2023-06-04 17:13:21 -07:00

472 lines
12 KiB
C

/* $OpenBSD: dsa_ossl.c,v 1.51 2023/03/27 10:25:02 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */
#include <stdio.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include <openssl/dsa.h>
#include <openssl/err.h>
#include <openssl/sha.h>
#include "bn_local.h"
#include "dsa_local.h"
static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
BIGNUM **rp);
static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig,
DSA *dsa);
static int dsa_init(DSA *dsa);
static int dsa_finish(DSA *dsa);
static DSA_METHOD openssl_dsa_meth = {
.name = "OpenSSL DSA method",
.dsa_do_sign = dsa_do_sign,
.dsa_sign_setup = dsa_sign_setup,
.dsa_do_verify = dsa_do_verify,
.init = dsa_init,
.finish = dsa_finish,
};
const DSA_METHOD *
DSA_OpenSSL(void)
{
return &openssl_dsa_meth;
}
/*
* Since DSA parameters are entirely arbitrary and checking them to be
* consistent is very expensive, we cannot do so on every sign operation.
* Instead, cap the number of retries so we do not loop indefinitely if
* the generator of the multiplicative group happens to be nilpotent.
* The probability of needing a retry with valid parameters is negligible,
* so trying 32 times is amply enough.
*/
#define DSA_MAX_SIGN_ITERATIONS 32
static DSA_SIG *
dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
{
BIGNUM *b = NULL, *bm = NULL, *bxr = NULL, *binv = NULL, *m = NULL;
BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
BN_CTX *ctx = NULL;
int reason = ERR_R_BN_LIB;
DSA_SIG *ret = NULL;
int attempts = 0;
int noredo = 0;
if (!dsa_check_key(dsa)) {
reason = DSA_R_INVALID_PARAMETERS;
goto err;
}
if ((s = BN_new()) == NULL)
goto err;
if ((ctx = BN_CTX_new()) == NULL)
goto err;
BN_CTX_start(ctx);
if ((b = BN_CTX_get(ctx)) == NULL)
goto err;
if ((binv = BN_CTX_get(ctx)) == NULL)
goto err;
if ((bm = BN_CTX_get(ctx)) == NULL)
goto err;
if ((bxr = BN_CTX_get(ctx)) == NULL)
goto err;
if ((m = BN_CTX_get(ctx)) == NULL)
goto err;
/*
* If the digest length is greater than N (the bit length of q), the
* leftmost N bits of the digest shall be used, see FIPS 186-3, 4.2.
* In this case the digest length is given in bytes.
*/
if (dlen > BN_num_bytes(dsa->q))
dlen = BN_num_bytes(dsa->q);
if (BN_bin2bn(dgst, dlen, m) == NULL)
goto err;
redo:
if (dsa->kinv == NULL || dsa->r == NULL) {
if (!DSA_sign_setup(dsa, ctx, &kinv, &r))
goto err;
} else {
kinv = dsa->kinv;
dsa->kinv = NULL;
r = dsa->r;
dsa->r = NULL;
noredo = 1;
}
/*
* Compute:
*
* s = inv(k)(m + xr) mod q
*
* In order to reduce the possibility of a side-channel attack, the
* following is calculated using a blinding value:
*
* s = inv(b)(bm + bxr)inv(k) mod q
*
* Where b is a random value in the range [1, q).
*/
if (!bn_rand_interval(b, BN_value_one(), dsa->q))
goto err;
if (BN_mod_inverse_ct(binv, b, dsa->q, ctx) == NULL)
goto err;
if (!BN_mod_mul(bxr, b, dsa->priv_key, dsa->q, ctx)) /* bx */
goto err;
if (!BN_mod_mul(bxr, bxr, r, dsa->q, ctx)) /* bxr */
goto err;
if (!BN_mod_mul(bm, b, m, dsa->q, ctx)) /* bm */
goto err;
if (!BN_mod_add(s, bxr, bm, dsa->q, ctx)) /* s = bm + bxr */
goto err;
if (!BN_mod_mul(s, s, kinv, dsa->q, ctx)) /* s = b(m + xr)k^-1 */
goto err;
if (!BN_mod_mul(s, s, binv, dsa->q, ctx)) /* s = (m + xr)k^-1 */
goto err;
/*
* Redo if r or s is zero as required by FIPS 186-3: this is very
* unlikely.
*/
if (BN_is_zero(r) || BN_is_zero(s)) {
if (noredo) {
reason = DSA_R_NEED_NEW_SETUP_VALUES;
goto err;
}
if (++attempts > DSA_MAX_SIGN_ITERATIONS) {
reason = DSA_R_INVALID_PARAMETERS;
goto err;
}
goto redo;
}
if ((ret = DSA_SIG_new()) == NULL) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
ret->r = r;
ret->s = s;
err:
if (!ret) {
DSAerror(reason);
BN_free(r);
BN_free(s);
}
BN_CTX_end(ctx);
BN_CTX_free(ctx);
BN_free(kinv);
return ret;
}
static int
dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)
{
BIGNUM *k = NULL, *l = NULL, *m = NULL, *kinv = NULL, *r = NULL;
BN_CTX *ctx = NULL;
int q_bits;
int ret = 0;
if (!dsa_check_key(dsa))
goto err;
if ((r = BN_new()) == NULL)
goto err;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
BN_CTX_start(ctx);
if ((k = BN_CTX_get(ctx)) == NULL)
goto err;
if ((l = BN_CTX_get(ctx)) == NULL)
goto err;
if ((m = BN_CTX_get(ctx)) == NULL)
goto err;
/* Preallocate space */
q_bits = BN_num_bits(dsa->q);
if (!BN_set_bit(k, q_bits) ||
!BN_set_bit(l, q_bits) ||
!BN_set_bit(m, q_bits))
goto err;
if (!bn_rand_interval(k, BN_value_one(), dsa->q))
goto err;
BN_set_flags(k, BN_FLG_CONSTTIME);
if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,
CRYPTO_LOCK_DSA, dsa->p, ctx))
goto err;
}
/* Compute r = (g^k mod p) mod q */
/*
* We do not want timing information to leak the length of k,
* so we compute G^k using an equivalent exponent of fixed
* bit-length.
