backend/a64: Port reg_alloc

This commit is contained in:
SachinVin 2019-08-03 10:28:27 +05:30 committed by xperia64
parent 2645f51713
commit 800d1e34e2
2 changed files with 821 additions and 0 deletions

View File

@ -0,0 +1,654 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <algorithm>
#include <numeric>
#include <utility>
#include <fmt/ostream.h>
#include "backend/A64/abi.h"
#include "backend/A64/reg_alloc.h"
#include "common/assert.h"
namespace Dynarmic::BackendA64 {
static u64 ImmediateToU64(const IR::Value& imm) {
switch (imm.GetType()) {
case IR::Type::U1:
return u64(imm.GetU1());
case IR::Type::U8:
return u64(imm.GetU8());
case IR::Type::U16:
return u64(imm.GetU16());
case IR::Type::U32:
return u64(imm.GetU32());
case IR::Type::U64:
return u64(imm.GetU64());
default:
ASSERT_MSG(false, "This should never happen.");
}
}
static bool CanExchange(HostLoc a, HostLoc b) {
return HostLocIsGPR(a) && HostLocIsGPR(b);
}
// Minimum number of bits required to represent a type
static size_t GetBitWidth(IR::Type type) {
switch (type) {
case IR::Type::A32Reg:
case IR::Type::A32ExtReg:
case IR::Type::A64Reg:
case IR::Type::A64Vec:
case IR::Type::CoprocInfo:
case IR::Type::Cond:
case IR::Type::Void:
case IR::Type::Table:
ASSERT_MSG(false, "Type {} cannot be represented at runtime", type);
return 0;
case IR::Type::Opaque:
ASSERT_MSG(false, "Not a concrete type");
return 0;
case IR::Type::U1:
return 8;
case IR::Type::U8:
return 8;
case IR::Type::U16:
return 16;
case IR::Type::U32:
return 32;
case IR::Type::U64:
return 64;
case IR::Type::U128:
return 128;
case IR::Type::NZCVFlags:
return 32; // TODO: Update to 16 when flags optimization is done
}
UNREACHABLE();
return 0;
}
static bool IsValuelessType(IR::Type type) {
switch (type) {
case IR::Type::Table:
return true;
default:
return false;
}
}
bool HostLocInfo::IsLocked() const {
return is_being_used_count > 0;
}
bool HostLocInfo::IsEmpty() const {
return is_being_used_count == 0 && values.empty();
}
bool HostLocInfo::IsLastUse() const {
return is_being_used_count == 0 && current_references == 1 && accumulated_uses + 1 == total_uses;
}
void HostLocInfo::ReadLock() {
ASSERT(!is_scratch);
is_being_used_count++;
}
void HostLocInfo::WriteLock() {
ASSERT(is_being_used_count == 0);
is_being_used_count++;
is_scratch = true;
}
void HostLocInfo::AddArgReference() {
current_references++;
ASSERT(accumulated_uses + current_references <= total_uses);
}
void HostLocInfo::ReleaseOne() {
is_being_used_count--;
is_scratch = false;
if (current_references == 0)
return;
accumulated_uses++;
current_references--;
if (current_references == 0)
ReleaseAll();
}
void HostLocInfo::ReleaseAll() {
accumulated_uses += current_references;
current_references = 0;
ASSERT(total_uses == std::accumulate(values.begin(), values.end(), size_t(0), [](size_t sum, IR::Inst* inst) { return sum + inst->UseCount(); }));
if (total_uses == accumulated_uses) {
values.clear();
accumulated_uses = 0;
total_uses = 0;
max_bit_width = 0;
}
is_being_used_count = 0;
is_scratch = false;
}
bool HostLocInfo::ContainsValue(const IR::Inst* inst) const {
return std::find(values.begin(), values.end(), inst) != values.end();
}
size_t HostLocInfo::GetMaxBitWidth() const {
return max_bit_width;
}
void HostLocInfo::AddValue(IR::Inst* inst) {
values.push_back(inst);
total_uses += inst->UseCount();
max_bit_width = std::max(max_bit_width, GetBitWidth(inst->GetType()));
}
IR::Type Argument::GetType() const {
return value.GetType();
}
bool Argument::IsImmediate() const {
return value.IsImmediate();
}
bool Argument::IsVoid() const {
return GetType() == IR::Type::Void;
}
bool Argument::FitsInImmediateU32() const {
if (!IsImmediate())
return false;
u64 imm = ImmediateToU64(value);
return imm < 0x100000000;
}
