r5sdk/r5dev/mathlib/vmatrix.h

1008 lines
32 KiB
C
Raw Normal View History

//========= Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
//
// VMatrix always postmultiply vectors as in Ax = b.
// Given a set of basis vectors ((F)orward, (L)eft, (U)p), and a (T)ranslation,
// a matrix to transform a vector into that space looks like this:
// Fx Lx Ux Tx
// Fy Ly Uy Ty
// Fz Lz Uz Tz
// 0 0 0 1
// Note that concatenating matrices needs to multiply them in reverse order.
// ie: if I want to apply matrix A, B, then C, the equation needs to look like this:
// C * B * A * v
// ie:
// v = A * v;
// v = B * v;
// v = C * v;
//=============================================================================
#ifndef VMATRIX_H
#define VMATRIX_H
#ifdef _WIN32
#pragma once
#endif
#include <string.h>
#include "mathlib/vector.h"
#include "mathlib/vplane.h"
#include "mathlib/vector4d.h"
#include "mathlib/mathlib.h"
struct cplane_t;
class VMatrix
{
public:
VMatrix();
VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
VMatrix(const Vector3D& forward, const Vector3D& left, const Vector3D& up);
// Construct from a 3x4 matrix
explicit VMatrix(const matrix3x4_t& matrix3x4);
// Set the values in the matrix.
void Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Initialize from a 3x4
void Init(const matrix3x4_t& matrix3x4);
// array access
inline float* operator[](int i)
{
return m[i];
}
inline const float* operator[](int i) const
{
return m[i];
}
// Get a pointer to m[0][0]
inline float* Base()
{
return &m[0][0];
}
inline const float* Base() const
{
return &m[0][0];
}
void SetLeft(const Vector3D& vLeft);
void SetUp(const Vector3D& vUp);
void SetForward(const Vector3D& vForward);
void GetBasisVectors(Vector3D& vForward, Vector3D& vLeft, Vector3D& vUp) const;
void SetBasisVectors(const Vector3D& vForward, const Vector3D& vLeft, const Vector3D& vUp);
// Get/set the translation.
Vector3D& GetTranslation(Vector3D& vTrans) const;
void SetTranslation(const Vector3D& vTrans);
void PreTranslate(const Vector3D& vTrans);
void PostTranslate(const Vector3D& vTrans);
matrix3x4_t& As3x4();
const matrix3x4_t& As3x4() const;
void CopyFrom3x4(const matrix3x4_t& m3x4);
void Set3x4(matrix3x4_t& matrix3x4) const;
bool operator==(const VMatrix& src) const;
bool operator!=(const VMatrix& src) const { return !(*this == src); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Access the basis vectors.
Vector3D GetLeft() const;
Vector3D GetUp() const;
Vector3D GetForward() const;
Vector3D GetTranslation() const;
#endif
// Matrix->vector operations.
public:
// Multiply by a 3D vector (same as operator*).
void V3Mul(const Vector3D& vIn, Vector3D& vOut) const;
// Multiply by a 4D vector.
void V4Mul(const Vector4D& vIn, Vector4D& vOut) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3).
Vector3D ApplyRotation(const Vector3D& vVec) const;
// Multiply by a vector (divides by w, assumes input w is 1).
Vector3D operator*(const Vector3D& vVec) const;
// Multiply by the upper 3x3 part of the matrix (ie: only apply rotation).
Vector3D VMul3x3(const Vector3D& vVec) const;
// Apply the inverse (transposed) rotation (only works on pure rotation matrix)
Vector3D VMul3x3Transpose(const Vector3D& vVec) const;
// Multiply by the upper 3 rows.
Vector3D VMul4x3(const Vector3D& vVec) const;
// Apply the inverse (transposed) transformation (only works on pure rotation/translation)
Vector3D VMul4x3Transpose(const Vector3D& vVec) const;
#endif
// Matrix->plane operations.
public:
// Transform the plane. The matrix can only contain translation and rotation.
void TransformPlane(const VPlane& inPlane, VPlane& outPlane) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls TransformPlane and returns the result.
