458 lines
12 KiB
C
458 lines
12 KiB
C
/* $OpenBSD: bn_div.c,v 1.40 2023/03/27 10:21:23 tb Exp $ */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "bn_arch.h"
|
|
#include "bn_local.h"
|
|
#include "bn_internal.h"
|
|
|
|
BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
|
|
|
|
#ifndef HAVE_BN_DIV_WORDS
|
|
#if defined(BN_LLONG) && defined(BN_DIV2W)
|
|
|
|
BN_ULONG
|
|
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d));
|
|
}
|
|
|
|
#else
|
|
|
|
/* Divide h,l by d and return the result. */
|
|
/* I need to test this some more :-( */
|
|
BN_ULONG
|
|
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
BN_ULONG dh, dl, q,ret = 0, th, tl, t;
|
|
int i, count = 2;
|
|
|
|
if (d == 0)
|
|
return (BN_MASK2);
|
|
|
|
i = BN_num_bits_word(d);
|
|
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
|
|
|
|
i = BN_BITS2 - i;
|
|
if (h >= d)
|
|
h -= d;
|
|
|
|
if (i) {
|
|
d <<= i;
|
|
h = (h << i) | (l >> (BN_BITS2 - i));
|
|
l <<= i;
|
|
}
|
|
dh = (d & BN_MASK2h) >> BN_BITS4;
|
|
dl = (d & BN_MASK2l);
|
|
for (;;) {
|
|
if ((h >> BN_BITS4) == dh)
|
|
q = BN_MASK2l;
|
|
else
|
|
q = h / dh;
|
|
|
|
th = q * dh;
|
|
tl = dl * q;
|
|
for (;;) {
|
|
t = h - th;
|
|
if ((t & BN_MASK2h) ||
|
|
((tl) <= (
|
|
(t << BN_BITS4) |
|
|
((l & BN_MASK2h) >> BN_BITS4))))
|
|
break;
|
|
q--;
|
|
th -= dh;
|
|
tl -= dl;
|
|
}
|
|
t = (tl >> BN_BITS4);
|
|
tl = (tl << BN_BITS4) & BN_MASK2h;
|
|
th += t;
|
|
|
|
if (l < tl)
|
|
th++;
|
|
l -= tl;
|
|
if (h < th) {
|
|
h += d;
|
|
q--;
|
|
}
|
|
h -= th;
|
|
|
|
if (--count == 0)
|
|
break;
|
|
|
|
ret = q << BN_BITS4;
|
|
h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
|
|
l = (l & BN_MASK2l) << BN_BITS4;
|
|
}
|
|
ret |= q;
|
|
return (ret);
|
|
}
|
|
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
|
|
#endif
|
|
|
|
/*
|
|
* Divide a double word (h:l) by d, returning the quotient q and the remainder
|
|
* r, such that q * d + r is equal to the numerator.
|
|
*/
|
|
#ifndef HAVE_BN_DIV_REM_WORDS
|
|
#ifndef HAVE_BN_DIV_REM_WORDS_INLINE
|
|
static inline void
|
|
bn_div_rem_words_inline(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q,
|
|
BN_ULONG *out_r)
|
|
{
|
|
BN_ULONG q, r;
|
|
|
|
q = bn_div_words(h, l, d);
|
|
r = (l - q * d) & BN_MASK2;
|
|
|
|
*out_q = q;
|
|
*out_r = r;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
bn_div_rem_words(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q,
|
|
BN_ULONG *out_r)
|
|
{
|
|
bn_div_rem_words_inline(h, l, d, out_q, out_r);
|
|
}
|
|
#endif
|
|
|
|
#ifndef HAVE_BN_DIV_3_WORDS
|
|
|
|
/*
|
|
* Interface is somewhat quirky, |m| is pointer to most significant limb,
|
|
* and less significant limb is referred at |m[-1]|. This means that caller
|
|
* is responsible for ensuring that |m[-1]| is valid. Second condition that
|
|
* has to be met is that |d0|'s most significant bit has to be set. Or in
|
|
* other words divisor has to be "bit-aligned to the left." The subroutine
|
|
* considers four limbs, two of which are "overlapping," hence the name...
