backend /A64: cleanup

This commit is contained in:
SachinVin 2019-07-31 22:43:42 +05:30
parent d027786e4e
commit 3d4caa5ee1
3 changed files with 10 additions and 346 deletions

View File

@ -393,31 +393,11 @@ static u32 GetCpsrImpl(A32JitState* jit_state) {
}
void A32EmitA64::EmitA32GetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
//if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
// Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
// Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
// TODO:Inline
ctx.reg_alloc.HostCall(inst);
code.MOV(code.ABI_PARAM1, X28);
code.QuickCallFunction(&GetCpsrImpl);
// // Here we observe that CPSR_et and CPSR_ge are right next to each other in memory,
// // so we load them both at the same time with one 64-bit read. This allows us to
// // extract all of their bits together at once with one pext.
// static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge));
// code.mov(result.cvt64(), qword[r15 + offsetof(A32JitState, CPSR_et)]);
// code.mov(tmp.cvt64(), 0x80808080'00000003ull);
// code.pext(result.cvt64(), result.cvt64(), tmp.cvt64());
// code.mov(tmp, 0x000f0220);
// code.pdep(result, result, tmp);
// code.mov(tmp, dword[r15 + offsetof(A32JitState, CPSR_q)]);
// code.shl(tmp, 27);
// code.or_(result, tmp);
// code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
// code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_jaifm)]);
// ctx.reg_alloc.DefineValue(inst, result);
//} else {
ctx.reg_alloc.HostCall(inst);
code.MOV(code.ABI_PARAM1, X28);
code.QuickCallFunction(&GetCpsrImpl);
//}
}
static void SetCpsrImpl(u32 value, A32JitState* jit_state) {
@ -426,43 +406,12 @@ static void SetCpsrImpl(u32 value, A32JitState* jit_state) {
void A32EmitA64::EmitA32SetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
// TODO:Inline
ctx.reg_alloc.HostCall(nullptr, args[0]);
code.MOV(code.ABI_PARAM2, X28);
code.QuickCallFunction(&SetCpsrImpl);
//if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
// Xbyak::Reg32 cpsr = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
// Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
// Xbyak::Reg32 tmp2 = ctx.reg_alloc.ScratchGpr().cvt32();
// // CPSR_q
// code.bt(cpsr, 27);
// code.setc(code.byte[r15 + offsetof(A32JitState, CPSR_q)]);
// // CPSR_nzcv
// code.mov(tmp, cpsr);
// code.and_(tmp, 0xF0000000);
// code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], tmp);
// // CPSR_jaifm
// code.mov(tmp, cpsr);
// code.and_(tmp, 0x07F0FDDF);
// code.mov(dword[r15 + offsetof(A32JitState, CPSR_jaifm)], tmp);
// // CPSR_et and CPSR_ge
// static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge));
// code.mov(tmp, 0x000f0220);
// code.pext(cpsr, cpsr, tmp);
// code.mov(tmp.cvt64(), 0x01010101'00000003ull);
// code.pdep(cpsr.cvt64(), cpsr.cvt64(), tmp.cvt64());
// // We perform SWAR partitioned subtraction here, to negate the GE bytes.
// code.mov(tmp.cvt64(), 0x80808080'00000003ull);
// code.mov(tmp2.cvt64(), tmp.cvt64());
// code.sub(tmp.cvt64(), cpsr.cvt64());
// code.xor_(tmp.cvt64(), tmp2.cvt64());
// code.mov(qword[r15 + offsetof(A32JitState, CPSR_et)], tmp.cvt64());
//} else {
ctx.reg_alloc.HostCall(nullptr, args[0]);
code.MOV(code.ABI_PARAM2, X28);
code.QuickCallFunction(&SetCpsrImpl);
//}
}
void A32EmitA64::EmitA32SetCpsrNZCV(A32EmitContext& ctx, IR::Inst* inst) {