VPlane operator*(const VPlane& thePlane) const;
#endif
// Matrix->matrix operations.
public:
VMatrix& operator=(const VMatrix& mOther);
// Multiply two matrices (out = this * vm).
void MatrixMul(const VMatrix& vm, VMatrix& out) const;
// Add two matrices.
const VMatrix& operator+=(const VMatrix& other);
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls MatrixMul and returns the result.
VMatrix operator*(const VMatrix& mOther) const;
// Add/Subtract two matrices.
VMatrix operator+(const VMatrix& other) const;
VMatrix operator-(const VMatrix& other) const;
// Negation.
VMatrix operator-() const;
// Return inverse matrix. Be careful because the results are undefined
// if the matrix doesn't have an inverse (ie: InverseGeneral returns false).
VMatrix operator~() const;
#endif
// Matrix operations.
public:
// Set to identity.
void Identity();
bool IsIdentity() const;
// Setup a matrix for origin and angles.
void SetupMatrixOrgAngles(const Vector3D& origin, const QAngle& vAngles);
// General inverse. This may fail so check the return!
bool InverseGeneral(VMatrix& vInverse) const;
// Does a fast inverse, assuming the matrix only contains translation and rotation.
void InverseTR(VMatrix& mRet) const;
// Usually used for debug checks. Returns true if the upper 3x3 contains
// unit vectors and they are all orthogonal.
bool IsRotationMatrix() const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// This calls the other InverseTR and returns the result.
VMatrix InverseTR() const;
// Get the scale of the matrix's basis vectors.
Vector3D GetScale() const;
// (Fast) multiply by a scaling matrix setup from vScale.
VMatrix Scale(const Vector3D& vScale);
// Normalize the basis vectors.
VMatrix NormalizeBasisVectors() const;
// Transpose.
VMatrix Transpose() const;
// Transpose upper-left 3x3.
VMatrix Transpose3x3() const;
#endif
public:
// The matrix.
vec_t m[4][4];
};
//-----------------------------------------------------------------------------
// Helper functions.
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Setup an identity matrix.
VMatrix SetupMatrixIdentity();
// Setup as a scaling matrix.
VMatrix SetupMatrixScale(const Vector3D& vScale);
// Setup a translation matrix.
VMatrix SetupMatrixTranslation(const Vector3D& vTranslation);
// Setup a matrix to reflect around the plane.
VMatrix SetupMatrixReflection(const VPlane& thePlane);
// Setup a matrix to project from vOrigin onto thePlane.
VMatrix SetupMatrixProjection(const Vector3D& vOrigin, const VPlane& thePlane);
// Setup a matrix to rotate the specified amount around the specified axis.
VMatrix SetupMatrixAxisRot(const Vector3D& vAxis, vec_t fDegrees);
// Setup a matrix to rotate one axis onto another. Input vectors must be normalized.
VMatrix SetupMatrixAxisToAxisRot(const Vector3D& vFromAxis, const Vector3D& vToAxis);
// Setup a matrix from euler angles. Just sets identity and calls MatrixAngles.
VMatrix SetupMatrixAngles(const QAngle& vAngles);
// Setup a matrix for origin and angles.
VMatrix SetupMatrixOrgAngles(const Vector3D& origin, const QAngle& vAngles);
#endif
#define VMatToString(mat) (static_cast<const char *>(CFmtStr("[ (%f, %f, %f), (%f, %f, %f), (%f, %f, %f), (%f, %f, %f) ]", mat.m[0][0], mat.m[0][1], mat.m[0][2], mat.m[0][3], mat.m[1][0], mat.m[1][1], mat.m[1][2], mat.m[1][3], mat.m[2][0], mat.m[2][1], mat.m[2][2], mat.m[2][3], mat.m[3][0], mat.m[3][1], mat.m[3][2], mat.m[3][3] ))) // ** Note: this generates a temporary, don't hold reference!
//-----------------------------------------------------------------------------
// Returns the point at the intersection on the 3 planes.
// Returns false if it can't be solved (2 or more planes are parallel).