|
|
*/
|
|
BN_ULONG
|
|
bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
|
|
{
|
|
BN_ULONG n0, n1, q, t2h, t2l;
|
|
BN_ULONG rem = 0;
|
|
|
|
n0 = m[0];
|
|
n1 = m[-1];
|
|
|
|
if (n0 == d0)
|
|
return BN_MASK2;
|
|
|
|
/* n0 < d0 */
|
|
bn_div_rem_words(n0, n1, d0, &q, &rem);
|
|
|
|
bn_mulw(d1, q, &t2h, &t2l);
|
|
|
|
for (;;) {
|
|
if (t2h < rem || (t2h == rem && t2l <= m[-2]))
|
|
break;
|
|
q--;
|
|
rem += d0;
|
|
if (rem < d0)
|
|
break; /* don't let rem overflow */
|
|
if (t2l < d1)
|
|
t2h--;
|
|
t2l -= d1;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
#endif /* !HAVE_BN_DIV_3_WORDS */
|
|
|
|
/*
|
|
* BN_div_internal computes quotient := numerator / divisor, rounding towards
|
|
* zero and setting remainder such that quotient * divisor + remainder equals
|
|
* the numerator. Thus:
|
|
*
|
|
* quotient->neg == numerator->neg ^ divisor->neg (unless result is zero)
|
|
* remainder->neg == numerator->neg (unless the remainder is zero)
|
|
*
|
|
* If either the quotient or remainder is NULL, the respective value is not
|
|
* returned.
|
|
*/
|
|
static int
|
|
BN_div_internal(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
|
|
const BIGNUM *divisor, BN_CTX *ctx, int ct)
|
|
{
|
|
int norm_shift, i, loop, r_neg;
|
|
BIGNUM *tmp, wnum, *snum, *sdiv, *res;
|
|
BN_ULONG *resp, *wnump;
|
|
BN_ULONG d0, d1;
|
|
int num_n, div_n;
|
|
int no_branch = 0;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
/* Invalid zero-padding would have particularly bad consequences. */
|
|
if (numerator->top > 0 && numerator->d[numerator->top - 1] == 0) {
|
|
BNerror(BN_R_NOT_INITIALIZED);
|
|
goto err;
|
|
}
|
|
|
|
if (ct)
|
|
no_branch = 1;
|
|
|
|
if (BN_is_zero(divisor)) {
|
|
BNerror(BN_R_DIV_BY_ZERO);
|
|
goto err;
|
|
}
|
|
|
|
if (!no_branch) {
|
|
if (BN_ucmp(numerator, divisor) < 0) {
|
|
if (remainder != NULL) {
|
|
if (!bn_copy(remainder, numerator))
|
|
goto err;
|
|
}
|
|
if (quotient != NULL)
|
|
BN_zero(quotient);
|
|
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if ((tmp = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((snum = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((sdiv = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((res = quotient) == NULL) {
|
|
if ((res = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
}
|
|
|
|
/* First we normalise the numbers. */
|
|
norm_shift = BN_BITS2 - BN_num_bits(divisor) % BN_BITS2;
|
|
if (!BN_lshift(sdiv, divisor, norm_shift))
|
|
goto err;
|
|
sdiv->neg = 0;
|
|
norm_shift += BN_BITS2;
|
|
if (!BN_lshift(snum, numerator, norm_shift))
|
|
goto err;
|
|
snum->neg = 0;
|
|
|
|
if (no_branch) {
|
|
/*
|
|
* Since we don't know whether snum is larger than sdiv, we pad
|
|
* snum with enough zeroes without changing its value.
|
|
*/
|
|
if (snum->top <= sdiv->top + 1) {
|
|
if (!bn_wexpand(snum, sdiv->top + 2))
|
|
goto err;
|
|
for (i = snum->top; i < sdiv->top + 2; i++)
|
|
snum->d[i] = 0;
|
|
snum->top = sdiv->top + 2;
|
|
} else {
|
|
if (!bn_wexpand(snum, snum->top + 1))
|
|
goto err;
|
|
snum->d[snum->top] = 0;
|
|
snum->top++;
|
|
}
|
|
}
|
|
|
|
div_n = sdiv->top;
|
|
num_n = snum->top;
|
|
loop = num_n - div_n;
|
|
|
|
/*
|
|
* Setup a 'window' into snum - this is the part that corresponds to the
|
|
* current 'area' being divided.