bool Argument::FitsInImmediateS32() const {
if (!IsImmediate())
return false;
s64 imm = static_cast<s64>(ImmediateToU64(value));
return -s64(0x80000000) <= imm && imm <= s64(0x7FFFFFFF);
}
bool Argument::GetImmediateU1() const {
return value.GetU1();
}
u8 Argument::GetImmediateU8() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x100);
return u8(imm);
}
u16 Argument::GetImmediateU16() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x10000);
return u16(imm);
}
u32 Argument::GetImmediateU32() const {
u64 imm = ImmediateToU64(value);
ASSERT(imm < 0x100000000);
return u32(imm);
}
u64 Argument::GetImmediateS32() const {
ASSERT(FitsInImmediateS32());
u64 imm = ImmediateToU64(value);
return imm;
}
u64 Argument::GetImmediateU64() const {
return ImmediateToU64(value);
}
IR::Cond Argument::GetImmediateCond() const {
ASSERT(IsImmediate() && GetType() == IR::Type::Cond);
return value.GetCond();
}
bool Argument::IsInGpr() const {
if (IsImmediate())
return false;
return HostLocIsGPR(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInFpr() const {
if (IsImmediate())
return false;
return HostLocIsFPR(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInMemory() const {
if (IsImmediate())
return false;
return HostLocIsSpill(*reg_alloc.ValueLocation(value.GetInst()));
}
RegAlloc::ArgumentInfo RegAlloc::GetArgumentInfo(IR::Inst* inst) {
ArgumentInfo ret = {Argument{*this}, Argument{*this}, Argument{*this}, Argument{*this}};
for (size_t i = 0; i < inst->NumArgs(); i++) {
const IR::Value& arg = inst->GetArg(i);
ret[i].value = arg;
if (!arg.IsImmediate() && !IsValuelessType(arg.GetType())) {
ASSERT_MSG(ValueLocation(arg.GetInst()), "argument must already been defined");
LocInfo(*ValueLocation(arg.GetInst())).AddArgReference();
}
}
return ret;
}
Arm64Gen::ARM64Reg RegAlloc::UseGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseImpl(arg.value, any_gpr));
}
Arm64Gen::ARM64Reg RegAlloc::UseFpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToFpr(UseImpl(arg.value, any_fpr));
}
//OpArg RegAlloc::UseOpArg(Argument& arg) {
// return UseGpr(arg);
//}
void RegAlloc::Use(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseImpl(arg.value, {host_loc});
}
Arm64Gen::ARM64Reg RegAlloc::UseScratchGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseScratchImpl(arg.value, any_gpr));
}
Arm64Gen::ARM64Reg RegAlloc::UseScratchFpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToFpr(UseScratchImpl(arg.value, any_fpr));
}
void RegAlloc::UseScratch(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseScratchImpl(arg.value, {host_loc});
}
void RegAlloc::DefineValue(IR::Inst* inst, const Arm64Gen::ARM64Reg& reg) {
ASSERT(IsVector(reg) || IsGPR(reg));
HostLoc hostloc = static_cast<HostLoc>(DecodeReg(reg) + static_cast<size_t>(IsVector(reg) ? HostLoc::Q0 : HostLoc::X0));
DefineValueImpl(inst, hostloc);
}
void RegAlloc::DefineValue(IR::Inst* inst, Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
DefineValueImpl(inst, arg.value);
}
void RegAlloc::Release(const Arm64Gen::ARM64Reg& reg) {
ASSERT(IsVector(reg) || IsGPR(reg));
const HostLoc hostloc = static_cast<HostLoc>(DecodeReg(reg) + static_cast<size_t>(IsVector(reg) ? HostLoc::Q0 : HostLoc::X0));
LocInfo(hostloc).ReleaseOne();
}
Arm64Gen::ARM64Reg RegAlloc::ScratchGpr(HostLocList desired_locations) {
return HostLocToReg64(ScratchImpl(desired_locations));
}
Arm64Gen::ARM64Reg RegAlloc::ScratchFpr(HostLocList desired_locations) {
return HostLocToFpr(ScratchImpl(desired_locations));
}
HostLoc RegAlloc::UseImpl(IR::Value use_value, HostLocList desired_locations) {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const IR::Inst* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t max_bit_width = LocInfo(current_location).GetMaxBitWidth();