//-----------------------------------------------------------------------------
bool PlaneIntersection(const VPlane& vp1, const VPlane& vp2, const VPlane& vp3, Vector3D& vOut);
//-----------------------------------------------------------------------------
// These methods are faster. Use them if you want faster code
//-----------------------------------------------------------------------------
void MatrixSetIdentity(VMatrix& dst);
void MatrixTranspose(const VMatrix& src, VMatrix& dst);
void MatrixCopy(const VMatrix& src, VMatrix& dst);
void MatrixMultiply(const VMatrix& src1, const VMatrix& src2, VMatrix& dst);
// Accessors
void MatrixGetColumn(const VMatrix& src, int nCol, Vector3D* pColumn);
void MatrixSetColumn(VMatrix& src, int nCol, const Vector3D& column);
void MatrixGetRow(const VMatrix& src, int nCol, Vector3D* pColumn);
void MatrixSetRow(VMatrix& src, int nCol, const Vector3D& column);
// Vector3DMultiply treats src2 as if it's a direction vector
void Vector3DMultiply(const VMatrix& src1, const Vector3D& src2, Vector3D& dst);
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
inline void Vector3DMultiplyPosition(const VMatrix& src1, const VectorByValue src2, Vector3D& dst);
// Vector3DMultiplyPositionProjective treats src2 as if it's a point
// and does the perspective divide at the end
void Vector3DMultiplyPositionProjective(const VMatrix& src1, const Vector3D& src2, Vector3D& dst);
// Vector3DMultiplyPosition treats src2 as if it's a direction
// and does the perspective divide at the end
// NOTE: src1 had better be an inverse transpose to use this correctly
void Vector3DMultiplyProjective(const VMatrix& src1, const Vector3D& src2, Vector3D& dst);
void Vector4DMultiply(const VMatrix& src1, const Vector4D& src2, Vector4D& dst);
// Same as Vector4DMultiply except that src2 has an implicit W of 1
void Vector4DMultiplyPosition(const VMatrix& src1, const Vector3D& src2, Vector4D& dst);
// Multiplies the vector by the transpose of the matrix
void Vector3DMultiplyTranspose(const VMatrix& src1, const Vector3D& src2, Vector3D& dst);
void Vector4DMultiplyTranspose(const VMatrix& src1, const Vector4D& src2, Vector4D& dst);
// Transform a plane
void MatrixTransformPlane(const VMatrix& src, const cplane_t& inPlane, cplane_t& outPlane);
// Transform a plane that has an axis-aligned normal
void MatrixTransformAxisAlignedPlane(const VMatrix& src, int nDim, float flSign, float flDist, cplane_t& outPlane);
void MatrixBuildTranslation(VMatrix& dst, float x, float y, float z);
void MatrixBuildTranslation(VMatrix& dst, const Vector3D& translation);
inline void MatrixTranslate(VMatrix& dst, const Vector3D& translation)
{
VMatrix matTranslation, temp;
MatrixBuildTranslation(matTranslation, translation);
MatrixMultiply(dst, matTranslation, temp);
dst = temp;
}
void MatrixBuildRotationAboutAxis(VMatrix& dst, const Vector3D& vAxisOfRot, float angleDegrees);
void MatrixBuildRotateZ(VMatrix& dst, float angleDegrees);
inline void MatrixRotate(VMatrix& dst, const Vector3D& vAxisOfRot, float angleDegrees)
{
VMatrix rotation, temp;
MatrixBuildRotationAboutAxis(rotation, vAxisOfRot, angleDegrees);
MatrixMultiply(dst, rotation, temp);
dst = temp;
}
// Builds a rotation matrix that rotates one direction vector into another
void MatrixBuildRotation(VMatrix& dst, const Vector3D& initialDirection, const Vector3D& finalDirection);
// Builds a scale matrix
void MatrixBuildScale(VMatrix& dst, float x, float y, float z);
void MatrixBuildScale(VMatrix& dst, const Vector3D& scale);
// Build a perspective matrix.
// zNear and zFar are assumed to be positive.
// You end up looking down positive Z, X is to the right, Y is up.
