {
+        case 8:
+            Write8(0x6A);
+            Write8((u8)(s8)reg.offset);
+            break;
+        case 16:
+            Write8(0x66);
+            Write8(0x68);
+            Write16((u16)(s16)(s32)reg.offset);
+            break;
+        case 32:
+            Write8(0x68);
+            Write32((u32)reg.offset);
+            break;
+        default:
+            ASSERT_MSG(0, "PUSH - Bad imm bits");
+            break;
+        }
+    }
+    else
+    {
+        if (bits == 16)
+            Write8(0x66);
+        reg.WriteRex(this, bits, bits);
+        Write8(0xFF);
+        reg.WriteRest(this, 0, (X64Reg)6);
+    }
+}
+
+void XEmitter::POP(int /*bits*/, const OpArg &reg)
+{
+    if (reg.IsSimpleReg())
+        POP(reg.GetSimpleReg());
+    else
+        ASSERT_MSG(0, "POP - Unsupported encoding");
+}
+
+void XEmitter::BSWAP(int bits, X64Reg reg)
+{
+    if (bits >= 32)
+    {
+        WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
+    }
+    else if (bits == 16)
+    {
+        ROL(16, R(reg), Imm8(8));
+    }
+    else if (bits == 8)
+    {
+        // Do nothing - can't bswap a single byte...
+    }
+    else
+    {
+        ASSERT_MSG(0, "BSWAP - Wrong number of bits");
+    }
+}
+
+// Undefined opcode - reserved
+// If we ever need a way to always cause a non-breakpoint hard exception...
+void XEmitter::UD2()
+{
+    Write8(0x0F);
+    Write8(0x0B);
+}
+
+void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
+{
+    ASSERT_MSG(!arg.IsImm(), "PREFETCH - Imm argument");
+    arg.operandReg = (u8)level;
+    arg.WriteRex(this, 0, 0);
+    Write8(0x0F);
+    Write8(0x18);
+    arg.WriteRest(this);
+}
+
+void XEmitter::SETcc(CCFlags flag, OpArg dest)
+{
+    ASSERT_MSG(!dest.IsImm(), "SETcc - Imm argument");
+    dest.operandReg = 0;
+    dest.WriteRex(this, 0, 8);
+    Write8(0x0F);
+    Write8(0x90 + (u8)flag);
+    dest.WriteRest(this);
+}
+
+void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
+{
+    ASSERT_MSG(!src.IsImm(), "CMOVcc - Imm argument");
+    ASSERT_MSG(bits != 8, "CMOVcc - 8 bits unsupported");
+    if (bits == 16)
+        Write8(0x66);
+    src.operandReg = dest;
+    src.WriteRex(this, bits, bits);
+    Write8(0x0F);
+    Write8(0x40 + (u8)flag);
+    src.WriteRest(this);
+}
+
+void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
+{
+    ASSERT_MSG(!src.IsImm(), "WriteMulDivType - Imm argument");
+    CheckFlags();
+    src.operandReg = ext;
+    if (bits == 16)
+        Write8(0x66);
+    src.WriteRex(this, bits, bits, 0);
+    if (bits == 8)
+    {
+        Write8(0xF6);
+    }
+    else
+    {
+        Write8(0xF7);
+    }
+    src.WriteRest(this);
+}
+
+void XEmitter::MUL(int bits, OpArg src)  {WriteMulDivType(bits, src, 4);}
+void XEmitter::DIV(int bits, OpArg src)  {WriteMulDivType(bits, src, 6);}
+void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
+void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
+void XEmitter::NEG(int bits, OpArg src)  {WriteMulDivType(bits, src, 3);}
+void XEmitter::NOT(int bits, OpArg src)  {WriteMulDivType(bits, src, 2);}
+
+void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
+{
+    ASSERT_MSG(!src.IsImm(), "WriteBitSearchType - Imm argument");
+    CheckFlags();
+    src.operandReg = (u8)dest;
+    if (bits == 16)
+        Write8(0x66);
+    if (rep)
+        Write8(0xF3);
+    src.WriteRex(this, bits, bits);
+    Write8(0x0F);
+    Write8(byte2);
+    src.WriteRest(this);
+}
+
+void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src)
+{
+    if (bits <= 16)
+        ASSERT_MSG(0, "MOVNTI - bits<=16");
+    WriteBitSearchType(bits, src, dest, 0xC3);
+}
+
+void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
+void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
+
+void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src)
+{
+    CheckFlags();
+    if (!Common::cpu_info.bBMI1)
+        ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+    WriteBitSearchType(bits, dest, src, 0xBC, true);
+}
+void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src)
+{
+    CheckFlags();
+    if (!Common::cpu_info.bLZCNT)
+        ASSERT_MSG(0, "Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
+    WriteBitSearchType(bits, dest, src, 0xBD, true);
+}
+
+void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+    ASSERT_MSG(!src.IsImm(), "MOVSX - Imm argument");
+    if (dbits == sbits)
+    {
+        MOV(dbits, R(dest), src);
+        return;
+    }
+    src.operandReg = (u8)dest;
+    if (dbits == 16)
+        Write8(0x66);
+    src.WriteRex(this, dbits, sbits);
+    if (sbits == 8)
+    {
+        Write8(0x0F);
+        Write8(0xBE);
+    }
+    else if (sbits == 16)
+    {
+        Write8(0x0F);
+        Write8(0xBF);
+    }
+    else if (sbits == 32 && dbits == 64)
+    {
+        Write8(0x63);
+    }
+    else
+    {
+        Crash();
+    }
+    src.WriteRest(this);
+}
+
+void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+    ASSERT_MSG(!src.IsImm(), "MOVZX - Imm argument");
+    if (dbits == sbits)
+    {
+        MOV(dbits, R(dest), src);
+        return;
+    }
+    src.operandReg = (u8)dest;
+    if (dbits == 16)
+        Write8(0x66);
+    //the 32bit result is automatically zero extended to 64bit
+    src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits);
+    if (sbits == 8)
+    {
+        Write8(0x0F);
+        Write8(0xB6);
+    }
+    else if (sbits == 16)
+    {
+        Write8(0x0F);
+        Write8(0xB7);
+    }
+    else if (sbits == 32 && dbits == 64)
+    {
+        Write8(0x8B);
+    }
+    else
+    {
+        ASSERT_MSG(0, "MOVZX - Invalid size");
+    }
+    src.WriteRest(this);
+}
+
+void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src)
+{
+    ASSERT_MSG(Common::cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
+    if (bits == 8)
+    {
+        MOV(bits, dest, src);
+        return;
+    }
+
+    if (bits == 16)
+        Write8(0x66);
+
+    if (dest.IsSimpleReg())
+    {
+        ASSERT_MSG(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem");
+        src.WriteRex(this, bits, bits, dest.GetSimpleReg());
+        Write8(0x0F); Write8(0x38); Write8(0xF0);
+        src.WriteRest(this, 0, dest.GetSimpleReg());
+    }
+    else if (src.IsSimpleReg())
+    {
+        ASSERT_MSG(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem");
+        dest.WriteRex(this, bits, bits, src.GetSimpleReg());
+        Write8(0x0F); Write8(0x38); Write8(0xF1);
+        dest.WriteRest(this, 0, src.GetSimpleReg());
+    }
+    else
+    {
+        ASSERT_MSG(0, "MOVBE: Not loading or storing to mem");
+    }
+}
+
+
+void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
+{
+    ASSERT_MSG(!src.IsImm(), "LEA - Imm argument");
+    src.operandReg = (u8)dest;
+    if (bits == 16)
+        Write8(0x66); //TODO: performance warning
+    src.WriteRex(this, bits, bits);
+    Write8(0x8D);
+    src.WriteRest(this, 0, INVALID_REG, bits == 64);
+}
+
+//shift can be either imm8 or cl
+void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
+{
+    CheckFlags();
+    bool writeImm = false;
+    if (dest.IsImm())
+    {
+        ASSERT_MSG(0, "WriteShift - can't shift imms");
+    }
+    if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+    {
+        ASSERT_MSG(0, "WriteShift - illegal argument");
+    }
+    dest.operandReg = ext;
+    if (bits == 16)
+        Write8(0x66);
+    dest.WriteRex(this, bits, bits, 0);
+    if (shift.GetImmBits() == 8)
+    {
+        //ok an imm
+        u8 imm = (u8)shift.offset;
+        if (imm == 1)
+        {
+            Write8(bits == 8 ? 0xD0 : 0xD1);
+        }
+        else
+        {
+            writeImm = true;
+            Write8(bits == 8 ? 0xC0 : 0xC1);
+        }
+    }
+    else
+    {
+        Write8(bits == 8 ? 0xD2 : 0xD3);
+    }
+    dest.WriteRest(this, writeImm ? 1 : 0);
+    if (writeImm)
+        Write8((u8)shift.offset);
+}
+
+// large rotates and shift are slower on intel than amd
+// intel likes to rotate by 1, and the op is smaller too
+void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
+void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
+void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
+void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
+void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
+void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
+void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
+
+// index can be either imm8 or register, don't use memory destination because it's slow
+void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
+{
+    CheckFlags();
+    if (dest.IsImm())
+    {
+        ASSERT_MSG(0, "WriteBitTest - can't test imms");
+    }
+    if ((index.IsImm() && index.GetImmBits() != 8))
+    {
+        ASSERT_MSG(0, "WriteBitTest - illegal argument");
+    }
+    if (bits == 16)
+        Write8(0x66);
+    if (index.IsImm())
+    {
+        dest.WriteRex(this, bits, bits);
+        Write8(0x0F); Write8(0xBA);
+        dest.WriteRest(this, 1, (X64Reg)ext);
+        Write8((u8)index.offset);
+    }
+    else
+    {
+        X64Reg operand = index.GetSimpleReg();
+        dest.WriteRex(this, bits, bits, operand);
+        Write8(0x0F); Write8(0x83 + 8*ext);
+        dest.WriteRest(this, 1, operand);
+    }
+}
+
+void XEmitter::BT(int bits, OpArg dest, OpArg index)  {WriteBitTest(bits, dest, index, 4);}
+void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);}
+void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);}
+void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);}
+
+//shift can be either imm8 or cl
+void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
+{
+    CheckFlags();
+    if (dest.IsImm())
+    {
+        ASSERT_MSG(0, "SHRD - can't use imms as destination");
+    }
+    if (!src.IsSimpleReg())
+    {
+        ASSERT_MSG(0, "SHRD - must use simple register as source");
+    }
+    if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+    {
+        ASSERT_MSG(0, "SHRD - illegal shift");
+    }
+    if (bits == 16)
+        Write8(0x66);
