573 lines
16 KiB
C
573 lines
16 KiB
C
/* $OpenBSD: bn_mont.c,v 1.59 2023/04/30 05:21:20 tb Exp $ */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Details about Montgomery multiplication algorithms can be found at
|
|
* http://security.ece.orst.edu/publications.html, e.g.
|
|
* http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
|
|
* sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "bn_internal.h"
|
|
#include "bn_local.h"
|
|
|
|
BN_MONT_CTX *
|
|
BN_MONT_CTX_new(void)
|
|
{
|
|
BN_MONT_CTX *mctx;
|
|
|
|
if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL)
|
|
return NULL;
|
|
mctx->flags = BN_FLG_MALLOCED;
|
|
|
|
BN_init(&mctx->RR);
|
|
BN_init(&mctx->N);
|
|
|
|
return mctx;
|
|
}
|
|
|
|
void
|
|
BN_MONT_CTX_free(BN_MONT_CTX *mctx)
|
|
{
|
|
if (mctx == NULL)
|
|
return;
|
|
|
|
BN_free(&mctx->RR);
|
|
BN_free(&mctx->N);
|
|
|
|
if (mctx->flags & BN_FLG_MALLOCED)
|
|
free(mctx);
|
|
}
|
|
|
|
BN_MONT_CTX *
|
|
BN_MONT_CTX_copy(BN_MONT_CTX *dst, BN_MONT_CTX *src)
|
|
{
|
|
if (dst == src)
|
|
return dst;
|
|
|
|
if (!bn_copy(&dst->RR, &src->RR))
|
|
return NULL;
|
|
if (!bn_copy(&dst->N, &src->N))
|
|
return NULL;
|
|
|
|
dst->ri = src->ri;
|
|
dst->n0[0] = src->n0[0];
|
|
dst->n0[1] = src->n0[1];
|
|
|
|
return dst;
|
|
}
|
|
|
|
int
|
|
BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *N, *Ninv, *Rinv, *R;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((N = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((Ninv = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((R = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((Rinv = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/* Save modulus and determine length of R. */
|
|
if (BN_is_zero(mod))
|
|
goto err;
|
|
if (!bn_copy(&mont->N, mod))
|
|
goto err;
|
|
mont->N.neg = 0;
|
|
mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2;
|
|
if (mont->ri * 2 < mont->ri)
|
|
goto err;
|
|
|
|
/*
|
|
* Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides
|
|
* a single or double word result (dependent on BN word size), that is
|
|
* later used to implement Montgomery reduction.
|
|
*/
|
|
BN_zero(R);
|
|
if (!BN_set_bit(R, 64))
|
|
goto err;
|
|
|
|
/* N = N mod R. */
|
|
if (!bn_wexpand(N, 2))
|
|
goto err;
|
|
if (!BN_set_word(N, mod->d[0]))
|
|
goto err;
|
|
#if BN_BITS2 == 32
|
|
if (mod->top > 1) {
|
|
N->d[1] = mod->d[1];
|
|
N->top += bn_ct_ne_zero(N->d[1]);
|
|
}
|
|
#endif
|
|
|
|
/* Rinv = R^-1 mod N */
|
|
if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL)
|
|
goto err;
|
|
|
|
/* Ninv = (R * Rinv - 1) / N */
|
|
if (!BN_lshift(Ninv, Rinv, 64))
|
|
goto err;
|
|
if (BN_is_zero(Ninv)) {
|
|
/* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */
|
|
if (!BN_set_bit(Ninv, 64))
|
|
goto err;
|
|
}
|
|
if (!BN_sub_word(Ninv, 1))
|
|
goto err;
|
|
if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx))
|
|
goto err;
|
|
|
|
/* Store least significant word(s) of Ninv. */
|
|
mont->n0[0] = mont->n0[1] = 0;
|
|
if (Ninv->top > 0)
|
|
mont->n0[0] = Ninv->d[0];
|
|
#if BN_BITS2 == 32
|
|
/* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */
|
|
if (Ninv->top > 1)
|
|
mont->n0[1] = Ninv->d[1];
|
|
#endif
|
|
|
|
/* Compute RR = R * R mod N, for use when converting to Montgomery form. */
|
|
BN_zero(&mont->RR);
|
|
if (!BN_set_bit(&mont->RR, mont->ri * 2))
|
|
goto err;
|
|
if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
BN_MONT_CTX *
|
|
BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod,
|
|
BN_CTX *ctx)
|
|
{
|
|
BN_MONT_CTX *mctx = NULL;
|
|
|
|
CRYPTO_r_lock(lock);
|
|
mctx = *pmctx;
|
|
CRYPTO_r_unlock(lock);
|
|
|
|
if (mctx != NULL)
|
|
goto done;
|
|
|
|
if ((mctx = BN_MONT_CTX_new()) == NULL)
|
|
goto err;
|
|
if (!BN_MONT_CTX_set(mctx, mod, ctx))
|
|
goto err;
|
|
|
|
CRYPTO_w_lock(lock);
|
|
if (*pmctx != NULL) {
|
|
/* Someone else raced us... */
|
|
BN_MONT_CTX_free(mctx);
|
|
mctx = *pmctx;
|
|
} else {
|
|
*pmctx = mctx;
|
|
}
|
|
CRYPTO_w_unlock(lock);
|
|
|
|
goto done;
|
|
err:
|
|
BN_MONT_CTX_free(mctx);
|
|
mctx = NULL;
|
|
done:
|
|
return mctx;
|
|
}
|
|
|
|
static int bn_montgomery_reduce(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mctx);
|
|
|
|
static int
|
|
bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *tmp;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((tmp = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
if (a == b) {
|
|
if (!BN_sqr(tmp, a, ctx))
|
|
goto err;
|
|
} else {
|
|
if (!BN_mul(tmp, a, b, ctx))
|
|
goto err;
|
|
}
|
|
|
|
/* Reduce from aRR to aR. */
|
|
if (!bn_montgomery_reduce(r, tmp, mctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the
|
|
* given word arrays. The caller must ensure that rp, ap, bp and np are all
|
|
* n_len words in length, while tp must be n_len * 2 + 2 words in length.
|
|
*/
|
|
void
|
|
bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len)
|
|
{
|
|
BN_ULONG a0, b, carry_a, carry_n, carry, mask, w, x;
|
|
int i, j;
|
|
|
|
carry_a = carry_n = carry = 0;
|
|
|
|
for (i = 0; i < n_len; i++)
|
|
tp[i] = 0;
|
|
|
|
a0 = ap[0];
|
|
|
|
for (i = 0; i < n_len; i++) {
|
|
b = bp[i];
|
|
|
|
/* Compute new t[0] * n0, as we need it inside the loop. */
|
|
w = (a0 * b + tp[0]) * n0;
|
|
|
|
for (j = 0; j < n_len; j++) {
|
|
bn_mulw_addw_addw(ap[j], b, tp[j], carry_a, &carry_a, &x);
|
|
bn_mulw_addw_addw(np[j], w, x, carry_n, &carry_n, &tp[j]);
|
|
}
|
|
bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]);
|
|
carry_a = carry_n = 0;
|
|
|
|
tp++;
|
|
}
|
|
tp[n_len] = carry;
|
|
|
|
/*
|
|
* The output is now in the range of [0, 2N). Attempt to reduce once by
|
|
* subtracting the modulus. If the reduction was necessary then the
|
|
* result is already in r, otherwise copy the value prior to reduction
|
|
* from tp.
|
|
*/
|
|
mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len);
|
|
|
|
for (i = 0; i < n_len; i++) {
|
|
*rp = (*rp & ~mask) | (*tp & mask);
|
|
rp++;
|
|
tp++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given
|
|
* BIGNUMs. The caller must ensure that the modulus is two or more words in
|
|
* length and that a and b have the same number of words as the modulus.