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location) {
LocInfo(current_location).ReadLock();
return current_location;
}
if (LocInfo(current_location).IsLocked()) {
return UseScratchImpl(use_value, desired_locations);
}
const HostLoc destination_location = SelectARegister(desired_locations);
if (max_bit_width > HostLocBitWidth(destination_location)) {
return UseScratchImpl(use_value, desired_locations);
} else if (CanExchange(destination_location, current_location)) {
Exchange(destination_location, current_location);
} else {
MoveOutOfTheWay(destination_location);
Move(destination_location, current_location);
}
LocInfo(destination_location).ReadLock();
return destination_location;
}
HostLoc RegAlloc::UseScratchImpl(IR::Value use_value, HostLocList desired_locations) {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const IR::Inst* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t bit_width = GetBitWidth(use_inst->GetType());
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location && !LocInfo(current_location).IsLocked()) {
if (!LocInfo(current_location).IsLastUse()) {
MoveOutOfTheWay(current_location);
}
LocInfo(current_location).WriteLock();
return current_location;
}
const HostLoc destination_location = SelectARegister(desired_locations);
MoveOutOfTheWay(destination_location);
CopyToScratch(bit_width, destination_location, current_location);
LocInfo(destination_location).WriteLock();
return destination_location;
}
HostLoc RegAlloc::ScratchImpl(HostLocList desired_locations) {
HostLoc location = SelectARegister(desired_locations);
MoveOutOfTheWay(location);
LocInfo(location).WriteLock();
return location;
}
void RegAlloc::HostCall(IR::Inst* result_def, std::optional<Argument::copyable_reference> arg0,
std::optional<Argument::copyable_reference> arg1,
std::optional<Argument::copyable_reference> arg2,
std::optional<Argument::copyable_reference> arg3,
std::optional<Argument::copyable_reference> arg4,
std::optional<Argument::copyable_reference> arg5,
std::optional<Argument::copyable_reference> arg6,
std::optional<Argument::copyable_reference> arg7) {
constexpr size_t args_count = 8;
constexpr std::array<HostLoc, args_count> args_hostloc = { ABI_PARAM1, ABI_PARAM2, ABI_PARAM3, ABI_PARAM4, ABI_PARAM5, ABI_PARAM6, ABI_PARAM7, ABI_PARAM8 };
const std::array<std::optional<Argument::copyable_reference>, args_count> args = {arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7};
static const std::vector<HostLoc> other_caller_save = [args_hostloc]() {
std::vector<HostLoc> ret(ABI_ALL_CALLER_SAVE.begin(), ABI_ALL_CALLER_SAVE.end());
for (auto hostloc : args_hostloc)
ret.erase(std::find(ret.begin(), ret.end(), hostloc));
return ret;
}();
for (size_t i = 0; i < args_count; i++) {
if (args[i]) {
UseScratch(*args[i], args_hostloc[i]);
}
}
for (size_t i = 0; i < args_count; i++) {
if (!args[i]) {
// TODO: Force spill
ScratchGpr({args_hostloc[i]});
}
}
for (HostLoc caller_saved : other_caller_save) {
ScratchImpl({caller_saved});
}
if (result_def) {
DefineValueImpl(result_def, ABI_RETURN);
}
}
void RegAlloc::EndOfAllocScope() {
for (auto& iter : hostloc_info) {
iter.ReleaseAll();
}
}
void RegAlloc::AssertNoMoreUses() {
ASSERT(std::all_of(hostloc_info.begin(), hostloc_info.end(), [](const auto& i) { return i.IsEmpty(); }));
}
HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const {
std::vector<HostLoc> candidates = desired_locations;
// Find all locations that have not been allocated..
auto allocated_locs = std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return !this->LocInfo(loc).IsLocked();
});
candidates.erase(allocated_locs, candidates.end());
ASSERT_MSG(!candidates.empty(), "All candidate registers have already been allocated");
// Selects the best location out of the available locations.