|
|
*/
|
|
wnum.neg = 0;
|
|
wnum.d = &(snum->d[loop]);
|
|
wnum.top = div_n;
|
|
/* only needed when BN_ucmp messes up the values between top and max */
|
|
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
|
|
wnum.flags = snum->flags | BN_FLG_STATIC_DATA;
|
|
|
|
/* Get the top 2 words of sdiv */
|
|
/* div_n=sdiv->top; */
|
|
d0 = sdiv->d[div_n - 1];
|
|
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
|
|
|
|
/* pointer to the 'top' of snum */
|
|
wnump = &(snum->d[num_n - 1]);
|
|
|
|
/* Setup to 'res' */
|
|
if (!bn_wexpand(res, (loop + 1)))
|
|
goto err;
|
|
res->top = loop - no_branch;
|
|
r_neg = numerator->neg ^ divisor->neg;
|
|
resp = &(res->d[loop - 1]);
|
|
|
|
/* space for temp */
|
|
if (!bn_wexpand(tmp, (div_n + 1)))
|
|
goto err;
|
|
|
|
if (!no_branch) {
|
|
if (BN_ucmp(&wnum, sdiv) >= 0) {
|
|
bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
|
|
*resp = 1;
|
|
} else
|
|
res->top--;
|
|
}
|
|
|
|
/*
|
|
* If res->top == 0 then clear the neg value otherwise decrease the resp
|
|
* pointer.
|
|
*/
|
|
if (res->top == 0)
|
|
res->neg = 0;
|
|
else
|
|
resp--;
|
|
|
|
for (i = 0; i < loop - 1; i++, wnump--, resp--) {
|
|
BN_ULONG q, l0;
|
|
|
|
/*
|
|
* The first part of the loop uses the top two words of snum and
|
|
* sdiv to calculate a BN_ULONG q such that:
|
|
*
|
|
* | wnum - sdiv * q | < sdiv
|
|
*/
|
|
q = bn_div_3_words(wnump, d1, d0);
|
|
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
|
|
tmp->d[div_n] = l0;
|
|
wnum.d--;
|
|
|
|
/*
|
|
* Ignore top values of the bignums just sub the two BN_ULONG
|
|
* arrays with bn_sub_words.
|
|
*/
|
|
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
|
|
/*
|
|
* Note: As we have considered only the leading two
|
|
* BN_ULONGs in the calculation of q, sdiv * q might be
|
|
* greater than wnum (but then (q-1) * sdiv is less or
|
|
* equal than wnum).
|
|
*/
|
|
q--;
|
|
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
|
|
/*
|
|
* We can't have an overflow here (assuming
|
|
* that q != 0, but if q == 0 then tmp is
|
|
* zero anyway).
|
|
*/
|
|
(*wnump)++;
|
|
}
|
|
}
|
|
/* store part of the result */
|
|
*resp = q;
|
|
}
|
|
|
|
bn_correct_top(snum);
|
|
|
|
if (remainder != NULL) {
|
|
/*
|
|
* Keep a copy of the neg flag in numerator because if
|
|
* remainder == numerator, BN_rshift() will overwrite it.
|
|
*/
|
|
int neg = numerator->neg;
|
|
|
|
BN_rshift(remainder, snum, norm_shift);
|
|
BN_set_negative(remainder, neg);
|
|
}
|
|
|
|
if (no_branch)
|
|
bn_correct_top(res);
|
|
|
|
BN_set_negative(res, r_neg);
|
|
|
|
done:
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
BN_div(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
|
|
const BIGNUM *divisor, BN_CTX *ctx)
|
|
{
|
|
int ct;
|
|
|
|
ct = BN_get_flags(numerator, BN_FLG_CONSTTIME) != 0 ||
|
|
BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0;
|
|
|
|
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, ct);
|
|
}
|
|
|
|
int
|
|
BN_div_nonct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
|
|
const BIGNUM *divisor, BN_CTX *ctx)
|
|
{
|
|
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 0);
|
|
}
|
|
|
|
int
|
|
BN_div_ct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
|
|
const BIGNUM *divisor, BN_CTX *ctx)
|
|
{
|
|
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 1);
|
|
}
|