// X range: [0..1]
// Y range: [0..1]
// Z range: [0..1]
void MatrixBuildPerspective(VMatrix& dst, float fovX, float fovY, float zNear, float zFar);
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrix(const VMatrix& worldToVolume, Vector3D* pMins, Vector3D* pMaxs);
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrix(const VMatrix& worldToVolume, Vector3D* pCenter, float* pflRadius);
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrixInverse(const VMatrix& volumeToWorld, Vector3D* pMins, Vector3D* pMaxs);
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrixInverse(const VMatrix& volumeToWorld, Vector3D* pCenter, float* pflRadius);
//-----------------------------------------------------------------------------
// Calculate frustum planes given a clip->world space transform.
//-----------------------------------------------------------------------------
void FrustumPlanesFromMatrix(const VMatrix& clipToWorld, Frustum_t& frustum);
//-----------------------------------------------------------------------------
// Setup a matrix from euler angles.
//-----------------------------------------------------------------------------
void MatrixFromAngles(const QAngle& vAngles, VMatrix& dst);
//-----------------------------------------------------------------------------
// Creates euler angles from a matrix
//-----------------------------------------------------------------------------
void MatrixToAngles(const VMatrix& src, QAngle& vAngles);
//-----------------------------------------------------------------------------
// Does a fast inverse, assuming the matrix only contains translation and rotation.
//-----------------------------------------------------------------------------
void MatrixInverseTR(const VMatrix& src, VMatrix& dst);
//-----------------------------------------------------------------------------
// Inverts any matrix at all
//-----------------------------------------------------------------------------
bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst);
//-----------------------------------------------------------------------------
// Computes the inverse transpose
//-----------------------------------------------------------------------------
void MatrixInverseTranspose(const VMatrix& src, VMatrix& dst);
//-----------------------------------------------------------------------------
// VMatrix inlines.
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix()
{
}
inline VMatrix::VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33)
{
Init(
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
);
}
inline VMatrix::VMatrix(const matrix3x4_t& matrix3x4)
{
Init(matrix3x4);
}
//-----------------------------------------------------------------------------
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix(const Vector3D& xAxis, const Vector3D& yAxis, const Vector3D& zAxis)
{
Init(
xAxis.x, yAxis.x, zAxis.x, 0.0f,
xAxis.y, yAxis.y, zAxis.y, 0.0f,
xAxis.z, yAxis.z, zAxis.z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
}
inline void VMatrix::Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
)
{
m[0][0] = m00;
m[0][1] = m01;
m[0][2] = m02;
m[0][3] = m03;
m[1][0] = m10;
m[1][1] = m11;
m[1][2] = m12;
m[1][3] = m13;
m[2][0] = m20;
m[2][1] = m21;
m[2][2] = m22;
m[2][3] = m23;
m[3][0] = m30;
m[3][1] = m31;
m[3][2] = m32;
m[3][3] = m33;
}
//-----------------------------------------------------------------------------
// Initialize from a 3x4
//-----------------------------------------------------------------------------
inline void VMatrix::Init(const matrix3x4_t& matrix3x4)