// TODO: Actually do LRU or something. Currently we just try to pick something without a value if possible.
std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return this->LocInfo(loc).IsEmpty();
});
return candidates.front();
}
std::optional<HostLoc> RegAlloc::ValueLocation(const IR::Inst* value) const {
for (size_t i = 0; i < hostloc_info.size(); i++)
if (hostloc_info[i].ContainsValue(value))
return static_cast<HostLoc>(i);
return std::nullopt;
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc) {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
LocInfo(host_loc).AddValue(def_inst);
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst) {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
if (use_inst.IsImmediate()) {
HostLoc location = ScratchImpl(any_gpr);
DefineValueImpl(def_inst, location);
LoadImmediate(use_inst, location);
return;
}
ASSERT_MSG(ValueLocation(use_inst.GetInst()), "use_inst must already be defined");
HostLoc location = *ValueLocation(use_inst.GetInst());
DefineValueImpl(def_inst, location);
}
HostLoc RegAlloc::LoadImmediate(IR::Value imm, HostLoc host_loc) {
ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate");
if (HostLocIsGPR(host_loc)) {
Arm64Gen::ARM64Reg reg = HostLocToReg64(host_loc);
u64 imm_value = ImmediateToU64(imm);
if (imm_value == 0)
code.MOV(DecodeReg(reg), Arm64Gen::WZR);
else
code.MOVI2R(reg, imm_value);
return host_loc;
}
if (HostLocIsFPR(host_loc)) {
Arm64Gen::ARM64Reg reg = HostLocToFpr(host_loc);
u64 imm_value = ImmediateToU64(imm);
if (imm_value == 0)
code.fp_emitter.FMOV(reg, Arm64Gen::WZR);
else {
code.MOVP2R(code.ABI_SCRATCH1, code.MConst(imm_value));
code.fp_emitter.LDR(128, Arm64Gen::INDEX_UNSIGNED, reg, code.ABI_SCRATCH1, 0);
}
return host_loc;
}
UNREACHABLE();
}
void RegAlloc::Move(HostLoc to, HostLoc from) {
const size_t bit_width = LocInfo(from).GetMaxBitWidth();
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsLocked());
ASSERT(bit_width <= HostLocBitWidth(to));
if (LocInfo(from).IsEmpty()) {
return;
}
EmitMove(bit_width, to, from);
LocInfo(to) = std::exchange(LocInfo(from), {});
}
void RegAlloc::CopyToScratch(size_t bit_width, HostLoc to, HostLoc from) {
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsEmpty());
EmitMove(bit_width, to, from);
}
void RegAlloc::Exchange(HostLoc a, HostLoc b) {
ASSERT(!LocInfo(a).IsLocked() && !LocInfo(b).IsLocked());
ASSERT(LocInfo(a).GetMaxBitWidth() <= HostLocBitWidth(b));
ASSERT(LocInfo(b).GetMaxBitWidth() <= HostLocBitWidth(a));
if (LocInfo(a).IsEmpty()) {
Move(a, b);
return;
}
if (LocInfo(b).IsEmpty()) {
Move(b, a);
return;
}
EmitExchange(a, b);
std::swap(LocInfo(a), LocInfo(b));
}
void RegAlloc::MoveOutOfTheWay(HostLoc reg) {
ASSERT(!LocInfo(reg).IsLocked());
if (!LocInfo(reg).IsEmpty()) {
SpillRegister(reg);
}
}
void RegAlloc::SpillRegister(HostLoc loc) {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(!LocInfo(loc).IsEmpty(), "There is no need to spill unoccupied registers");
ASSERT_MSG(!LocInfo(loc).IsLocked(), "Registers that have been allocated must not be spilt");
HostLoc new_loc = FindFreeSpill();
Move(new_loc, loc);
}
HostLoc RegAlloc::FindFreeSpill() const {
for (size_t i = static_cast<size_t>(HostLoc::FirstSpill); i < hostloc_info.size(); i++) {
HostLoc loc = static_cast<HostLoc>(i);
if (LocInfo(loc).IsEmpty())
return loc;
}
ASSERT_MSG(false, "All spill locations are full");
}
HostLocInfo& RegAlloc::LocInfo(HostLoc loc) {
ASSERT(loc != HostLoc::SP && loc != HostLoc::X28 && loc != HostLoc::X29 && loc != HostLoc::X30);
return hostloc_info[static_cast<size_t>(loc)];
}
const HostLocInfo& RegAlloc::LocInfo(HostLoc loc) const {
ASSERT(loc != HostLoc::SP && loc != HostLoc::X28 && loc != HostLoc::X29 && loc != HostLoc::X30);
return hostloc_info[static_cast<size_t>(loc)];
}
void RegAlloc::EmitMove(size_t bit_width, HostLoc to, HostLoc from) {
if (HostLocIsFPR(to) && HostLocIsFPR(from)) {
// bit_width == 128
//mov(HostLocToFpr(to), HostLocToFpr(from));