+    X64Reg operand = src.GetSimpleReg();
+    dest.WriteRex(this, bits, bits, operand);
+    if (shift.GetImmBits() == 8)
+    {
+        Write8(0x0F); Write8(0xAC);
+        dest.WriteRest(this, 1, operand);
+        Write8((u8)shift.offset);
+    }
+    else
+    {
+        Write8(0x0F); Write8(0xAD);
+        dest.WriteRest(this, 0, operand);
+    }
+}
+
+void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift)
+{
+    CheckFlags();
+    if (dest.IsImm())
+    {
+        ASSERT_MSG(0, "SHLD - can't use imms as destination");
+    }
+    if (!src.IsSimpleReg())
+    {
+        ASSERT_MSG(0, "SHLD - must use simple register as source");
+    }
+    if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+    {
+        ASSERT_MSG(0, "SHLD - illegal shift");
+    }
+    if (bits == 16)
+        Write8(0x66);
+    X64Reg operand = src.GetSimpleReg();
+    dest.WriteRex(this, bits, bits, operand);
+    if (shift.GetImmBits() == 8)
+    {
+        Write8(0x0F); Write8(0xA4);
+        dest.WriteRest(this, 1, operand);
+        Write8((u8)shift.offset);
+    }
+    else
+    {
+        Write8(0x0F); Write8(0xA5);
+        dest.WriteRest(this, 0, operand);
+    }
+}
+
+void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits)
+{
+    if (bits == 16)
+        emit->Write8(0x66);
+
+    this->operandReg = (u8)_operandReg;
+    WriteRex(emit, bits, bits);
+    emit->Write8(op);
+    WriteRest(emit);
+}
+
+//operand can either be immediate or register
+void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const
+{
+    X64Reg _operandReg;
+    if (IsImm())
+    {
+        ASSERT_MSG(0, "WriteNormalOp - Imm argument, wrong order");
+    }
+
+    if (bits == 16)
+        emit->Write8(0x66);
+
+    int immToWrite = 0;
+
+    if (operand.IsImm())
+    {
+        WriteRex(emit, bits, bits);
+
+        if (!toRM)
+        {
+            ASSERT_MSG(0, "WriteNormalOp - Writing to Imm (!toRM)");
+        }
+
+        if (operand.scale == SCALE_IMM8 && bits == 8)
+        {
+            // op al, imm8
+            if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC)
+            {
+                emit->Write8(normalops[op].eaximm8);
+                emit->Write8((u8)operand.offset);
+                return;
+            }
+            // mov reg, imm8
+            if (!scale && op == nrmMOV)
+            {
+                emit->Write8(0xB0 + (offsetOrBaseReg & 7));
+                emit->Write8((u8)operand.offset);
+                return;
+            }
+            // op r/m8, imm8
+            emit->Write8(normalops[op].imm8);
+            immToWrite = 8;
+        }
+        else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
+                 (operand.scale == SCALE_IMM32 && bits == 32) ||
+                 (operand.scale == SCALE_IMM32 && bits == 64))
+        {
+            // Try to save immediate size if we can, but first check to see
+            // if the instruction supports simm8.
+            // op r/m, imm8
+            if (normalops[op].simm8 != 0xCC &&
+                ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
+                 (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
+            {
+                emit->Write8(normalops[op].simm8);
+                immToWrite = 8;
+            }
+            else
+            {
+                // mov reg, imm
+                if (!scale && op == nrmMOV && bits != 64)
+                {
+                    emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+                    if (bits == 16)
+                        emit->Write16((u16)operand.offset);
+                    else
+                        emit->Write32((u32)operand.offset);
+                    return;
+                }
+                // op eax, imm
+                if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC)
+                {
+                    emit->Write8(normalops[op].eaximm32);
+                    if (bits == 16)
+                        emit->Write16((u16)operand.offset);
+                    else
+                        emit->Write32((u32)operand.offset);
+                    return;
+                }
+                // op r/m, imm
+                emit->Write8(normalops[op].imm32);
+                immToWrite = bits == 16 ? 16 : 32;
+            }
+        }
+        else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
+                 (operand.scale == SCALE_IMM8 && bits == 32) ||
+                 (operand.scale == SCALE_IMM8 && bits == 64))
+        {
+            // op r/m, imm8
+            emit->Write8(normalops[op].simm8);
+            immToWrite = 8;
+        }
+        else if (operand.scale == SCALE_IMM64 && bits == 64)
+        {
+            if (scale)
+            {
+                ASSERT_MSG(0, "WriteNormalOp - MOV with 64-bit imm requres register destination");
+            }
+            // mov reg64, imm64
+            else if (op == nrmMOV)
+            {
+                emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+                emit->Write64((u64)operand.offset);
+                return;
+            }
+            ASSERT_MSG(0, "WriteNormalOp - Only MOV can take 64-bit imm");
+        }
+        else
+        {
+            ASSERT_MSG(0, "WriteNormalOp - Unhandled case");
+        }
+        _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM
+    }
+    else
+    {
+        _operandReg = (X64Reg)operand.offsetOrBaseReg;
+        WriteRex(emit, bits, bits, _operandReg);
+        // op r/m, reg
+        if (toRM)
+        {
+            emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32);
+        }
+        // op reg, r/m
+        else
+        {
+            emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32);
+        }
+    }
+    WriteRest(emit, immToWrite >> 3, _operandReg);
+    switch (immToWrite)
+    {
+    case 0:
+        break;
+    case 8:
+        emit->Write8((u8)operand.offset);
+        break;
+    case 16:
+        emit->Write16((u16)operand.offset);
+        break;
+    case 32:
+        emit->Write32((u32)operand.offset);
+        break;
+    default:
+        ASSERT_MSG(0, "WriteNormalOp - Unhandled case");
+    }
+}
+
+void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
+{
+    if (a1.IsImm())
+    {
+        //Booh! Can't write to an imm
+        ASSERT_MSG(0, "WriteNormalOp - a1 cannot be imm");
+        return;
+    }
+    if (a2.IsImm())
+    {
+        a1.WriteNormalOp(emit, true, op, a2, bits);
+    }
+    else
+    {
+        if (a1.IsSimpleReg())
+        {
+            a2.WriteNormalOp(emit, false, op, a1, bits);
+        }
+        else
+        {
+            ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory");
+            a1.WriteNormalOp(emit, true, op, a2, bits);
+        }
+    }
+}
+
+void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);}
+void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);}
+void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);}
+void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);}
+void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);}
+void XEmitter::OR  (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);}
+void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);}
+void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2)
+{
+    if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
+        LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code);
+    WriteNormalOp(this, bits, nrmMOV, a1, a2);
+}
+void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);}
+void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);}
+void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
+{
+    CheckFlags();
+    if (bits == 8)
+    {
+        ASSERT_MSG(0, "IMUL - illegal bit size!");
+        return;
+    }
+
+    if (a1.IsImm())
+    {
+        ASSERT_MSG(0, "IMUL - second arg cannot be imm!");
+        return;
+    }
+
+    if (!a2.IsImm())
+    {
+        ASSERT_MSG(0, "IMUL - third arg must be imm!");
+        return;
+    }
+
+    if (bits == 16)
+        Write8(0x66);
+    a1.WriteRex(this, bits, bits, regOp);
+
+    if (a2.GetImmBits() == 8 ||
+        (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
+        (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
+    {
+        Write8(0x6B);
+        a1.WriteRest(this, 1, regOp);
+        Write8((u8)a2.offset);
+    }
+    else
+    {
+        Write8(0x69);
+        if (a2.GetImmBits() == 16 && bits == 16)
+        {
+            a1.WriteRest(this, 2, regOp);
+            Write16((u16)a2.offset);
+        }
+        else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
+        {
+            a1.WriteRest(this, 4, regOp);
+            Write32((u32)a2.offset);
+        }
+        else
+        {
+            ASSERT_MSG(0, "IMUL - unhandled case!");
+        }
+    }
+}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
+{
+    CheckFlags();
+    if (bits == 8)
+    {
+        ASSERT_MSG(0, "IMUL - illegal bit size!");
+        return;
+    }
+
+    if (a.IsImm())
+    {
+        IMUL(bits, regOp, R(regOp), a) ;
+        return;
+    }
+
+    if (bits == 16)
+        Write8(0x66);
+    a.WriteRex(this, bits, bits, regOp);
+    Write8(0x0F);
+    Write8(0xAF);
+    a.WriteRest(this, 0, regOp);
+}
+
+
+void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+    if (opPrefix)
+        Write8(opPrefix);
+    arg.operandReg = regOp;
+    arg.WriteRex(this, 0, 0);
+    Write8(0x0F);
+    if (op > 0xFF)
+        Write8((op >> 8) & 0xFF);
+    Write8(op & 0xFF);
+    arg.WriteRest(this, extrabytes);
+}
+
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+    WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes);
+}
+
+static int GetVEXmmmmm(u16 op)
+{
+    // Currently, only 0x38 and 0x3A are used as secondary escape byte.
+    if ((op >> 8) == 0x3A)
+        return 3;
+    else if ((op >> 8) == 0x38)
+        return 2;
+    else
+        return 1;
+}
+
+static int GetVEXpp(u8 opPrefix)
+{
+    if (opPrefix == 0x66)
+        return 1;