View File

@ -36,42 +36,6 @@ namespace mp = Dynarmic::Common::mp;
namespace {
const ARM64Reg INVALID_REG = ARM64Reg(-1);
constexpr u64 f16_negative_zero = 0x8000;
constexpr u64 f16_non_sign_mask = 0x7fff;
constexpr u64 f32_negative_zero = 0x80000000u;
constexpr u64 f32_nan = 0x7fc00000u;
constexpr u64 f32_non_sign_mask = 0x7fffffffu;
constexpr u64 f32_smallest_normal = 0x00800000u;
constexpr u64 f64_negative_zero = 0x8000000000000000u;
constexpr u64 f64_nan = 0x7ff8000000000000u;
constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu;
constexpr u64 f64_smallest_normal = 0x0010000000000000u;
constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu;
constexpr u64 f64_max_s32 = 0x41dfffffffc00000u; // 2147483647 as a double
constexpr u64 f64_min_u32 = 0x0000000000000000u; // 0 as a double
constexpr u64 f64_max_u32 = 0x41efffffffe00000u; // 4294967295 as a double
constexpr u64 f64_max_s64_lim = 0x43e0000000000000u; // 2^63 as a double (actual maximum unrepresentable)
constexpr u64 f64_min_u64 = 0x0000000000000000u; // 0 as a double
constexpr u64 f64_max_u64_lim = 0x43f0000000000000u; // 2^64 as a double (actual maximum unrepresentable)
//template<size_t fsize, typename T>
//T ChooseOnFsize([[maybe_unused]] T f32, [[maybe_unused]] T f64) {
// static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
//
// if constexpr (fsize == 32) {
// return f32;
// } else {
// return f64;
// }
//}
//
//#define FCODE(NAME) (code.*ChooseOnFsize<fsize>(&Xbyak::CodeGenerator::NAME##s, &Xbyak::CodeGenerator::NAME##d))
Arm64Gen::RoundingMode ConvertRoundingModeToA64RoundingMode(FP::RoundingMode rounding_mode) {
switch (rounding_mode) {
case FP::RoundingMode::ToNearest_TieEven:
@ -89,179 +53,6 @@ Arm64Gen::RoundingMode ConvertRoundingModeToA64RoundingMode(FP::RoundingMode rou
}
}
//template<size_t fsize>
//void DenormalsAreZero(BlockOfCode& code, ARM64Reg xmm_value, ARM64Reg gpr_scratch) {
// Xbyak::Label end;
//
// if constexpr (fsize == 32) {
// code.fp_emitter.FMOV(DecodeReg(gpr_scratch), xmm_value);
// code.ANDI2R(DecodeReg(gpr_scratch), DecodeReg(gpr_scratch), u32(0x7FFFFFFF));
// code.SUBI2R(DecodeReg(gpr_scratch), DecodeReg(gpr_scratch), u32(1));
// code.CMPI2R(DecodeReg(gpr_scratch), DecodeReg(gpr_scratch), u32(0x007FFFFE));
// } else {
// auto mask = code.MConst(xword, f64_non_sign_mask);
// mask.setBit(64);
// auto penult_denormal = code.MConst(xword, f64_penultimate_positive_denormal);
// penult_denormal.setBit(64);
//
// code.movq(gpr_scratch, xmm_value);
// code.and_(gpr_scratch, mask);
// code.sub(gpr_scratch, u32(1));
// code.cmp(gpr_scratch, penult_denormal);
// }
//
// // We need to report back whether we've found a denormal on input.
// // SSE doesn't do this for us when SSE's DAZ is enabled.
//
// code.ja(end);
// code.andps(xmm_value, code.MConst(xword, fsize == 32 ? f32_negative_zero : f64_negative_zero));
// code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_IDC], u32(1 << 7));
// code.L(end);
//}
//
//template<size_t fsize>
//void ZeroIfNaN(BlockOfCode& code, ARM64Reg xmm_value, ARM64Reg xmm_scratch) {
// code.xorps(xmm_scratch, xmm_scratch);
// FCODE(cmpords)(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN)
// code.pand(xmm_value, xmm_scratch);
//}
//template<size_t fsize>
//void ForceToDefaultNaN(BlockOfCode& code, ARM64Reg result) {
// FixupBranch end;
//
// code.fp_emitter.FCMP(result);
// end = code.B(CC_VC);
// code.LDR(result, code.MConst(fsize == 32 ? f32_nan : f64_nan));
// code.SetJumpTarget(end);
//}
//template<size_t fsize>
//FixupBranch ProcessNaN(BlockOfCode& code, ARM64Reg a, ARM64Reg scratch) {
// FixupBranch not_nan, end;
//
// code.fp_emitter.FCMP(a);
// not_nan = code.B(CC_VC);
//
// //code.SwitchToFarCode();
// //code.SetJumpTarget(nan);
//
// code.EmitPatchLDR(scratch, fsize == 32 ? 0x00400000 : 0x0008'0000'0000'0000);
// code.fp_emitter.ORR(EncodeRegToDouble(a), a, scratch);
//
// end = code.B();
//
// //code.FlushIcache();
// //code.SwitchToNearCode();
// code.SetJumpTarget(not_nan);
// return end;
//}
//
//template<size_t fsize>
//void PostProcessNaN(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm tmp) {
// if constexpr (fsize == 32) {
// code.movaps(tmp, result);
// code.cmpunordps(tmp, tmp);
// code.pslld(tmp, 31);
// code.xorps(result, tmp);
// }
// else {
// code.movaps(tmp, result);
// code.cmpunordpd(tmp, tmp);
// code.psllq(tmp, 63);
// code.xorps(result, tmp);
// }
//}
// This is necessary because x86 and ARM differ in they way they return NaNs from floating point operations
//
// ARM behaviour:
// op1 op2 result
// SNaN SNaN/QNaN op1
// QNaN SNaN op2
// QNaN QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// x86 behaviour:
// op1 op2 result
// SNaN/QNaN SNaN/QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// With ARM: SNaNs take priority. With x86: it doesn't matter.
//
// From the above we can see what differs between the architectures is
// the case when op1 == QNaN and op2 == SNaN.
//
// We assume that registers op1 and op2 are read-only. This function also trashes xmm0.
// We allow for the case where op1 and result are the same register. We do not read from op1 once result is written to.
//template<size_t fsize>
//void EmitPostProcessNaNs(BlockOfCode& code, ARM64Reg result, ARM64Reg op1, ARM64Reg op2, Xbyak::Reg64 tmp, Xbyak::Label end) {
// using FPT = mp::unsigned_integer_of_size<fsize>;
// constexpr FPT exponent_mask = FP::FPInfo<FPT>::exponent_mask;
// constexpr FPT mantissa_msb = FP::FPInfo<FPT>::mantissa_msb;
// constexpr u8 mantissa_msb_bit = static_cast<u8>(FP::FPInfo<FPT>::explicit_mantissa_width - 1);
//
// // At this point we know that at least one of op1 and op2 is a NaN.
// // Thus in op1 ^ op2 at least one of the two would have all 1 bits in the exponent.
// // Keeping in mind xor is commutative, there are only four cases:
// // SNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 0
// // QNaN ^ QNaN -> exponent == 0, mantissa_msb == 0
// // QNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 1
// // SNaN/QNaN ^ Otherwise -> exponent != 0, mantissa_msb == ?
// //
// // We're only really interested in op1 == QNaN and op2 == SNaN,
// // so we filter out everything else.
// //
// // We do it this way instead of checking that op1 is QNaN because
// // op1 == QNaN && op2 == QNaN is the most common case. With this method
// // that case would only require one branch.
//
// if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
// code.vxorps(xmm0, op1, op2);
// } else {
// code.movaps(xmm0, op1);
// code.xorps(xmm0, op2);
// }
//
// constexpr size_t shift = fsize == 32 ? 0 : 48;
// if constexpr (fsize == 32) {
// code.movd(tmp.cvt32(), xmm0);
// } else {
// // We do this to avoid requiring 64-bit immediates
// code.pextrw(tmp.cvt32(), xmm0, shift / 16);
// }
// code.and_(tmp.cvt32(), static_cast<u32>((exponent_mask | mantissa_msb) >> shift));
// code.cmp(tmp.cvt32(), static_cast<u32>(mantissa_msb >> shift));
// code.jne(end, code.T_NEAR);
//
// // If we're here there are four cases left:
// // op1 == SNaN && op2 == QNaN
// // op1 == Inf && op2 == QNaN
// // op1 == QNaN && op2 == SNaN <<< The problematic case
// // op1 == QNaN && op2 == Inf
//
// if constexpr (fsize == 32) {
// code.movd(tmp.cvt32(), op2);
// code.shl(tmp.cvt32(), 32 - mantissa_msb_bit);
// } else {
// code.movq(tmp, op2);
// code.shl(tmp, 64 - mantissa_msb_bit);
// }
// // If op2 is a SNaN, CF = 0 and ZF = 0.
// code.jna(end, code.T_NEAR);
//
// // Silence the SNaN as required by spec.
// if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
// code.vorps(result, op2, code.MConst(xword, mantissa_msb));
// } else {
// code.movaps(result, op2);
// code.orps(result, code.MConst(xword, mantissa_msb));
// }
// code.jmp(end, code.T_NEAR);
//}
template <size_t fsize, typename Function>
void FPTwoOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
@ -686,4 +477,4 @@ void EmitA64::EmitFPFixedU64ToSingle(EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.DefineValue(inst, result);
}
} // namespace Dynarmic::BackendX64
} // namespace Dynarmic::BackendA64