UNIMPLEMENTED();
} else if (HostLocIsGPR(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.MOV(HostLocToReg64(to), HostLocToReg64(from));
} else {
code.MOV(DecodeReg(HostLocToReg64(to)), DecodeReg(HostLocToReg64(from)));
}
} else if (HostLocIsFPR(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.fp_emitter.FMOV(HostLocToFpr(to), HostLocToReg64(from));
} else {
code.fp_emitter.FMOV(HostLocToFpr(to), DecodeReg(HostLocToReg64(from)));
}
} else if (HostLocIsGPR(to) && HostLocIsFPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.fp_emitter.FMOV(HostLocToReg64(to), HostLocToFpr(from));
} else {
code.fp_emitter.FMOV(DecodeReg(HostLocToReg64(to)), HostLocToFpr(from));
}
} else if (HostLocIsFPR(to) && HostLocIsSpill(from)) {
s32 spill_addr = spill_to_addr(from);
// ASSERT(spill_addr.getBit() >= bit_width);
code.fp_emitter.LDR(bit_width, Arm64Gen::INDEX_UNSIGNED, HostLocToFpr(to), Arm64Gen::X28, spill_addr);
} else if (HostLocIsSpill(to) && HostLocIsFPR(from)) {
s32 spill_addr = spill_to_addr(to);
// ASSERT(spill_addr.getBit() >= bit_width);
code.fp_emitter.STR(bit_width, Arm64Gen::INDEX_UNSIGNED, HostLocToFpr(to), Arm64Gen::X28, spill_addr);
} else if (HostLocIsGPR(to) && HostLocIsSpill(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.LDR(Arm64Gen::INDEX_UNSIGNED, HostLocToReg64(to), Arm64Gen::X28, spill_to_addr(from));
} else {
code.LDR(Arm64Gen::INDEX_UNSIGNED, DecodeReg(HostLocToReg64(to)), Arm64Gen::X28, spill_to_addr(from));
}
} else if (HostLocIsSpill(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.STR(Arm64Gen::INDEX_UNSIGNED, HostLocToReg64(from), Arm64Gen::X28, spill_to_addr(to));
} else {
code.STR(Arm64Gen::INDEX_UNSIGNED, DecodeReg(HostLocToReg64(from)), Arm64Gen::X28, spill_to_addr(to));
}
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitMove");
}
}
void RegAlloc::EmitExchange(HostLoc a, HostLoc b) {
if (HostLocIsGPR(a) && HostLocIsGPR(b)) {
// Is this the best way to do it?
code.EOR(HostLocToReg64(a), HostLocToReg64(a), HostLocToReg64(b));
code.EOR(HostLocToReg64(b), HostLocToReg64(a), HostLocToReg64(b));
code.EOR(HostLocToReg64(a), HostLocToReg64(a), HostLocToReg64(b));
} else if (HostLocIsFPR(a) && HostLocIsFPR(b)) {
ASSERT_MSG(false, "Check your code: Exchanging XMM registers is unnecessary");
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitExchange");
}
}
} // namespace Dynarmic::BackendX64

167
src/backend/A64/reg_alloc.h Normal file
View File

@ -0,0 +1,167 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#pragma once
#include <array>
#include <functional>
#include <utility>
#include <vector>
#include <optional>
#include "backend/A64/block_of_code.h"
#include "backend/A64/hostloc.h"
//#include "backend/A64/oparg.h"
#include "common/common_types.h"
#include "frontend/ir/cond.h"
#include "frontend/ir/microinstruction.h"
#include "frontend/ir/value.h"
namespace Dynarmic::BackendA64 {
class RegAlloc;
struct HostLocInfo {
public:
bool IsLocked() const;
bool IsEmpty() const;
bool IsLastUse() const;
void ReadLock();
void WriteLock();
void AddArgReference();
void ReleaseOne();
void ReleaseAll();
bool ContainsValue(const IR::Inst* inst) const;
size_t GetMaxBitWidth() const;
void AddValue(IR::Inst* inst);
private:
// Current instruction state
size_t is_being_used_count = 0;
bool is_scratch = false;
// Block state
size_t current_references = 0;
size_t accumulated_uses = 0;
size_t total_uses = 0;
// Value state
std::vector<IR::Inst*> values;
size_t max_bit_width = 0;
};
struct Argument {
public:
using copyable_reference = std::reference_wrapper<Argument>;
IR::Type GetType() const;
bool IsImmediate() const;
bool IsVoid() const;
bool FitsInImmediateU32() const;
bool FitsInImmediateS32() const;
bool GetImmediateU1() const;
u8 GetImmediateU8() const;
u16 GetImmediateU16() const;
u32 GetImmediateU32() const;
u64 GetImmediateS32() const;
u64 GetImmediateU64() const;
IR::Cond GetImmediateCond() const;
/// Is this value currently in a GPR?
