377 lines
12 KiB
C
377 lines
12 KiB
C
/* $OpenBSD: bn_mul.c,v 1.37 2023/04/19 10:51:22 jsing Exp $ */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include "bn_arch.h"
|
|
#include "bn_internal.h"
|
|
#include "bn_local.h"
|
|
|
|
/*
|
|
* bn_mul_comba4() computes r[] = a[] * b[] using Comba multiplication
|
|
* (https://everything2.com/title/Comba+multiplication), where a and b are both
|
|
* four word arrays, producing an eight word array result.
|
|
*/
|
|
#ifndef HAVE_BN_MUL_COMBA4
|
|
void
|
|
bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
BN_ULONG c0, c1, c2;
|
|
|
|
bn_mulw_addtw(a[0], b[0], 0, 0, 0, &c2, &c1, &r[0]);
|
|
|
|
bn_mulw_addtw(a[0], b[1], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]);
|
|
|
|
bn_mulw_addtw(a[2], b[0], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]);
|
|
|
|
bn_mulw_addtw(a[0], b[3], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]);
|
|
|
|
bn_mulw_addtw(a[3], b[1], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &r[4]);
|
|
|
|
bn_mulw_addtw(a[2], b[3], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &r[5]);
|
|
|
|
bn_mulw_addtw(a[3], b[3], 0, c2, c1, &c2, &r[7], &r[6]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* bn_mul_comba8() computes r[] = a[] * b[] using Comba multiplication
|
|
* (https://everything2.com/title/Comba+multiplication), where a and b are both
|
|
* eight word arrays, producing a 16 word array result.
|
|
*/
|
|
#ifndef HAVE_BN_MUL_COMBA8
|
|
void
|
|
bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
BN_ULONG c0, c1, c2;
|
|
|
|
bn_mulw_addtw(a[0], b[0], 0, 0, 0, &c2, &c1, &r[0]);
|
|
|
|
bn_mulw_addtw(a[0], b[1], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]);
|
|
|
|
bn_mulw_addtw(a[2], b[0], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]);
|
|
|
|
bn_mulw_addtw(a[0], b[3], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]);
|
|
|
|
bn_mulw_addtw(a[4], b[0], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[0], b[4], c2, c1, c0, &c2, &c1, &r[4]);
|
|
|
|
bn_mulw_addtw(a[0], b[5], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[0], c2, c1, c0, &c2, &c1, &r[5]);
|
|
|
|
bn_mulw_addtw(a[6], b[0], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[0], b[6], c2, c1, c0, &c2, &c1, &r[6]);
|
|
|
|
bn_mulw_addtw(a[0], b[7], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[1], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[7], b[0], c2, c1, c0, &c2, &c1, &r[7]);
|
|
|
|
bn_mulw_addtw(a[7], b[1], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[2], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[2], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[1], b[7], c2, c1, c0, &c2, &c1, &r[8]);
|
|
|
|
bn_mulw_addtw(a[2], b[7], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[3], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[7], b[2], c2, c1, c0, &c2, &c1, &r[9]);
|
|
|
|
bn_mulw_addtw(a[7], b[3], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[4], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[4], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[3], b[7], c2, c1, c0, &c2, &c1, &r[10]);
|
|
|
|
bn_mulw_addtw(a[4], b[7], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[5], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[7], b[4], c2, c1, c0, &c2, &c1, &r[11]);
|
|
|
|
bn_mulw_addtw(a[7], b[5], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[6], b[6], c2, c1, c0, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[5], b[7], c2, c1, c0, &c2, &c1, &r[12]);
|
|
|
|
bn_mulw_addtw(a[6], b[7], 0, c2, c1, &c2, &c1, &c0);
|
|
bn_mulw_addtw(a[7], b[6], c2, c1, c0, &c2, &c1, &r[13]);
|
|
|
|
bn_mulw_addtw(a[7], b[7], 0, c2, c1, &c2, &r[15], &r[14]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* bn_mul_words() computes (carry:r[i]) = a[i] * w + carry, where a is an array
|
|
* of words and w is a single word. This should really be called bn_mulw_words()
|
|
* since only one input is an array. This is used as a step in the multiplication
|
|
* of word arrays.