+    else if (opPrefix == 0xF3)
+        return 2;
+    else if (opPrefix == 0xF2)
+        return 3;
+    else
+        return 0;
+}
+
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+    if (!Common::cpu_info.bAVX)
+        ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer.");
+    int mmmmm = GetVEXmmmmm(op);
+    int pp = GetVEXpp(opPrefix);
+    // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
+    arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm);
+    Write8(op & 0xFF);
+    arg.WriteRest(this, extrabytes, regOp1);
+}
+
+// Like the above, but more general; covers GPR-based VEX operations, like BMI1/2
+void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+    if (size != 32 && size != 64)
+        ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!");
+    int mmmmm = GetVEXmmmmm(op);
+    int pp = GetVEXpp(opPrefix);
+    arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64);
+    Write8(op & 0xFF);
+    arg.WriteRest(this, extrabytes, regOp1);
+}
+
+void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+    CheckFlags();
+    if (!Common::cpu_info.bBMI1)
+        ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+    WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+    CheckFlags();
+    if (!Common::cpu_info.bBMI2)
+        ASSERT_MSG(0, "Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
+    WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);}
+void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);}
+
+void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
+{
+#ifdef _M_X86_64
+        // Alternate encoding
+        // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+        arg.operandReg = dest;
+        Write8(0x66);
+        arg.WriteRex(this, 64, 0);
+        Write8(0x0f);
+        Write8(0x6E);
+        arg.WriteRest(this, 0);
+#else
+        arg.operandReg = dest;
+        Write8(0xF3);
+        Write8(0x0f);
+        Write8(0x7E);
+        arg.WriteRest(this, 0);
+#endif
+}
+
+void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
+{
+    if (src > 7 || arg.IsSimpleReg())
+    {
+        // Alternate encoding
+        // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+        arg.operandReg = src;
+        Write8(0x66);
+        arg.WriteRex(this, 64, 0);
+        Write8(0x0f);
+        Write8(0x7E);
+        arg.WriteRest(this, 0);
+    }
+    else
+    {
+        arg.operandReg = src;
+        arg.WriteRex(this, 0, 0);
+        Write8(0x66);
+        Write8(0x0f);
+        Write8(0xD6);
+        arg.WriteRest(this, 0);
+    }
+}
+
+void XEmitter::WriteMXCSR(OpArg arg, int ext)
+{
+    if (arg.IsImm() || arg.IsSimpleReg())
+        ASSERT_MSG(0, "MXCSR - invalid operand");
+
+    arg.operandReg = ext;
+    arg.WriteRex(this, 0, 0);
+    Write8(0x0F);
+    Write8(0xAE);
+    arg.WriteRest(this);
+}
+
+void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
+void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
+
+void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
+void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
+void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
+
+void XEmitter::ADDSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseADD, regOp, arg);}
+void XEmitter::ADDSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseADD, regOp, arg);}
+void XEmitter::SUBSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
+void XEmitter::SUBSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
+void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::MULSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
+void XEmitter::MULSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
+void XEmitter::DIVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
+void XEmitter::DIVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
+void XEmitter::MINSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
+void XEmitter::MINSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
+void XEmitter::MAXSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
+void XEmitter::MAXSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
+void XEmitter::SQRTSS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
+void XEmitter::SQRTSD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
+void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
+
+void XEmitter::ADDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseADD, regOp, arg);}
+void XEmitter::ADDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseADD, regOp, arg);}
+void XEmitter::SUBPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseSUB, regOp, arg);}
+void XEmitter::SUBPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseSUB, regOp, arg);}
+void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::ANDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseAND, regOp, arg);}
+void XEmitter::ANDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseAND, regOp, arg);}
+void XEmitter::ANDNPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x00, sseANDN, regOp, arg);}
+void XEmitter::ANDNPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseANDN, regOp, arg);}
+void XEmitter::ORPS(X64Reg regOp, OpArg arg)    {WriteSSEOp(0x00, sseOR, regOp, arg);}
+void XEmitter::ORPD(X64Reg regOp, OpArg arg)    {WriteSSEOp(0x66, sseOR, regOp, arg);}
+void XEmitter::XORPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseXOR, regOp, arg);}
+void XEmitter::XORPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseXOR, regOp, arg);}
+void XEmitter::MULPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseMUL, regOp, arg);}
+void XEmitter::MULPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseMUL, regOp, arg);}
+void XEmitter::DIVPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseDIV, regOp, arg);}
+void XEmitter::DIVPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseDIV, regOp, arg);}
+void XEmitter::MINPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseMIN, regOp, arg);}
+void XEmitter::MINPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseMIN, regOp, arg);}
+void XEmitter::MAXPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x00, sseMAX, regOp, arg);}
+void XEmitter::MAXPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0x66, sseMAX, regOp, arg);}
+void XEmitter::SQRTPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
+void XEmitter::SQRTPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
+void XEmitter::RCPPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); }
+void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
+void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
+void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
+
+void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);}
+
+void XEmitter::COMISS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
+void XEmitter::COMISD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
+void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
+void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
+
+void XEmitter::MOVAPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
+void XEmitter::MOVAPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
+
+void XEmitter::MOVUPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVUPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVDQA(X64Reg regOp, OpArg arg)  {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQA(OpArg arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
+void XEmitter::MOVDQU(X64Reg regOp, OpArg arg)  {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQU(OpArg arg, X64Reg regOp)  {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
+
+void XEmitter::MOVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSS(OpArg arg, X64Reg regOp)   {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVSD(OpArg arg, X64Reg regOp)   {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVLPS(X64Reg regOp, OpArg arg)  { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPD(X64Reg regOp, OpArg arg)  { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPS(OpArg arg, X64Reg regOp)  { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); }
+void XEmitter::MOVLPD(OpArg arg, X64Reg regOp)  { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); }
+
+void XEmitter::MOVHPS(X64Reg regOp, OpArg arg)  { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPD(X64Reg regOp, OpArg arg)  { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPS(OpArg arg, X64Reg regOp)  { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); }
+void XEmitter::MOVHPD(OpArg arg, X64Reg regOp)  { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); }
+
+void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));}
+void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));}
+
+void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
+void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
+
+void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
+void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
+void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
+void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
+void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
+void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
+
+void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
+void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
+void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
+void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
+
+void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
+void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
+void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
+void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
+
+void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)  {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));}
+
+void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
+void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
+
+void XEmitter::LDDQU(X64Reg dest, OpArg arg)    {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
+
+// THESE TWO ARE UNTESTED.
