2023-06-04 17:13:21 -07:00

458 lines
12 KiB
C

/* $OpenBSD: bn_div.c,v 1.40 2023/03/27 10:21:23 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <assert.h>
#include <stdio.h>
#include <openssl/opensslconf.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include "bn_arch.h"
#include "bn_local.h"
#include "bn_internal.h"
BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
#ifndef HAVE_BN_DIV_WORDS
#if defined(BN_LLONG) && defined(BN_DIV2W)
BN_ULONG
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
{
return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d));
}
#else
/* Divide h,l by d and return the result. */
/* I need to test this some more :-( */
BN_ULONG
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
{
BN_ULONG dh, dl, q,ret = 0, th, tl, t;
int i, count = 2;
if (d == 0)
return (BN_MASK2);
i = BN_num_bits_word(d);
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
i = BN_BITS2 - i;
if (h >= d)
h -= d;
if (i) {
d <<= i;
h = (h << i) | (l >> (BN_BITS2 - i));
l <<= i;
}
dh = (d & BN_MASK2h) >> BN_BITS4;
dl = (d & BN_MASK2l);
for (;;) {
if ((h >> BN_BITS4) == dh)
q = BN_MASK2l;
else
q = h / dh;
th = q * dh;
tl = dl * q;
for (;;) {
t = h - th;
if ((t & BN_MASK2h) ||
((tl) <= (
(t << BN_BITS4) |
((l & BN_MASK2h) >> BN_BITS4))))
break;
q--;
th -= dh;
tl -= dl;
}
t = (tl >> BN_BITS4);
tl = (tl << BN_BITS4) & BN_MASK2h;
th += t;
if (l < tl)
th++;
l -= tl;
if (h < th) {
h += d;
q--;
}
h -= th;
if (--count == 0)
break;
ret = q << BN_BITS4;
h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
l = (l & BN_MASK2l) << BN_BITS4;
}
ret |= q;
return (ret);
}
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
#endif
/*
* Divide a double word (h:l) by d, returning the quotient q and the remainder
* r, such that q * d + r is equal to the numerator.
*/
#ifndef HAVE_BN_DIV_REM_WORDS
#ifndef HAVE_BN_DIV_REM_WORDS_INLINE
static inline void
bn_div_rem_words_inline(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q,
BN_ULONG *out_r)
{
BN_ULONG q, r;
q = bn_div_words(h, l, d);
r = (l - q * d) & BN_MASK2;
*out_q = q;
*out_r = r;
}
#endif
void
bn_div_rem_words(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q,
BN_ULONG *out_r)
{
bn_div_rem_words_inline(h, l, d, out_q, out_r);
}
#endif
#ifndef HAVE_BN_DIV_3_WORDS
/*
* Interface is somewhat quirky, |m| is pointer to most significant limb,
* and less significant limb is referred at |m[-1]|. This means that caller
* is responsible for ensuring that |m[-1]| is valid. Second condition that
* has to be met is that |d0|'s most significant bit has to be set. Or in
* other words divisor has to be "bit-aligned to the left." The subroutine
* considers four limbs, two of which are "overlapping," hence the name...
*/
BN_ULONG
bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
{
BN_ULONG n0, n1, q, t2h, t2l;
BN_ULONG rem = 0;
n0 = m[0];
n1 = m[-1];
if (n0 == d0)
return BN_MASK2;
/* n0 < d0 */
bn_div_rem_words(n0, n1, d0, &q, &rem);
bn_mulw(d1, q, &t2h, &t2l);
for (;;) {
if (t2h < rem || (t2h == rem && t2l <= m[-2]))
break;
q--;
rem += d0;
if (rem < d0)
break; /* don't let rem overflow */
if (t2l < d1)
t2h--;
t2l -= d1;
}
return q;
}
#endif /* !HAVE_BN_DIV_3_WORDS */
/*
* BN_div_internal computes quotient := numerator / divisor, rounding towards
* zero and setting remainder such that quotient * divisor + remainder equals
* the numerator. Thus:
*
* quotient->neg == numerator->neg ^ divisor->neg (unless result is zero)
* remainder->neg == numerator->neg (unless the remainder is zero)
*
* If either the quotient or remainder is NULL, the respective value is not
* returned.
