2023-06-04 17:13:21 -07:00

573 lines
16 KiB
C

/* $OpenBSD: bn_mont.c,v 1.59 2023/04/30 05:21:20 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/*
* Details about Montgomery multiplication algorithms can be found at
* http://security.ece.orst.edu/publications.html, e.g.
* http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
* sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "bn_internal.h"
#include "bn_local.h"
BN_MONT_CTX *
BN_MONT_CTX_new(void)
{
BN_MONT_CTX *mctx;
if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL)
return NULL;
mctx->flags = BN_FLG_MALLOCED;
BN_init(&mctx->RR);
BN_init(&mctx->N);
return mctx;
}
void
BN_MONT_CTX_free(BN_MONT_CTX *mctx)
{
if (mctx == NULL)
return;
BN_free(&mctx->RR);
BN_free(&mctx->N);
if (mctx->flags & BN_FLG_MALLOCED)
free(mctx);
}
BN_MONT_CTX *
BN_MONT_CTX_copy(BN_MONT_CTX *dst, BN_MONT_CTX *src)
{
if (dst == src)
return dst;
if (!bn_copy(&dst->RR, &src->RR))
return NULL;
if (!bn_copy(&dst->N, &src->N))
return NULL;
dst->ri = src->ri;
dst->n0[0] = src->n0[0];
dst->n0[1] = src->n0[1];
return dst;
}
int
BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
{
BIGNUM *N, *Ninv, *Rinv, *R;
int ret = 0;
BN_CTX_start(ctx);
if ((N = BN_CTX_get(ctx)) == NULL)
goto err;
if ((Ninv = BN_CTX_get(ctx)) == NULL)
goto err;
if ((R = BN_CTX_get(ctx)) == NULL)
goto err;
if ((Rinv = BN_CTX_get(ctx)) == NULL)
goto err;
/* Save modulus and determine length of R. */
if (BN_is_zero(mod))
goto err;
if (!bn_copy(&mont->N, mod))
goto err;
mont->N.neg = 0;
mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2;
if (mont->ri * 2 < mont->ri)
goto err;
/*
* Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides
* a single or double word result (dependent on BN word size), that is
* later used to implement Montgomery reduction.
*/
BN_zero(R);
if (!BN_set_bit(R, 64))
goto err;
/* N = N mod R. */
if (!bn_wexpand(N, 2))
goto err;
if (!BN_set_word(N, mod->d[0]))
goto err;
#if BN_BITS2 == 32
if (mod->top > 1) {
N->d[1] = mod->d[1];
N->top += bn_ct_ne_zero(N->d[1]);
}
#endif
/* Rinv = R^-1 mod N */
if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL)
goto err;
/* Ninv = (R * Rinv - 1) / N */
if (!BN_lshift(Ninv, Rinv, 64))
goto err;
if (BN_is_zero(Ninv)) {
/* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */
if (!BN_set_bit(Ninv, 64))
goto err;
}
if (!BN_sub_word(Ninv, 1))
goto err;
if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx))
goto err;
/* Store least significant word(s) of Ninv. */
mont->n0[0] = mont->n0[1] = 0;
if (Ninv->top > 0)
mont->n0[0] = Ninv->d[0];
#if BN_BITS2 == 32
/* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */
if (Ninv->top > 1)
mont->n0[1] = Ninv->d[1];
#endif
/* Compute RR = R * R mod N, for use when converting to Montgomery form. */
BN_zero(&mont->RR);
if (!BN_set_bit(&mont->RR, mont->ri * 2))
goto err;
if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
BN_MONT_CTX *
BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod,
BN_CTX *ctx)
{
BN_MONT_CTX *mctx = NULL;
CRYPTO_r_lock(lock);
mctx = *pmctx;
CRYPTO_r_unlock(lock);
if (mctx != NULL)
goto done;
if ((mctx = BN_MONT_CTX_new()) == NULL)
goto err;
if (!BN_MONT_CTX_set(mctx, mod, ctx))
goto err;
CRYPTO_w_lock(lock);
if (*pmctx != NULL) {
/* Someone else raced us... */
BN_MONT_CTX_free(mctx);
mctx = *pmctx;
} else {
*pmctx = mctx;
}
CRYPTO_w_unlock(lock);
goto done;
err:
BN_MONT_CTX_free(mctx);
mctx = NULL;
done:
return mctx;
}
static int bn_montgomery_reduce(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mctx);
static int
bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
BIGNUM *tmp;
int ret = 0;
BN_CTX_start(ctx);
if ((tmp = BN_CTX_get(ctx)) == NULL)
goto err;
if (a == b) {
if (!BN_sqr(tmp, a, ctx))
goto err;
} else {
if (!BN_mul(tmp, a, b, ctx))
goto err;
}
/* Reduce from aRR to aR. */
if (!bn_montgomery_reduce(r, tmp, mctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the
* given word arrays. The caller must ensure that rp, ap, bp and np are all
* n_len words in length, while tp must be n_len * 2 + 2 words in length.