+void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
+void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
+
+void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
+void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
+
+void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
+{
+    if (Common::cpu_info.bSSE3)
+    {
+        WriteSSEOp(0xF2, 0x12, regOp, arg); //SSE3 movddup
+    }
+    else
+    {
+        // Simulate this instruction with SSE2 instructions
+        if (!arg.IsSimpleReg(regOp))
+            MOVSD(regOp, arg);
+        UNPCKLPD(regOp, R(regOp));
+    }
+}
+
+//There are a few more left
+
+// Also some integer instructions are missing
+void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
+void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
+void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
+
+void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);}
+void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);}
+void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x62, dest, arg);}
+void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6C, dest, arg);}
+
+void XEmitter::PSRLW(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSRLD(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, OpArg arg)
+{
+    WriteSSEOp(0x66, 0xd3, reg, arg);
+}
+
+void XEmitter::PSRLDQ(X64Reg reg, int shift) {
+    WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSLLW(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSLLD(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSLLQ(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSLLDQ(X64Reg reg, int shift) {
+    WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSRAW(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x71, (X64Reg)4, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::PSRAD(X64Reg reg, int shift)
+{
+    WriteSSEOp(0x66, 0x72, (X64Reg)4, R(reg));
+    Write8(shift);
+}
+
+void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+    if (!Common::cpu_info.bSSSE3)
+        ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
+    WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+    if (!Common::cpu_info.bSSE4_1)
+        ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
+    WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::PSHUFB(X64Reg dest, OpArg arg)   {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
+void XEmitter::PTEST(X64Reg dest, OpArg arg)    {WriteSSE41Op(0x66, 0x3817, dest, arg);}
+void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
+void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);}
+
+void XEmitter::PMINSB(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x3838, dest, arg);}
+void XEmitter::PMINSD(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x3839, dest, arg);}
+void XEmitter::PMINUW(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383a, dest, arg);}
+void XEmitter::PMINUD(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383b, dest, arg);}
+void XEmitter::PMAXSB(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383c, dest, arg);}
+void XEmitter::PMAXSD(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383d, dest, arg);}
+void XEmitter::PMAXUW(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383e, dest, arg);}
+void XEmitter::PMAXUD(X64Reg dest, OpArg arg)   {WriteSSE41Op(0x66, 0x383f, dest, arg);}
+
+void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
+void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
+void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
+void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
+void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
+void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
+void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
+void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
+void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
+void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
+void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
+void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
+
+void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
+void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
+void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
+void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); }
+void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); }
+
+void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);}
+
+void XEmitter::PAND(X64Reg dest, OpArg arg)     {WriteSSEOp(0x66, 0xDB, dest, arg);}
+void XEmitter::PANDN(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xDF, dest, arg);}
+void XEmitter::PXOR(X64Reg dest, OpArg arg)     {WriteSSEOp(0x66, 0xEF, dest, arg);}
+void XEmitter::POR(X64Reg dest, OpArg arg)      {WriteSSEOp(0x66, 0xEB, dest, arg);}
+
+void XEmitter::PADDB(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xFC, dest, arg);}
+void XEmitter::PADDW(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xFD, dest, arg);}
+void XEmitter::PADDD(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xFE, dest, arg);}
+void XEmitter::PADDQ(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xD4, dest, arg);}
+
+void XEmitter::PADDSB(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xEC, dest, arg);}
+void XEmitter::PADDSW(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xED, dest, arg);}
+void XEmitter::PADDUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0xDC, dest, arg);}
+void XEmitter::PADDUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0xDD, dest, arg);}
+
+void XEmitter::PSUBB(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xF8, dest, arg);}
+void XEmitter::PSUBW(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xF9, dest, arg);}
+void XEmitter::PSUBD(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xFA, dest, arg);}
+void XEmitter::PSUBQ(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xFB, dest, arg);}
+
+void XEmitter::PSUBSB(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xE8, dest, arg);}
+void XEmitter::PSUBSW(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xE9, dest, arg);}
+void XEmitter::PSUBUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0xD8, dest, arg);}
+void XEmitter::PSUBUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0xD9, dest, arg);}
+
+void XEmitter::PAVGB(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xE0, dest, arg);}
+void XEmitter::PAVGW(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xE3, dest, arg);}
+
+void XEmitter::PCMPEQB(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x74, dest, arg);}
+void XEmitter::PCMPEQW(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x75, dest, arg);}
+void XEmitter::PCMPEQD(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x76, dest, arg);}
+
+void XEmitter::PCMPGTB(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x64, dest, arg);}
+void XEmitter::PCMPGTW(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x65, dest, arg);}
+void XEmitter::PCMPGTD(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0x66, dest, arg);}
+
+void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);}
+void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);}
+
+void XEmitter::PMADDWD(X64Reg dest, OpArg arg)  {WriteSSEOp(0x66, 0xF5, dest, arg); }
+void XEmitter::PSADBW(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xF6, dest, arg);}
+
+void XEmitter::PMAXSW(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xEE, dest, arg); }
+void XEmitter::PMAXUB(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xDE, dest, arg); }
+void XEmitter::PMINSW(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xEA, dest, arg); }
+void XEmitter::PMINUB(X64Reg dest, OpArg arg)   {WriteSSEOp(0x66, 0xDA, dest, arg); }
+
+void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg)    {WriteSSEOp(0x66, 0xD7, dest, arg); }
+void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle)    {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle)   {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle)   {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
+
+// VEX