{
memcpy(m, matrix3x4.Base(), sizeof(matrix3x4_t));
m[3][0] = 0.0f;
m[3][1] = 0.0f;
m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
//-----------------------------------------------------------------------------
// Methods related to the basis vectors of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector3D VMatrix::GetForward() const
{
return Vector3D(m[0][0], m[1][0], m[2][0]);
}
inline Vector3D VMatrix::GetLeft() const
{
return Vector3D(m[0][1], m[1][1], m[2][1]);
}
inline Vector3D VMatrix::GetUp() const
{
return Vector3D(m[0][2], m[1][2], m[2][2]);
}
#endif
inline void VMatrix::SetForward(const Vector3D& vForward)
{
m[0][0] = vForward.x;
m[1][0] = vForward.y;
m[2][0] = vForward.z;
}
inline void VMatrix::SetLeft(const Vector3D& vLeft)
{
m[0][1] = vLeft.x;
m[1][1] = vLeft.y;
m[2][1] = vLeft.z;
}
inline void VMatrix::SetUp(const Vector3D& vUp)
{
m[0][2] = vUp.x;
m[1][2] = vUp.y;
m[2][2] = vUp.z;
}
inline void VMatrix::GetBasisVectors(Vector3D& vForward, Vector3D& vLeft, Vector3D& vUp) const
{
vForward.Init(m[0][0], m[1][0], m[2][0]);
vLeft.Init(m[0][1], m[1][1], m[2][1]);
vUp.Init(m[0][2], m[1][2], m[2][2]);
}
inline void VMatrix::SetBasisVectors(const Vector3D& vForward, const Vector3D& vLeft, const Vector3D& vUp)
{
SetForward(vForward);
SetLeft(vLeft);
SetUp(vUp);
}
//-----------------------------------------------------------------------------
// Methods related to the translation component of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector3D VMatrix::GetTranslation() const
{
return Vector3D(m[0][3], m[1][3], m[2][3]);
}
#endif
inline Vector3D& VMatrix::GetTranslation(Vector3D& vTrans) const
{
vTrans.x = m[0][3];
vTrans.y = m[1][3];
vTrans.z = m[2][3];
return vTrans;
}
inline void VMatrix::SetTranslation(const Vector3D& vTrans)
{
m[0][3] = vTrans.x;
m[1][3] = vTrans.y;
m[2][3] = vTrans.z;
}
//-----------------------------------------------------------------------------
// apply translation to this matrix in the input space
//-----------------------------------------------------------------------------
inline void VMatrix::PreTranslate(const Vector3D& vTrans)
{
Vector3D tmp;
Vector3DMultiplyPosition(*this, vTrans, tmp);
m[0][3] = tmp.x;
m[1][3] = tmp.y;
m[2][3] = tmp.z;
}
//-----------------------------------------------------------------------------
// apply translation to this matrix in the output space
//-----------------------------------------------------------------------------
inline void VMatrix::PostTranslate(const Vector3D& vTrans)
{
m[0][3] += vTrans.x;
m[1][3] += vTrans.y;
m[2][3] += vTrans.z;
}
inline const matrix3x4_t& VMatrix::As3x4() const
{
return *((const matrix3x4_t*)this);
}
inline matrix3x4_t& VMatrix::As3x4()
{
return *((matrix3x4_t*)this);
}
inline void VMatrix::CopyFrom3x4(const matrix3x4_t& m3x4)
{
memcpy(m, m3x4.Base(), sizeof(matrix3x4_t));
m[3][0] = m[3][1] = m[3][2] = 0;
m[3][3] = 1;
}
inline void VMatrix::Set3x4(matrix3x4_t& matrix3x4) const
{
memcpy(matrix3x4.Base(), m, sizeof(matrix3x4_t));
}
//-----------------------------------------------------------------------------
// Matrix math operations
//-----------------------------------------------------------------------------
inline const VMatrix& VMatrix::operator+=(const VMatrix& other)
{
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
m[i][j] += other.m[i][j];
}
}
return *this;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline VMatrix VMatrix::operator+(const VMatrix& other) const
{
VMatrix ret;
for (int i = 0; i < 16; i++)
{