View File

@ -1,76 +0,0 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#pragma once
#include "common/assert.h"
namespace Dynarmic::BackendA64 {
struct OpArg {
OpArg() : type(Type::Operand), inner_operand() {}
/* implicit */ OpArg(const Xbyak::Address& address) : type(Type::Address), inner_address(address) {}
/* implicit */ OpArg(const Xbyak::Reg& reg) : type(Type::Reg), inner_reg(reg) {}
Xbyak::Operand& operator*() {
switch (type) {
case Type::Address:
return inner_address;
case Type::Operand:
return inner_operand;
case Type::Reg:
return inner_reg;
}
ASSERT_MSG(false, "Unreachable");
}
void setBit(int bits) {
switch (type) {
case Type::Address:
inner_address.setBit(bits);
return;
case Type::Operand:
inner_operand.setBit(bits);
return;
case Type::Reg:
switch (bits) {
case 8:
inner_reg = inner_reg.cvt8();
return;
case 16:
inner_reg = inner_reg.cvt16();
return;
case 32:
inner_reg = inner_reg.cvt32();
return;
case 64:
inner_reg = inner_reg.cvt64();
return;
default:
ASSERT_MSG(false, "Invalid bits");
return;
}
}
ASSERT_MSG(false, "Unreachable");
}
private:
enum class Type {
Operand,
Address,
Reg,
};
Type type;
union {
Xbyak::Operand inner_operand;
Xbyak::Address inner_address;
Xbyak::Reg inner_reg;
};
};
} // namespace Dynarmic::BackendX64