+void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg)  {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
+void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);}
+void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
+void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
+
+void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg)  { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)  { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); }
+
+void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); }
+void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); }
+void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg)     { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); }
+void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); }
+
+void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)    { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg)   { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); }
+
+void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate)      {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
+void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
+void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg)                 {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
+void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg)               {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
+void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg)                 {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
+void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
+
+// Prefixes
+
+void XEmitter::LOCK()  { Write8(0xF0); }
+void XEmitter::REP()   { Write8(0xF3); }
+void XEmitter::REPNE() { Write8(0xF2); }
+void XEmitter::FSOverride() { Write8(0x64); }
+void XEmitter::GSOverride() { Write8(0x65); }
+
+void XEmitter::FWAIT()
+{
+    Write8(0x9B);
+}
+
+// TODO: make this more generic
+void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg)
+{
+    int mf = 0;
+    ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction");
+    switch (bits)
+    {
+    case 32: mf = 0; break;
+    case 64: mf = 4; break;
+    case 80: mf = 2; break;
+    default: ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
+    }
+    Write8(0xd9 | mf);
+    // x87 instructions use the reg field of the ModR/M byte as opcode:
+    if (bits == 80)
+        op = op_80b;
+    arg.WriteRest(this, 0, (X64Reg) op);
+}
+
+void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);}
+void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);}
+void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);}
+void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
+
+void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); }
+
+void XCodeBlock::PoisonMemory() {
+    // x86/64: 0xCC = breakpoint
+    memset(region, 0xCC, region_size);
+}
+
+}
diff --git a/src/common/x64_emitter.h b/src/common/x64_emitter.h
new file mode 100644
index 000000000..369bfaa08
--- /dev/null
+++ b/src/common/x64_emitter.h
@@ -0,0 +1,1067 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#pragma once
+
+#include "assert.h"
+#include "common_types.h"
+#include "code_block.h"
+
+#if defined(_M_X86_64) && !defined(_ARCH_64)
+#define _ARCH_64
+#endif
+
+#ifdef _ARCH_64
+#define PTRBITS 64
+#else
+#define PTRBITS 32
+#endif
+
+namespace Gen
+{
+
+enum X64Reg
+{
+    EAX = 0, EBX = 3, ECX = 1, EDX = 2,
+    ESI = 6, EDI = 7, EBP = 5, ESP = 4,
+
+    RAX = 0, RBX = 3, RCX = 1, RDX = 2,
+    RSI = 6, RDI = 7, RBP = 5, RSP = 4,
+    R8  = 8, R9  = 9, R10 = 10,R11 = 11,
+    R12 = 12,R13 = 13,R14 = 14,R15 = 15,
+
+    AL = 0, BL = 3, CL = 1, DL = 2,
+    SIL = 6, DIL = 7, BPL = 5, SPL = 4,
+    AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
+
+    AX = 0, BX = 3, CX = 1, DX = 2,
+    SI = 6, DI = 7, BP = 5, SP = 4,
+
+    XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+    XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
+
+    YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+    YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
+
+    INVALID_REG = 0xFFFFFFFF
+};
+
+enum CCFlags
+{
+    CC_O   = 0,
+    CC_NO  = 1,
+    CC_B   = 2, CC_C   = 2, CC_NAE = 2,
+    CC_NB  = 3, CC_NC  = 3, CC_AE  = 3,
+    CC_Z   = 4, CC_E   = 4,
+    CC_NZ  = 5, CC_NE  = 5,
+    CC_BE  = 6, CC_NA  = 6,
+    CC_NBE = 7, CC_A   = 7,
+    CC_S   = 8,
+    CC_NS  = 9,
+    CC_P   = 0xA, CC_PE  = 0xA,
+    CC_NP  = 0xB, CC_PO  = 0xB,
+    CC_L   = 0xC, CC_NGE = 0xC,
+    CC_NL  = 0xD, CC_GE  = 0xD,
+    CC_LE  = 0xE, CC_NG  = 0xE,
+    CC_NLE = 0xF, CC_G   = 0xF
+};
+
+enum
+{
+    NUMGPRs = 16,
+    NUMXMMs = 16,
+};
+
+enum
+{
+    SCALE_NONE = 0,
+    SCALE_1 = 1,
+    SCALE_2 = 2,
+    SCALE_4 = 4,
+    SCALE_8 = 8,
+    SCALE_ATREG = 16,
+    //SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
+    SCALE_NOBASE_2 = 34,
+    SCALE_NOBASE_4 = 36,
+    SCALE_NOBASE_8 = 40,
+    SCALE_RIP = 0xFF,
+    SCALE_IMM8  = 0xF0,
+    SCALE_IMM16 = 0xF1,
+    SCALE_IMM32 = 0xF2,
+    SCALE_IMM64 = 0xF3,
+};
+
+enum NormalOp {
+    nrmADD,
+    nrmADC,
+    nrmSUB,
+    nrmSBB,
+    nrmAND,
+    nrmOR ,
+    nrmXOR,
+    nrmMOV,
+    nrmTEST,
+    nrmCMP,
+    nrmXCHG,
+};
+
+enum {
+    CMP_EQ = 0,
+    CMP_LT = 1,
+    CMP_LE = 2,
+    CMP_UNORD = 3,
+    CMP_NEQ = 4,
+    CMP_NLT = 5,
+    CMP_NLE = 6,
+    CMP_ORD = 7,
+};
+
+enum FloatOp {
+    floatLD = 0,
+    floatST = 2,
+    floatSTP = 3,
+    floatLD80 = 5,
+    floatSTP80 = 7,
+
+    floatINVALID = -1,
+};
+
+enum FloatRound {
+    FROUND_NEAREST = 0,
+    FROUND_FLOOR = 1,
+    FROUND_CEIL = 2,
+    FROUND_ZERO = 3,
+    FROUND_MXCSR = 4,
+
+    FROUND_RAISE_PRECISION = 0,
+    FROUND_IGNORE_PRECISION = 8,
+};
+
+class XEmitter;
+
+// RIP addressing does not benefit from micro op fusion on Core arch
+struct OpArg
+{
+    OpArg() {}  // dummy op arg, used for storage
+    OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
+    {
+        operandReg = 0;
+        scale = (u8)_scale;
+        offsetOrBaseReg = (u16)rmReg;
+        indexReg = (u16)scaledReg;
+        //if scale == 0 never mind offsetting
+        offset = _offset;
+    }
+    bool operator==(const OpArg &b) const
+    {
+        return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
+               indexReg == b.indexReg && offset == b.offset;
+    }
+    void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
+    void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
+    void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
+    void WriteFloatModRM(XEmitter *emit, FloatOp op);
+    void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
+    // This one is public - must be written to
+    u64 offset;  // use RIP-relative as much as possible - 64-bit immediates are not available.
+    u16 operandReg;
+
+    void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
+    bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
+    bool IsSimpleReg() const {return scale == SCALE_NONE;}
+    bool IsSimpleReg(X64Reg reg) const
+    {
+        if (!IsSimpleReg())
+            return false;
+        return GetSimpleReg() == reg;
+    }
+
+    bool CanDoOpWith(const OpArg &other) const
+    {
+        if (IsSimpleReg()) return true;
+        if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
+        return true;
+    }
+
+    int GetImmBits() const
+    {
+        switch (scale)
+        {
+        case SCALE_IMM8: return 8;
+        case SCALE_IMM16: return 16;
+        case SCALE_IMM32: return 32;
+        case SCALE_IMM64: return 64;
+        default: return -1;
+        }
+    }
+
+    void SetImmBits(int bits) {
+        switch (bits)
+        {
+            case 8: scale = SCALE_IMM8; break;
+            case 16: scale = SCALE_IMM16; break;
+            case 32: scale = SCALE_IMM32; break;
+            case 64: scale = SCALE_IMM64; break;
+        }
+    }
+
+    X64Reg GetSimpleReg() const
+    {
+        if (scale == SCALE_NONE)
+            return (X64Reg)offsetOrBaseReg;
+        else
+            return INVALID_REG;
+    }
+
+    u32 GetImmValue() const {
+        return (u32)offset;
+    }
+
+    // For loops.