((float*)ret.m)[i] = ((float*)m)[i] + ((float*)other.m)[i];
}
return ret;
}
inline VMatrix VMatrix::operator-(const VMatrix& other) const
{
VMatrix ret;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
ret.m[i][j] = m[i][j] - other.m[i][j];
}
}
return ret;
}
inline VMatrix VMatrix::operator-() const
{
VMatrix ret;
for (int i = 0; i < 16; i++)
{
((float*)ret.m)[i] = -((float*)m)[i];
}
return ret;
}
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Vector transformation
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector3D VMatrix::operator*(const Vector3D& vVec) const
{
Vector3D vRet;
vRet.x = m[0][0] * vVec.x + m[0][1] * vVec.y + m[0][2] * vVec.z + m[0][3];
vRet.y = m[1][0] * vVec.x + m[1][1] * vVec.y + m[1][2] * vVec.z + m[1][3];
vRet.z = m[2][0] * vVec.x + m[2][1] * vVec.y + m[2][2] * vVec.z + m[2][3];
return vRet;
}
inline Vector3D VMatrix::VMul4x3(const Vector3D& vVec) const
{
Vector3D vResult;
Vector3DMultiplyPosition(*this, vVec, vResult);
return vResult;
}
inline Vector3D VMatrix::VMul4x3Transpose(const Vector3D& vVec) const
{
Vector3D tmp = vVec;
tmp.x -= m[0][3];
tmp.y -= m[1][3];
tmp.z -= m[2][3];
return Vector3D(
m[0][0] * tmp.x + m[1][0] * tmp.y + m[2][0] * tmp.z,
m[0][1] * tmp.x + m[1][1] * tmp.y + m[2][1] * tmp.z,
m[0][2] * tmp.x + m[1][2] * tmp.y + m[2][2] * tmp.z
);
}
inline Vector3D VMatrix::VMul3x3(const Vector3D& vVec) const
{
return Vector3D(
m[0][0] * vVec.x + m[0][1] * vVec.y + m[0][2] * vVec.z,
m[1][0] * vVec.x + m[1][1] * vVec.y + m[1][2] * vVec.z,
m[2][0] * vVec.x + m[2][1] * vVec.y + m[2][2] * vVec.z
);
}
inline Vector3D VMatrix::VMul3x3Transpose(const Vector3D& vVec) const
{
return Vector3D(
m[0][0] * vVec.x + m[1][0] * vVec.y + m[2][0] * vVec.z,
m[0][1] * vVec.x + m[1][1] * vVec.y + m[2][1] * vVec.z,
m[0][2] * vVec.x + m[1][2] * vVec.y + m[2][2] * vVec.z
);
}
#endif // VECTOR_NO_SLOW_OPERATIONS
inline void VMatrix::V3Mul(const Vector3D& vIn, Vector3D& vOut) const
{
vec_t rw;
rw = 1.0f / (m[3][0] * vIn.x + m[3][1] * vIn.y + m[3][2] * vIn.z + m[3][3]);
vOut.x = (m[0][0] * vIn.x + m[0][1] * vIn.y + m[0][2] * vIn.z + m[0][3]) * rw;
vOut.y = (m[1][0] * vIn.x + m[1][1] * vIn.y + m[1][2] * vIn.z + m[1][3]) * rw;
vOut.z = (m[2][0] * vIn.x + m[2][1] * vIn.y + m[2][2] * vIn.z + m[2][3]) * rw;
}
inline void VMatrix::V4Mul(const Vector4D& vIn, Vector4D& vOut) const
{
vOut[0] = m[0][0] * vIn[0] + m[0][1] * vIn[1] + m[0][2] * vIn[2] + m[0][3] * vIn[3];
vOut[1] = m[1][0] * vIn[0] + m[1][1] * vIn[1] + m[1][2] * vIn[2] + m[1][3] * vIn[3];
vOut[2] = m[2][0] * vIn[0] + m[2][1] * vIn[1] + m[2][2] * vIn[2] + m[2][3] * vIn[3];
vOut[3] = m[3][0] * vIn[0] + m[3][1] * vIn[1] + m[3][2] * vIn[2] + m[3][3] * vIn[3];
}
//-----------------------------------------------------------------------------
// Plane transformation
//-----------------------------------------------------------------------------
inline void VMatrix::TransformPlane(const VPlane& inPlane, VPlane& outPlane) const
{
Vector3D vTrans;
Vector3DMultiply(*this, inPlane.m_Normal, outPlane.m_Normal);
outPlane.m_Dist = inPlane.m_Dist * DotProduct(outPlane.m_Normal, outPlane.m_Normal);
outPlane.m_Dist += DotProduct(outPlane.m_Normal, GetTranslation(vTrans));
}
//-----------------------------------------------------------------------------
// Other random stuff
//-----------------------------------------------------------------------------
inline void VMatrix::Identity()
{
MatrixSetIdentity(*this);
}
inline bool VMatrix::IsIdentity() const
{
return
m[0][0] == 1.0f && m[0][1] == 0.0f && m[0][2] == 0.0f && m[0][3] == 0.0f &&