*/
static int
BN_div_internal(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx, int ct)
{
int norm_shift, i, loop, r_neg;
BIGNUM *tmp, wnum, *snum, *sdiv, *res;
BN_ULONG *resp, *wnump;
BN_ULONG d0, d1;
int num_n, div_n;
int no_branch = 0;
int ret = 0;
BN_CTX_start(ctx);
/* Invalid zero-padding would have particularly bad consequences. */
if (numerator->top > 0 && numerator->d[numerator->top - 1] == 0) {
BNerror(BN_R_NOT_INITIALIZED);
goto err;
}
if (ct)
no_branch = 1;
if (BN_is_zero(divisor)) {
BNerror(BN_R_DIV_BY_ZERO);
goto err;
}
if (!no_branch) {
if (BN_ucmp(numerator, divisor) < 0) {
if (remainder != NULL) {
if (!bn_copy(remainder, numerator))
goto err;
}
if (quotient != NULL)
BN_zero(quotient);
goto done;
}
}
if ((tmp = BN_CTX_get(ctx)) == NULL)
goto err;
if ((snum = BN_CTX_get(ctx)) == NULL)
goto err;
if ((sdiv = BN_CTX_get(ctx)) == NULL)
goto err;
if ((res = quotient) == NULL) {
if ((res = BN_CTX_get(ctx)) == NULL)
goto err;
}
/* First we normalise the numbers. */
norm_shift = BN_BITS2 - BN_num_bits(divisor) % BN_BITS2;
if (!BN_lshift(sdiv, divisor, norm_shift))
goto err;
sdiv->neg = 0;
norm_shift += BN_BITS2;
if (!BN_lshift(snum, numerator, norm_shift))
goto err;
snum->neg = 0;
if (no_branch) {
/*
* Since we don't know whether snum is larger than sdiv, we pad
* snum with enough zeroes without changing its value.
*/
if (snum->top <= sdiv->top + 1) {
if (!bn_wexpand(snum, sdiv->top + 2))
goto err;
for (i = snum->top; i < sdiv->top + 2; i++)
snum->d[i] = 0;
snum->top = sdiv->top + 2;
} else {
if (!bn_wexpand(snum, snum->top + 1))
goto err;
snum->d[snum->top] = 0;
snum->top++;
}
}
div_n = sdiv->top;
num_n = snum->top;
loop = num_n - div_n;
/*
* Setup a 'window' into snum - this is the part that corresponds to the
* current 'area' being divided.
*/
wnum.neg = 0;
wnum.d = &(snum->d[loop]);
wnum.top = div_n;
/* only needed when BN_ucmp messes up the values between top and max */
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
wnum.flags = snum->flags | BN_FLG_STATIC_DATA;
/* Get the top 2 words of sdiv */
/* div_n=sdiv->top; */
d0 = sdiv->d[div_n - 1];
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
/* pointer to the 'top' of snum */
wnump = &(snum->d[num_n - 1]);
/* Setup to 'res' */
if (!bn_wexpand(res, (loop + 1)))
goto err;
res->top = loop - no_branch;
r_neg = numerator->neg ^ divisor->neg;
resp = &(res->d[loop - 1]);
/* space for temp */
if (!bn_wexpand(tmp, (div_n + 1)))
goto err;
if (!no_branch) {
if (BN_ucmp(&wnum, sdiv) >= 0) {
bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
*resp = 1;
} else
res->top--;
}
/*
* If res->top == 0 then clear the neg value otherwise decrease the resp
* pointer.
*/
if (res->top == 0)
res->neg = 0;
else
resp--;
for (i = 0; i < loop - 1; i++, wnump--, resp--) {
BN_ULONG q, l0;
/*
* The first part of the loop uses the top two words of snum and
* sdiv to calculate a BN_ULONG q such that:
*
* | wnum - sdiv * q | < sdiv
*/
q = bn_div_3_words(wnump, d1, d0);
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
tmp->d[div_n] = l0;
wnum.d--;
/*
* Ignore top values of the bignums just sub the two BN_ULONG
* arrays with bn_sub_words.
*/
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
/*
* Note: As we have considered only the leading two
* BN_ULONGs in the calculation of q, sdiv * q might be
* greater than wnum (but then (q-1) * sdiv is less or
* equal than wnum).
*/
q--;
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
/*
* We can't have an overflow here (assuming
* that q != 0, but if q == 0 then tmp is
* zero anyway).
*/
(*wnump)++;
}
}
/* store part of the result */
*resp = q;
}
bn_correct_top(snum);
if (remainder != NULL) {
/*
* Keep a copy of the neg flag in numerator because if
* remainder == numerator, BN_rshift() will overwrite it.
*/
int neg = numerator->neg;
BN_rshift(remainder, snum, norm_shift);
BN_set_negative(remainder, neg);
}
if (no_branch)
bn_correct_top(res);
BN_set_negative(res, r_neg);
done:
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int
BN_div(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx)
{
int ct;
ct = BN_get_flags(numerator, BN_FLG_CONSTTIME) != 0 ||
BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0;
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, ct);
}
int
BN_div_nonct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx)
{
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 0);
}
int
BN_div_ct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx)
{
return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 1);
}