*
* We unconditionally perform both of these additions to prevent a
* small timing information leakage. We then choose the sum that is
* one bit longer than the modulus.
*
* TODO: revisit the bn_copy aiming for a memory access agnostic
* conditional copy.
*/
if (!BN_add(l, k, dsa->q) ||
!BN_add(m, l, dsa->q) ||
!bn_copy(k, BN_num_bits(l) > q_bits ? l : m))
goto err;
if (dsa->meth->bn_mod_exp != NULL) {
if (!dsa->meth->bn_mod_exp(dsa, r, dsa->g, k, dsa->p, ctx,
dsa->method_mont_p))
goto err;
} else {
if (!BN_mod_exp_mont_ct(r, dsa->g, k, dsa->p, ctx,
dsa->method_mont_p))
goto err;
}
if (!BN_mod_ct(r, r, dsa->q, ctx))
goto err;
/* Compute part of 's = inv(k) (m + xr) mod q' */
if ((kinv = BN_mod_inverse_ct(NULL, k, dsa->q, ctx)) == NULL)
goto err;
BN_free(*kinvp);
*kinvp = kinv;
kinv = NULL;
BN_free(*rp);
*rp = r;
ret = 1;
err:
if (!ret) {
DSAerror(ERR_R_BN_LIB);
BN_free(r);
}
BN_CTX_end(ctx);
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
static int
dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa)
{
BIGNUM *u1 = NULL, *u2 = NULL, *t1 = NULL;
BN_CTX *ctx = NULL;
BN_MONT_CTX *mont = NULL;
int qbits;
int ret = -1;
if (!dsa_check_key(dsa))
goto err;
if ((ctx = BN_CTX_new()) == NULL)
goto err;
BN_CTX_start(ctx);
if ((u1 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((u2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((t1 = BN_CTX_get(ctx)) == NULL)
goto err;
if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
BN_ucmp(sig->r, dsa->q) >= 0) {
ret = 0;
goto err;
}
if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
BN_ucmp(sig->s, dsa->q) >= 0) {
ret = 0;
goto err;
}
/* Calculate w = inv(s) mod q, saving w in u2. */
if ((BN_mod_inverse_ct(u2, sig->s, dsa->q, ctx)) == NULL)
goto err;
/*
* If the digest length is greater than the size of q use the
* BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-4, 4.2.
*/
qbits = BN_num_bits(dsa->q);
if (dgst_len > (qbits >> 3))
dgst_len = (qbits >> 3);
/* Save m in u1. */
if (BN_bin2bn(dgst, dgst_len, u1) == NULL)
goto err;
/* u1 = m * w mod q */
if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx))
goto err;
/* u2 = r * w mod q */
if (!BN_mod_mul(u2, sig->r, u2, dsa->q, ctx))
goto err;
if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
CRYPTO_LOCK_DSA, dsa->p, ctx);
if (!mont)
goto err;
}
if (dsa->meth->dsa_mod_exp != NULL) {
if (!dsa->meth->dsa_mod_exp(dsa, t1, dsa->g, u1, dsa->pub_key,
u2, dsa->p, ctx, mont))
goto err;
} else {
if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2,
dsa->p, ctx, mont))
goto err;
}
/* let u1 = u1 mod q */
if (!BN_mod_ct(u1, t1, dsa->q, ctx))
goto err;
/* v is in u1 - if the signature is correct, it will be equal to r. */
ret = BN_ucmp(u1, sig->r) == 0;
err:
if (ret < 0)
DSAerror(ERR_R_BN_LIB);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}
static int
dsa_init(DSA *dsa)
{
dsa->flags |= DSA_FLAG_CACHE_MONT_P;
return 1;
}
static int
dsa_finish(DSA *dsa)
{
BN_MONT_CTX_free(dsa->method_mont_p);
return 1;
}
DSA_SIG *
DSA_SIG_new(void)
{
return calloc(1, sizeof(DSA_SIG));
}
void
DSA_SIG_free(DSA_SIG *sig)
{
if (sig == NULL)
return;
BN_free(sig->r);
BN_free(sig->s);
free(sig);
}
int
DSA_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)
{
return dsa->meth->dsa_sign_setup(dsa, ctx_in, kinvp, rp);
}
DSA_SIG *
DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
{
return dsa->meth->dsa_do_sign(dgst, dlen, dsa);
}
int
DSA_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa)
{
return dsa->meth->dsa_do_verify(dgst, dgst_len, sig, dsa);
}