+    void IncreaseOffset(int sz) {
+        offset += sz;
+    }
+
+private:
+    u8 scale;
+    u16 offsetOrBaseReg;
+    u16 indexReg;
+};
+
+inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
+template <typename T>
+inline OpArg M(const T *ptr)    {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
+inline OpArg R(X64Reg value)    {return OpArg(0, SCALE_NONE, value);}
+inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
+
+inline OpArg MDisp(X64Reg value, int offset)
+{
+    return OpArg((u32)offset, SCALE_ATREG, value);
+}
+
+inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
+{
+    return OpArg(offset, scale, base, scaled);
+}
+
+inline OpArg MScaled(X64Reg scaled, int scale, int offset)
+{
+    if (scale == SCALE_1)
+        return OpArg(offset, SCALE_ATREG, scaled);
+    else
+        return OpArg(offset, scale | 0x20, RAX, scaled);
+}
+
+inline OpArg MRegSum(X64Reg base, X64Reg offset)
+{
+    return MComplex(base, offset, 1, 0);
+}
+
+inline OpArg Imm8 (u8 imm)  {return OpArg(imm, SCALE_IMM8);}
+inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
+inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
+inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
+inline OpArg UImmAuto(u32 imm) {
+    return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
+}
+inline OpArg SImmAuto(s32 imm) {
+    return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
+}
+
+#ifdef _ARCH_64
+inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
+#else
+inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
+#endif
+
+inline u32 PtrOffset(const void* ptr, const void* base)
+{
+#ifdef _ARCH_64
+    s64 distance = (s64)ptr-(s64)base;
+    if (distance >= 0x80000000LL ||
+        distance < -0x80000000LL)
+    {
+        ASSERT_MSG(0, "pointer offset out of range");
+        return 0;
+    }
+
+    return (u32)distance;
+#else
+    return (u32)ptr-(u32)base;
+#endif
+}
+
+//usage: int a[]; ARRAY_OFFSET(a,10)
+#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
+//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
+#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
+
+struct FixupBranch
+{
+    u8 *ptr;
+    int type; //0 = 8bit 1 = 32bit
+};
+
+enum SSECompare
+{
+    EQ = 0,
+    LT,
+    LE,
+    UNORD,
+    NEQ,
+    NLT,
+    NLE,
+    ORD,
+};
+
+typedef const u8* JumpTarget;
+
+class XEmitter
+{
+    friend struct OpArg;  // for Write8 etc
+private:
+    u8 *code;
+    bool flags_locked;
+
+    void CheckFlags();
+
+    void Rex(int w, int r, int x, int b);
+    void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
+    void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
+    void WriteMulDivType(int bits, OpArg src, int ext);
+    void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
+    void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
+    void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
+    void WriteMXCSR(OpArg arg, int ext);
+    void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+    void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+    void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+    void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+    void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+    void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+    void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+    void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+    void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
+    void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
+
+    void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
+
+protected:
+    inline void Write8(u8 value)   {*code++ = value;}
+    inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
+    inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
+    inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
+
+public:
+    XEmitter() { code = nullptr; flags_locked = false; }
+    XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
+    virtual ~XEmitter() {}
+
+    void WriteModRM(int mod, int rm, int reg);
+    void WriteSIB(int scale, int index, int base);
+
+    void SetCodePtr(u8 *ptr);
+    void ReserveCodeSpace(int bytes);
+    const u8 *AlignCode4();
+    const u8 *AlignCode16();
+    const u8 *AlignCodePage();
+    const u8 *GetCodePtr() const;
+    u8 *GetWritableCodePtr();
+
+    void LockFlags() { flags_locked = true; }
+    void UnlockFlags() { flags_locked = false; }
+
+    // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
+    // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
+    // INC and DEC are slow on Intel Core, but not on AMD. They create a
+    // false flag dependency because they only update a subset of the flags.
+    // XCHG is SLOW and should be avoided.
+
+    // Debug breakpoint
+    void INT3();
+
+    // Do nothing
+    void NOP(size_t count = 1);
+
+    // Save energy in wait-loops on P4 only. Probably not too useful.
+    void PAUSE();
+
+    // Flag control
+    void STC();
+    void CLC();
+    void CMC();
+
+    // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
+    void LAHF(); // 3 cycle vector path
+    void SAHF(); // direct path fast
+
+
+    // Stack control
+    void PUSH(X64Reg reg);
+    void POP(X64Reg reg);
+    void PUSH(int bits, const OpArg &reg);
+    void POP(int bits, const OpArg &reg);
+    void PUSHF();
+    void POPF();
+
+    // Flow control
+    void RET();
+    void RET_FAST();
+    void UD2();
+    FixupBranch J(bool force5bytes = false);
+
+    void JMP(const u8 * addr, bool force5Bytes = false);
+    void JMP(OpArg arg);
+    void JMPptr(const OpArg &arg);
+    void JMPself(); //infinite loop!
+#ifdef CALL
+#undef CALL
+#endif
+    void CALL(const void *fnptr);
+    void CALLptr(OpArg arg);
+
+    FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
+    //void J_CC(CCFlags conditionCode, JumpTarget target);
+    void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
+
+    void SetJumpTarget(const FixupBranch &branch);
+
+    void SETcc(CCFlags flag, OpArg dest);
+    // Note: CMOV brings small if any benefit on current cpus.
+    void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
+
+    // Fences
+    void LFENCE();
+    void MFENCE();
+    void SFENCE();
+
+    // Bit scan
+    void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
+    void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
+
+    // Cache control
+    enum PrefetchLevel
+    {
+        PF_NTA, //Non-temporal (data used once and only once)
+        PF_T0,  //All cache levels
+        PF_T1,  //Levels 2+ (aliased to T0 on AMD)
+        PF_T2,  //Levels 3+ (aliased to T0 on AMD)
+    };
+    void PREFETCH(PrefetchLevel level, OpArg arg);
+    void MOVNTI(int bits, OpArg dest, X64Reg src);
+    void MOVNTDQ(OpArg arg, X64Reg regOp);
+    void MOVNTPS(OpArg arg, X64Reg regOp);
+    void MOVNTPD(OpArg arg, X64Reg regOp);
+
+    // Multiplication / division
+    void MUL(int bits, OpArg src); //UNSIGNED
+    void IMUL(int bits, OpArg src); //SIGNED
+    void IMUL(int bits, X64Reg regOp, OpArg src);
+    void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
+    void DIV(int bits, OpArg src);
+    void IDIV(int bits, OpArg src);
+
+    // Shift
+    void ROL(int bits, OpArg dest, OpArg shift);
+    void ROR(int bits, OpArg dest, OpArg shift);
+    void RCL(int bits, OpArg dest, OpArg shift);
+    void RCR(int bits, OpArg dest, OpArg shift);
+    void SHL(int bits, OpArg dest, OpArg shift);
+    void SHR(int bits, OpArg dest, OpArg shift);
+    void SAR(int bits, OpArg dest, OpArg shift);
+
+    // Bit Test
+    void BT(int bits, OpArg dest, OpArg index);
+    void BTS(int bits, OpArg dest, OpArg index);
+    void BTR(int bits, OpArg dest, OpArg index);
+    void BTC(int bits, OpArg dest, OpArg index);
+
+    // Double-Precision Shift
+    void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
+    void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
+
+    // Extend EAX into EDX in various ways
+    void CWD(int bits = 16);
+    inline void CDQ() {CWD(32);}
+    inline void CQO() {CWD(64);}
+    void CBW(int bits = 8);
+    inline void CWDE() {CBW(16);}
+    inline void CDQE() {CBW(32);}
+
+    // Load effective address
+    void LEA(int bits, X64Reg dest, OpArg src);
+
+    // Integer arithmetic
+    void NEG (int bits, OpArg src);
+    void ADD (int bits, const OpArg &a1, const OpArg &a2);
+    void ADC (int bits, const OpArg &a1, const OpArg &a2);
+    void SUB (int bits, const OpArg &a1, const OpArg &a2);
+    void SBB (int bits, const OpArg &a1, const OpArg &a2);
+    void AND (int bits, const OpArg &a1, const OpArg &a2);
+    void CMP (int bits, const OpArg &a1, const OpArg &a2);
+
+    // Bit operations
+    void NOT (int bits, OpArg src);
+    void OR  (int bits, const OpArg &a1, const OpArg &a2);
+    void XOR (int bits, const OpArg &a1, const OpArg &a2);
+    void MOV (int bits, const OpArg &a1, const OpArg &a2);
+    void TEST(int bits, const OpArg &a1, const OpArg &a2);
+
+    // Are these useful at all? Consider removing.
+    void XCHG(int bits, const OpArg &a1, const OpArg &a2);
+    void XCHG_AHAL();
+
+    // Byte swapping (32 and 64-bit only).