*/
void
bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len)
{
BN_ULONG a0, b, carry_a, carry_n, carry, mask, w, x;
int i, j;
carry_a = carry_n = carry = 0;
for (i = 0; i < n_len; i++)
tp[i] = 0;
a0 = ap[0];
for (i = 0; i < n_len; i++) {
b = bp[i];
/* Compute new t[0] * n0, as we need it inside the loop. */
w = (a0 * b + tp[0]) * n0;
for (j = 0; j < n_len; j++) {
bn_mulw_addw_addw(ap[j], b, tp[j], carry_a, &carry_a, &x);
bn_mulw_addw_addw(np[j], w, x, carry_n, &carry_n, &tp[j]);
}
bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]);
carry_a = carry_n = 0;
tp++;
}
tp[n_len] = carry;
/*
* The output is now in the range of [0, 2N). Attempt to reduce once by
* subtracting the modulus. If the reduction was necessary then the
* result is already in r, otherwise copy the value prior to reduction
* from tp.
*/
mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len);
for (i = 0; i < n_len; i++) {
*rp = (*rp & ~mask) | (*tp & mask);
rp++;
tp++;
}
}
/*
* bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given
* BIGNUMs. The caller must ensure that the modulus is two or more words in
* length and that a and b have the same number of words as the modulus.
*/
int
bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
BIGNUM *t;
int ret = 0;
BN_CTX_start(ctx);
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
goto err;
if (!bn_wexpand(r, mctx->N.top))
goto err;
if ((t = BN_CTX_get(ctx)) == NULL)
goto err;
if (!bn_wexpand(t, mctx->N.top * 2 + 2))
goto err;
bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d,
mctx->n0[0], mctx->N.top);
r->top = mctx->N.top;
bn_correct_top(r);
BN_set_negative(r, a->neg ^ b->neg);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
#ifndef OPENSSL_BN_ASM_MONT
int
bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
return bn_montgomery_multiply(r, a, b, mctx, ctx);
}
#else
int
bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top)
return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx);
/*
* Legacy bn_mul_mont() performs stack based allocation, without
* size limitation. Allowing a large size results in the stack
* being blown.
*/
if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG)))
return bn_montgomery_multiply(r, a, b, mctx, ctx);
if (!bn_wexpand(r, mctx->N.top))
return 0;
/*
* Legacy bn_mul_mont() can indicate that we should "fallback" to
* another implementation.
*/
if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top))
return bn_montgomery_multiply(r, a, b, mctx, ctx);
r->top = mctx->N.top;
bn_correct_top(r);
BN_set_negative(r, a->neg ^ b->neg);
return (1);
}
#endif
int
BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mctx, BN_CTX *ctx)
{
/* Compute r = aR * bR * R^-1 mod N = abR mod N */
return bn_mod_mul_montgomery(r, a, b, mctx, ctx);
}
int
BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx)
{
/* Compute r = a * R * R * R^-1 mod N = aR mod N */
return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx);
}
/*
* bn_montgomery_reduce() performs Montgomery reduction, reducing the input
* from its Montgomery form aR to a, returning the result in r. Note that the
* input is mutated in the process of performing the reduction, destroying its
* original value.
*/
static int
bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx)
{
BIGNUM *n;
BN_ULONG *ap, *rp, n0, v, carry, mask;
int i, max, n_len;
n = &mctx->N;
n_len = mctx->N.top;
if (n_len == 0) {
BN_zero(r);
return 1;
}
if (!bn_wexpand(r, n_len))
return 0;
/*
* Expand a to twice the length of the modulus, zero if necessary.
* XXX - make this a requirement of the caller.
*/
if ((max = 2 * n_len) < n_len)
return 0;
if (!bn_wexpand(a, max))
return 0;
for (i = a->top; i < max; i++)
a->d[i] = 0;
carry = 0;
n0 = mctx->n0[0];
/* Add multiples of the modulus, so that it becomes divisible by R. */
for (i = 0; i < n_len; i++) {
v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0);
bn_addw_addw(v, a->d[i + n_len], carry, &carry,
&a->d[i + n_len]);
}
/* Divide by R (this is the equivalent of right shifting by n_len). */
ap = &a->d[n_len];
/*
* The output is now in the range of [0, 2N). Attempt to reduce once by
* subtracting the modulus. If the reduction was necessary then the
* result is already in r, otherwise copy the value prior to reduction
* from the top half of a.
*/
mask = carry - bn_sub_words(r->d, ap, n->d, n_len);
rp = r->d;
for (i = 0; i < n_len; i++) {
*rp = (*rp & ~mask) | (*ap & mask);
rp++;
ap++;
}
r->top = n_len;
bn_correct_top(r);
BN_set_negative(r, a->neg ^ n->neg);
return 1;
}
int
BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx)
{
BIGNUM *tmp;
int ret = 0;
BN_CTX_start(ctx);
if ((tmp = BN_CTX_get(ctx)) == NULL)
goto err;
if (!bn_copy(tmp, a))
goto err;
if (!bn_montgomery_reduce(r, tmp, mctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}