|
|
*/
|
|
int
|
|
bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
|
|
goto err;
|
|
if (!bn_wexpand(r, mctx->N.top))
|
|
goto err;
|
|
|
|
if ((t = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!bn_wexpand(t, mctx->N.top * 2 + 2))
|
|
goto err;
|
|
|
|
bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d,
|
|
mctx->n0[0], mctx->N.top);
|
|
|
|
r->top = mctx->N.top;
|
|
bn_correct_top(r);
|
|
|
|
BN_set_negative(r, a->neg ^ b->neg);
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef OPENSSL_BN_ASM_MONT
|
|
int
|
|
bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
|
|
return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
|
|
|
|
return bn_montgomery_multiply(r, a, b, mctx, ctx);
|
|
}
|
|
#else
|
|
|
|
int
|
|
bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
|
|
return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
|
|
|
|
/*
|
|
* Legacy bn_mul_mont() performs stack based allocation, without
|
|
* size limitation. Allowing a large size results in the stack
|
|
* being blown.
|
|
*/
|
|
if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG)))
|
|
return bn_montgomery_multiply(r, a, b, mctx, ctx);
|
|
|
|
if (!bn_wexpand(r, mctx->N.top))
|
|
return 0;
|
|
|
|
/*
|
|
* Legacy bn_mul_mont() can indicate that we should "fallback" to
|
|
* another implementation.
|
|
*/
|
|
if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top))
|
|
return bn_montgomery_multiply(r, a, b, mctx, ctx);
|
|
|
|
r->top = mctx->N.top;
|
|
bn_correct_top(r);
|
|
|
|
BN_set_negative(r, a->neg ^ b->neg);
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
/* Compute r = aR * bR * R^-1 mod N = abR mod N */
|
|
return bn_mod_mul_montgomery(r, a, b, mctx, ctx);
|
|
}
|
|
|
|
int
|
|
BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
/* Compute r = a * R * R * R^-1 mod N = aR mod N */
|
|
return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx);
|
|
}
|
|
|
|
/*
|
|
* bn_montgomery_reduce() performs Montgomery reduction, reducing the input
|
|
* from its Montgomery form aR to a, returning the result in r. Note that the
|
|
* input is mutated in the process of performing the reduction, destroying its
|
|
* original value.
|
|
*/
|
|
static int
|
|
bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx)
|
|
{
|
|
BIGNUM *n;
|
|
BN_ULONG *ap, *rp, n0, v, carry, mask;
|
|
int i, max, n_len;
|
|
|
|
n = &mctx->N;
|
|
n_len = mctx->N.top;
|
|
|
|
if (n_len == 0) {
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
|
|
if (!bn_wexpand(r, n_len))
|
|
return 0;
|
|
|
|
/*
|
|
* Expand a to twice the length of the modulus, zero if necessary.
|
|
* XXX - make this a requirement of the caller.
|
|
*/
|
|
if ((max = 2 * n_len) < n_len)
|
|
return 0;
|
|
if (!bn_wexpand(a, max))
|
|
return 0;
|
|
for (i = a->top; i < max; i++)
|
|
a->d[i] = 0;
|
|
|
|
carry = 0;
|
|
n0 = mctx->n0[0];
|
|
|
|
/* Add multiples of the modulus, so that it becomes divisible by R. */
|
|
for (i = 0; i < n_len; i++) {
|
|
v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0);
|
|
bn_addw_addw(v, a->d[i + n_len], carry, &carry,
|
|
&a->d[i + n_len]);
|
|
}
|
|
|
|
/* Divide by R (this is the equivalent of right shifting by n_len). */
|
|
ap = &a->d[n_len];
|
|
|
|
/*
|
|
* The output is now in the range of [0, 2N). Attempt to reduce once by
|
|
* subtracting the modulus. If the reduction was necessary then the
|
|
* result is already in r, otherwise copy the value prior to reduction
|
|
* from the top half of a.
|
|
*/
|
|
mask = carry - bn_sub_words(r->d, ap, n->d, n_len);
|
|
|
|
rp = r->d;
|
|
for (i = 0; i < n_len; i++) {
|
|
*rp = (*rp & ~mask) | (*ap & mask);
|
|
rp++;
|
|
ap++;
|
|
}
|
|
r->top = n_len;
|
|
|
|
bn_correct_top(r);
|
|
|
|
BN_set_negative(r, a->neg ^ n->neg);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *tmp;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((tmp = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if (!bn_copy(tmp, a))
|
|
goto err;
|
|
if (!bn_montgomery_reduce(r, tmp, mctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|