+    void BSWAP(int bits, X64Reg reg);
+
+    // Sign/zero extension
+    void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
+    void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
+
+    // Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
+    void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
+
+    // Available only on AMD >= Phenom or Intel >= Haswell
+    void LZCNT(int bits, X64Reg dest, OpArg src);
+    // Note: this one is actually part of BMI1
+    void TZCNT(int bits, X64Reg dest, OpArg src);
+
+    // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
+    void STMXCSR(OpArg memloc);
+    void LDMXCSR(OpArg memloc);
+
+    // Prefixes
+    void LOCK();
+    void REP();
+    void REPNE();
+    void FSOverride();
+    void GSOverride();
+
+    // x87
+    enum x87StatusWordBits {
+        x87_InvalidOperation = 0x1,
+        x87_DenormalizedOperand = 0x2,
+        x87_DivisionByZero = 0x4,
+        x87_Overflow = 0x8,
+        x87_Underflow = 0x10,
+        x87_Precision = 0x20,
+        x87_StackFault = 0x40,
+        x87_ErrorSummary = 0x80,
+        x87_C0 = 0x100,
+        x87_C1 = 0x200,
+        x87_C2 = 0x400,
+        x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
+        x87_C3 = 0x4000,
+        x87_FPUBusy = 0x8000,
+    };
+
+    void FLD(int bits, OpArg src);
+    void FST(int bits, OpArg dest);
+    void FSTP(int bits, OpArg dest);
+    void FNSTSW_AX();
+    void FWAIT();
+
+    // SSE/SSE2: Floating point arithmetic
+    void ADDSS(X64Reg regOp, OpArg arg);
+    void ADDSD(X64Reg regOp, OpArg arg);
+    void SUBSS(X64Reg regOp, OpArg arg);
+    void SUBSD(X64Reg regOp, OpArg arg);
+    void MULSS(X64Reg regOp, OpArg arg);
+    void MULSD(X64Reg regOp, OpArg arg);
+    void DIVSS(X64Reg regOp, OpArg arg);
+    void DIVSD(X64Reg regOp, OpArg arg);
+    void MINSS(X64Reg regOp, OpArg arg);
+    void MINSD(X64Reg regOp, OpArg arg);
+    void MAXSS(X64Reg regOp, OpArg arg);
+    void MAXSD(X64Reg regOp, OpArg arg);
+    void SQRTSS(X64Reg regOp, OpArg arg);
+    void SQRTSD(X64Reg regOp, OpArg arg);
+    void RSQRTSS(X64Reg regOp, OpArg arg);
+
+    // SSE/SSE2: Floating point bitwise (yes)
+    void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
+    void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
+
+    inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
+    inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
+    inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
+    inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
+    inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
+    inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
+    inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
+
+    // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
+    void ADDPS(X64Reg regOp, OpArg arg);
+    void ADDPD(X64Reg regOp, OpArg arg);
+    void SUBPS(X64Reg regOp, OpArg arg);
+    void SUBPD(X64Reg regOp, OpArg arg);
+    void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
+    void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
+    void MULPS(X64Reg regOp, OpArg arg);
+    void MULPD(X64Reg regOp, OpArg arg);
+    void DIVPS(X64Reg regOp, OpArg arg);
+    void DIVPD(X64Reg regOp, OpArg arg);
+    void MINPS(X64Reg regOp, OpArg arg);
+    void MINPD(X64Reg regOp, OpArg arg);
+    void MAXPS(X64Reg regOp, OpArg arg);
+    void MAXPD(X64Reg regOp, OpArg arg);
+    void SQRTPS(X64Reg regOp, OpArg arg);
+    void SQRTPD(X64Reg regOp, OpArg arg);
+    void RCPPS(X64Reg regOp, OpArg arg);
+    void RSQRTPS(X64Reg regOp, OpArg arg);
+
+    // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
+    void ANDPS(X64Reg regOp, OpArg arg);
+    void ANDPD(X64Reg regOp, OpArg arg);
+    void ANDNPS(X64Reg regOp, OpArg arg);
+    void ANDNPD(X64Reg regOp, OpArg arg);
+    void ORPS(X64Reg regOp, OpArg arg);
+    void ORPD(X64Reg regOp, OpArg arg);
+    void XORPS(X64Reg regOp, OpArg arg);
+    void XORPD(X64Reg regOp, OpArg arg);
+
+    // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
+    void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
+    void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
+
+    // SSE/SSE2: Useful alternative to shuffle in some cases.
+    void MOVDDUP(X64Reg regOp, OpArg arg);
+
+    // TODO: Actually implement
+#if 0
+    // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
+    void ADDSUBPS(X64Reg dest, OpArg src);
+    void ADDSUBPD(X64Reg dest, OpArg src);
+    void HADDPD(X64Reg dest, OpArg src);
+    void HSUBPS(X64Reg dest, OpArg src);
+    void HSUBPD(X64Reg dest, OpArg src);
+
+    // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+    void DPPD(X64Reg dest, OpArg src, u8 arg);
+
+    // These are probably useful for VFPU emulation.
+    void INSERTPS(X64Reg dest, OpArg src, u8 arg);
+    void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
+#endif
+
+    // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
+    void HADDPS(X64Reg dest, OpArg src);
+
+    // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+    void DPPS(X64Reg dest, OpArg src, u8 arg);
+
+    void UNPCKLPS(X64Reg dest, OpArg src);
+    void UNPCKHPS(X64Reg dest, OpArg src);
+    void UNPCKLPD(X64Reg dest, OpArg src);
+    void UNPCKHPD(X64Reg dest, OpArg src);
+
+    // SSE/SSE2: Compares.
+    void COMISS(X64Reg regOp, OpArg arg);
+    void COMISD(X64Reg regOp, OpArg arg);
+    void UCOMISS(X64Reg regOp, OpArg arg);
+    void UCOMISD(X64Reg regOp, OpArg arg);
+
+    // SSE/SSE2: Moves. Use the right data type for your data, in most cases.
+    void MOVAPS(X64Reg regOp, OpArg arg);
+    void MOVAPD(X64Reg regOp, OpArg arg);
+    void MOVAPS(OpArg arg, X64Reg regOp);
+    void MOVAPD(OpArg arg, X64Reg regOp);
+
+    void MOVUPS(X64Reg regOp, OpArg arg);
+    void MOVUPD(X64Reg regOp, OpArg arg);
+    void MOVUPS(OpArg arg, X64Reg regOp);
+    void MOVUPD(OpArg arg, X64Reg regOp);
+
+    void MOVDQA(X64Reg regOp, OpArg arg);
+    void MOVDQA(OpArg arg, X64Reg regOp);
+    void MOVDQU(X64Reg regOp, OpArg arg);
+    void MOVDQU(OpArg arg, X64Reg regOp);
+
+    void MOVSS(X64Reg regOp, OpArg arg);
+    void MOVSD(X64Reg regOp, OpArg arg);
+    void MOVSS(OpArg arg, X64Reg regOp);
+    void MOVSD(OpArg arg, X64Reg regOp);
+
+    void MOVLPS(X64Reg regOp, OpArg arg);
+    void MOVLPD(X64Reg regOp, OpArg arg);
+    void MOVLPS(OpArg arg, X64Reg regOp);
+    void MOVLPD(OpArg arg, X64Reg regOp);
+
+    void MOVHPS(X64Reg regOp, OpArg arg);
+    void MOVHPD(X64Reg regOp, OpArg arg);
+    void MOVHPS(OpArg arg, X64Reg regOp);
+    void MOVHPD(OpArg arg, X64Reg regOp);
+
+    void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
+    void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
+
+    void MOVD_xmm(X64Reg dest, const OpArg &arg);
+    void MOVQ_xmm(X64Reg dest, OpArg arg);
+    void MOVD_xmm(const OpArg &arg, X64Reg src);
+    void MOVQ_xmm(OpArg arg, X64Reg src);
+
+    // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
+    void MOVMSKPS(X64Reg dest, OpArg arg);
+    void MOVMSKPD(X64Reg dest, OpArg arg);
+
+    // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
+    void MASKMOVDQU(X64Reg dest, X64Reg src);
+    void LDDQU(X64Reg dest, OpArg src);
+
+    // SSE/SSE2: Data type conversions.
+    void CVTPS2PD(X64Reg dest, OpArg src);
+    void CVTPD2PS(X64Reg dest, OpArg src);
+    void CVTSS2SD(X64Reg dest, OpArg src);
+    void CVTSI2SS(X64Reg dest, OpArg src);
+    void CVTSD2SS(X64Reg dest, OpArg src);
+    void CVTSI2SD(X64Reg dest, OpArg src);
+    void CVTDQ2PD(X64Reg regOp, OpArg arg);
+    void CVTPD2DQ(X64Reg regOp, OpArg arg);
+    void CVTDQ2PS(X64Reg regOp, OpArg arg);
+    void CVTPS2DQ(X64Reg regOp, OpArg arg);
+
+    void CVTTPS2DQ(X64Reg regOp, OpArg arg);
+    void CVTTPD2DQ(X64Reg regOp, OpArg arg);
+
+    // Destinations are X64 regs (rax, rbx, ...) for these instructions.