|
|
*/
|
|
#ifndef HAVE_BN_MUL_WORDS
|
|
BN_ULONG
|
|
bn_mul_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG carry = 0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return 0;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
bn_mulw_addw(a[0], w, carry, &carry, &r[0]);
|
|
bn_mulw_addw(a[1], w, carry, &carry, &r[1]);
|
|
bn_mulw_addw(a[2], w, carry, &carry, &r[2]);
|
|
bn_mulw_addw(a[3], w, carry, &carry, &r[3]);
|
|
a += 4;
|
|
r += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
bn_mulw_addw(a[0], w, carry, &carry, &r[0]);
|
|
a++;
|
|
r++;
|
|
num--;
|
|
}
|
|
return carry;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* bn_mul_add_words() computes (carry:r[i]) = a[i] * w + r[i] + carry, where
|
|
* a is an array of words and w is a single word. This should really be called
|
|
* bn_mulw_add_words() since only one input is an array. This is used as a step
|
|
* in the multiplication of word arrays.
|
|
*/
|
|
#ifndef HAVE_BN_MUL_ADD_WORDS
|
|
BN_ULONG
|
|
bn_mul_add_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG carry = 0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return 0;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
bn_mulw_addw_addw(a[0], w, r[0], carry, &carry, &r[0]);
|
|
bn_mulw_addw_addw(a[1], w, r[1], carry, &carry, &r[1]);
|
|
bn_mulw_addw_addw(a[2], w, r[2], carry, &carry, &r[2]);
|
|
bn_mulw_addw_addw(a[3], w, r[3], carry, &carry, &r[3]);
|
|
a += 4;
|
|
r += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
bn_mulw_addw_addw(a[0], w, r[0], carry, &carry, &r[0]);
|
|
a++;
|
|
r++;
|
|
num--;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
|
|
{
|
|
BN_ULONG *rr;
|
|
|
|
|
|
if (na < nb) {
|
|
int itmp;
|
|
BN_ULONG *ltmp;
|
|
|
|
itmp = na;
|
|
na = nb;
|
|
nb = itmp;
|
|
ltmp = a;
|
|
a = b;
|
|
b = ltmp;
|
|
|
|
}
|
|
rr = &(r[na]);
|
|
if (nb <= 0) {
|
|
(void)bn_mul_words(r, a, na, 0);
|
|
return;
|
|
} else
|
|
rr[0] = bn_mul_words(r, a, na, b[0]);
|
|
|
|
for (;;) {
|
|
if (--nb <= 0)
|
|
return;
|
|
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
|
|
if (--nb <= 0)
|
|
return;
|
|
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
|
|
if (--nb <= 0)
|
|
return;
|
|
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
|
|
if (--nb <= 0)
|
|
return;
|
|
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
|
|
rr += 4;
|
|
r += 4;
|
|
b += 4;
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef HAVE_BN_MUL
|
|
int
|
|
bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx)
|
|
{
|
|
bn_mul_normal(r->d, a->d, a->top, b->d, b->top);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif /* HAVE_BN_MUL */
|
|
|
|
int
|
|
BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *rr;
|
|
int rn;
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if (BN_is_zero(a) || BN_is_zero(b)) {
|
|
BN_zero(r);
|
|
goto done;
|
|
}
|
|
|
|
rr = r;
|
|
if (rr == a || rr == b)
|
|
rr = BN_CTX_get(ctx);
|
|
if (rr == NULL)
|
|
goto err;
|
|
|
|
rn = a->top + b->top;
|
|
if (rn < a->top)
|
|
goto err;
|
|
if (!bn_wexpand(rr, rn))
|
|
goto err;
|
|
|
|
if (a->top == 4 && b->top == 4) {
|
|
bn_mul_comba4(rr->d, a->d, b->d);
|
|
} else if (a->top == 8 && b->top == 8) {
|
|
bn_mul_comba8(rr->d, a->d, b->d);
|
|
} else {
|
|
if (!bn_mul(rr, a, b, rn, ctx))
|
|
goto err;
|
|
}
|
|
|
|
rr->top = rn;
|
|
bn_correct_top(rr);
|
|
|
|
BN_set_negative(rr, a->neg ^ b->neg);
|
|
|
|
if (!bn_copy(r, rr))
|
|
goto err;
|
|
done:
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|