bool IsInGpr() const;
/// Is this value currently in a FPR?
bool IsInFpr() const;
/// Is this value currently in memory?
bool IsInMemory() const;
private:
friend class RegAlloc;
explicit Argument(RegAlloc& reg_alloc) : reg_alloc(reg_alloc) {}
bool allocated = false;
RegAlloc& reg_alloc;
IR::Value value;
};
class RegAlloc final {
public:
using ArgumentInfo = std::array<Argument, IR::max_arg_count>;
explicit RegAlloc(BlockOfCode& code, size_t num_spills, std::function<u64(HostLoc)> spill_to_addr)
: hostloc_info(NonSpillHostLocCount + num_spills), code(code), spill_to_addr(std::move(spill_to_addr)) {}
ArgumentInfo GetArgumentInfo(IR::Inst* inst);
Arm64Gen::ARM64Reg UseGpr(Argument& arg);
Arm64Gen::ARM64Reg UseFpr(Argument& arg);
//OpArg UseOpArg(Argument& arg);
void Use(Argument& arg, HostLoc host_loc);
Arm64Gen::ARM64Reg UseScratchGpr(Argument& arg);
Arm64Gen::ARM64Reg UseScratchFpr(Argument& arg);
void UseScratch(Argument& arg, HostLoc host_loc);
void DefineValue(IR::Inst* inst, const Arm64Gen::ARM64Reg& reg);
void DefineValue(IR::Inst* inst, Argument& arg);
void Release(const Arm64Gen::ARM64Reg& reg);
Arm64Gen::ARM64Reg ScratchGpr(HostLocList desired_locations = any_gpr);
Arm64Gen::ARM64Reg ScratchFpr(HostLocList desired_locations = any_fpr);
void HostCall(IR::Inst* result_def = nullptr, std::optional<Argument::copyable_reference> arg0 = {},
std::optional<Argument::copyable_reference> arg1 = {},
std::optional<Argument::copyable_reference> arg2 = {},
std::optional<Argument::copyable_reference> arg3 = {},
std::optional<Argument::copyable_reference> arg4 = {},
std::optional<Argument::copyable_reference> arg5 = {},
std::optional<Argument::copyable_reference> arg6 = {},
std::optional<Argument::copyable_reference> arg7 = {});
// TODO: Values in host flags
void EndOfAllocScope();
void AssertNoMoreUses();
private:
friend struct Argument;
HostLoc SelectARegister(HostLocList desired_locations) const;
std::optional<HostLoc> ValueLocation(const IR::Inst* value) const;
HostLoc UseImpl(IR::Value use_value, HostLocList desired_locations);
HostLoc UseScratchImpl(IR::Value use_value, HostLocList desired_locations);
HostLoc ScratchImpl(HostLocList desired_locations);
void DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc);
void DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst);
HostLoc LoadImmediate(IR::Value imm, HostLoc reg);
void Move(HostLoc to, HostLoc from);
void CopyToScratch(size_t bit_width, HostLoc to, HostLoc from);
void Exchange(HostLoc a, HostLoc b);
void MoveOutOfTheWay(HostLoc reg);
void SpillRegister(HostLoc loc);
HostLoc FindFreeSpill() const;
std::vector<HostLocInfo> hostloc_info;
HostLocInfo& LocInfo(HostLoc loc);
const HostLocInfo& LocInfo(HostLoc loc) const;
BlockOfCode& code;
std::function<u32(HostLoc)> spill_to_addr;
void EmitMove(size_t bit_width, HostLoc to, HostLoc from);
void EmitExchange(HostLoc a, HostLoc b);
};
} // namespace Dynarmic::BackendA64