+    void CVTSS2SI(X64Reg xregdest, OpArg src);
+    void CVTSD2SI(X64Reg xregdest, OpArg src);
+    void CVTTSS2SI(X64Reg xregdest, OpArg arg);
+    void CVTTSD2SI(X64Reg xregdest, OpArg arg);
+
+    // SSE2: Packed integer instructions
+    void PACKSSDW(X64Reg dest, OpArg arg);
+    void PACKSSWB(X64Reg dest, OpArg arg);
+    void PACKUSDW(X64Reg dest, OpArg arg);
+    void PACKUSWB(X64Reg dest, OpArg arg);
+
+    void PUNPCKLBW(X64Reg dest, const OpArg &arg);
+    void PUNPCKLWD(X64Reg dest, const OpArg &arg);
+    void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
+    void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
+
+    void PTEST(X64Reg dest, OpArg arg);
+    void PAND(X64Reg dest, OpArg arg);
+    void PANDN(X64Reg dest, OpArg arg);
+    void PXOR(X64Reg dest, OpArg arg);
+    void POR(X64Reg dest, OpArg arg);
+
+    void PADDB(X64Reg dest, OpArg arg);
+    void PADDW(X64Reg dest, OpArg arg);
+    void PADDD(X64Reg dest, OpArg arg);
+    void PADDQ(X64Reg dest, OpArg arg);
+
+    void PADDSB(X64Reg dest, OpArg arg);
+    void PADDSW(X64Reg dest, OpArg arg);
+    void PADDUSB(X64Reg dest, OpArg arg);
+    void PADDUSW(X64Reg dest, OpArg arg);
+
+    void PSUBB(X64Reg dest, OpArg arg);
+    void PSUBW(X64Reg dest, OpArg arg);
+    void PSUBD(X64Reg dest, OpArg arg);
+    void PSUBQ(X64Reg dest, OpArg arg);
+
+    void PSUBSB(X64Reg dest, OpArg arg);
+    void PSUBSW(X64Reg dest, OpArg arg);
+    void PSUBUSB(X64Reg dest, OpArg arg);
+    void PSUBUSW(X64Reg dest, OpArg arg);
+
+    void PAVGB(X64Reg dest, OpArg arg);
+    void PAVGW(X64Reg dest, OpArg arg);
+
+    void PCMPEQB(X64Reg dest, OpArg arg);
+    void PCMPEQW(X64Reg dest, OpArg arg);
+    void PCMPEQD(X64Reg dest, OpArg arg);
+
+    void PCMPGTB(X64Reg dest, OpArg arg);
+    void PCMPGTW(X64Reg dest, OpArg arg);
+    void PCMPGTD(X64Reg dest, OpArg arg);
+
+    void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
+    void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
+
+    void PMADDWD(X64Reg dest, OpArg arg);
+    void PSADBW(X64Reg dest, OpArg arg);
+
+    void PMAXSW(X64Reg dest, OpArg arg);
+    void PMAXUB(X64Reg dest, OpArg arg);
+    void PMINSW(X64Reg dest, OpArg arg);
+    void PMINUB(X64Reg dest, OpArg arg);
+    // SSE4: More MAX/MIN instructions.
+    void PMINSB(X64Reg dest, OpArg arg);
+    void PMINSD(X64Reg dest, OpArg arg);
+    void PMINUW(X64Reg dest, OpArg arg);
+    void PMINUD(X64Reg dest, OpArg arg);
+    void PMAXSB(X64Reg dest, OpArg arg);
+    void PMAXSD(X64Reg dest, OpArg arg);
+    void PMAXUW(X64Reg dest, OpArg arg);
+    void PMAXUD(X64Reg dest, OpArg arg);
+
+    void PMOVMSKB(X64Reg dest, OpArg arg);
+    void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
+    void PSHUFB(X64Reg dest, OpArg arg);
+
+    void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
+    void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
+
+    void PSRLW(X64Reg reg, int shift);
+    void PSRLD(X64Reg reg, int shift);
+    void PSRLQ(X64Reg reg, int shift);
+    void PSRLQ(X64Reg reg, OpArg arg);
+    void PSRLDQ(X64Reg reg, int shift);
+
+    void PSLLW(X64Reg reg, int shift);
+    void PSLLD(X64Reg reg, int shift);
+    void PSLLQ(X64Reg reg, int shift);
+    void PSLLDQ(X64Reg reg, int shift);
+
+    void PSRAW(X64Reg reg, int shift);
+    void PSRAD(X64Reg reg, int shift);
+
+    // SSE4: data type conversions
+    void PMOVSXBW(X64Reg dest, OpArg arg);
+    void PMOVSXBD(X64Reg dest, OpArg arg);
+    void PMOVSXBQ(X64Reg dest, OpArg arg);
+    void PMOVSXWD(X64Reg dest, OpArg arg);
+    void PMOVSXWQ(X64Reg dest, OpArg arg);
+    void PMOVSXDQ(X64Reg dest, OpArg arg);
+    void PMOVZXBW(X64Reg dest, OpArg arg);
+    void PMOVZXBD(X64Reg dest, OpArg arg);
+    void PMOVZXBQ(X64Reg dest, OpArg arg);
+    void PMOVZXWD(X64Reg dest, OpArg arg);
+    void PMOVZXWQ(X64Reg dest, OpArg arg);
+    void PMOVZXDQ(X64Reg dest, OpArg arg);
+
+    // SSE4: variable blend instructions (xmm0 implicit argument)
+    void PBLENDVB(X64Reg dest, OpArg arg);
+    void BLENDVPS(X64Reg dest, OpArg arg);
+    void BLENDVPD(X64Reg dest, OpArg arg);
+    void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
+    void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
+
+    // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
+    void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
+    void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
+    void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
+    void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
+
+    inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
+    inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
+    inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
+    inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
+
+    inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
+    inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
+    inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
+    inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
+
+    inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
+    inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
+    inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
+    inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
+
+    inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
+    inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
+    inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
+    inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
+
+    // AVX
+    void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
+    void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+    void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+    void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+    // FMA3
+    void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+    // VEX GPR instructions
+    void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+    void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+    void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+    void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
+    void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+    void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+    void BLSR(int bits, X64Reg regOp, OpArg arg);
+    void BLSMSK(int bits, X64Reg regOp, OpArg arg);
+    void BLSI(int bits, X64Reg regOp, OpArg arg);
+    void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+    void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+    void RDTSC();
+
+    // Utility functions
+    // The difference between this and CALL is that this aligns the stack
+    // where appropriate.
+    void ABI_CallFunction(const void *func);
+    template <typename T>
+    void ABI_CallFunction(T (*func)()) {
+        ABI_CallFunction((const void *)func);
+    }
+
+    void ABI_CallFunction(const u8 *func) {
+        ABI_CallFunction((const void *)func);
+    }
+    void ABI_CallFunctionC16(const void *func, u16 param1);
+    void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
+
+
+    // These only support u32 parameters, but that's enough for a lot of uses.
+    // These will destroy the 1 or 2 first "parameter regs".
+    void ABI_CallFunctionC(const void *func, u32 param1);
+    void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
+    void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
+    void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
+    void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
+    void ABI_CallFunctionP(const void *func, void *param1);
+    void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
+    void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
+    void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
+    void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
+    void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
+    void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
+    void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
+
+    // Pass a register as a parameter.
+    void ABI_CallFunctionR(const void *func, X64Reg reg1);
+    void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
+
+    template <typename Tr, typename T1>
+    void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
+        ABI_CallFunctionC((const void *)func, param1);
+    }
+
+    // A function that doesn't have any control over what it will do to regs,
+    // such as the dispatcher, should be surrounded by these.
+    void ABI_PushAllCalleeSavedRegsAndAdjustStack();
+    void ABI_PopAllCalleeSavedRegsAndAdjustStack();
+
+    // A function that doesn't know anything about it's surroundings, should
+    // be surrounded by these to establish a safe environment, where it can roam free.
+    // An example is a backpatch injected function.
+    void ABI_PushAllCallerSavedRegsAndAdjustStack();
+    void ABI_PopAllCallerSavedRegsAndAdjustStack();
+
+    unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
+    void ABI_AlignStack(unsigned int frameSize);
+    void ABI_RestoreStack(unsigned int frameSize);
+
+    // Sets up a __cdecl function.
+    // Only x64 really needs the parameter count.
+    void ABI_EmitPrologue(int maxCallParams);
+    void ABI_EmitEpilogue(int maxCallParams);
+
+    #ifdef _M_IX86
+    inline int ABI_GetNumXMMRegs() { return 8; }
+    #else
+    inline int ABI_GetNumXMMRegs() { return 16; }
+    #endif
+};  // class XEmitter
+
+
+// Everything that needs to generate X86 code should inherit from this.
+// You get memory management for free, plus, you can use all the MOV etc functions without
+// having to prefix them with gen-> or something similar.
+
+class XCodeBlock : public CodeBlock<XEmitter> {
+public:
+    void PoisonMemory() override;
+};
+
+}  // namespace