m[1][0] == 0.0f && m[1][1] == 1.0f && m[1][2] == 0.0f && m[1][3] == 0.0f &&
m[2][0] == 0.0f && m[2][1] == 0.0f && m[2][2] == 1.0f && m[2][3] == 0.0f &&
m[3][0] == 0.0f && m[3][1] == 0.0f && m[3][2] == 0.0f && m[3][3] == 1.0f;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector3D VMatrix::ApplyRotation(const Vector3D& vVec) const
{
return VMul3x3(vVec);
}
inline VMatrix VMatrix::operator~() const
{
VMatrix mRet;
InverseGeneral(mRet);
return mRet;
}
#endif
//-----------------------------------------------------------------------------
// Accessors
//-----------------------------------------------------------------------------
inline void MatrixGetColumn(const VMatrix& src, int nCol, Vector3D* pColumn)
{
Assert((nCol >= 0) && (nCol <= 3));
pColumn->x = src[0][nCol];
pColumn->y = src[1][nCol];
pColumn->z = src[2][nCol];
}
inline void MatrixSetColumn(VMatrix& src, int nCol, const Vector3D& column)
{
Assert((nCol >= 0) && (nCol <= 3));
src.m[0][nCol] = column.x;
src.m[1][nCol] = column.y;
src.m[2][nCol] = column.z;
}
inline void MatrixGetRow(const VMatrix& src, int nRow, Vector3D* pRow)
{
Assert((nRow >= 0) && (nRow <= 3));
*pRow = *(Vector3D*)src[nRow];
}
inline void MatrixSetRow(VMatrix& dst, int nRow, const Vector3D& row)
{
Assert((nRow >= 0) && (nRow <= 3));
*(Vector3D*)dst[nRow] = row;
}
//-----------------------------------------------------------------------------
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
//-----------------------------------------------------------------------------
// NJS: src2 is passed in as a full vector rather than a reference to prevent the need
// for 2 branches and a potential copy in the body. (ie, handling the case when the src2
// reference is the same as the dst reference ).
inline void Vector3DMultiplyPosition(const VMatrix& src1, const VectorByValue src2, Vector3D& dst)
{
dst[0] = src1[0][0] * src2.x + src1[0][1] * src2.y + src1[0][2] * src2.z + src1[0][3];
dst[1] = src1[1][0] * src2.x + src1[1][1] * src2.y + src1[1][2] * src2.z + src1[1][3];
dst[2] = src1[2][0] * src2.x + src1[2][1] * src2.y + src1[2][2] * src2.z + src1[2][3];
}
//-----------------------------------------------------------------------------
// Transform a plane that has an axis-aligned normal
//-----------------------------------------------------------------------------
inline void MatrixTransformAxisAlignedPlane(const VMatrix& src, int nDim, float flSign, float flDist, cplane_t& outPlane)
{
// See MatrixTransformPlane in the .cpp file for an explanation of the algorithm.
MatrixGetColumn(src, nDim, &outPlane.normal);
outPlane.normal *= flSign;
outPlane.dist = flDist * DotProduct(outPlane.normal, outPlane.normal);
// NOTE: Writing this out by hand because it doesn't inline (inline depth isn't large enough)
// This should read outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation );
outPlane.dist += outPlane.normal.x * src.m[0][3] + outPlane.normal.y * src.m[1][3] + outPlane.normal.z * src.m[2][3];
}
//-----------------------------------------------------------------------------
// Matrix equality test
//-----------------------------------------------------------------------------
inline bool MatricesAreEqual(const VMatrix& src1, const VMatrix& src2, float flTolerance)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
if (fabs(src1[i][j] - src2[i][j]) > flTolerance)
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void MatrixBuildOrtho(VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar);
void MatrixBuildOrthoLH(VMatrix& dst, vec_t left, vec_t top, vec_t right, vec_t bottom, vec_t zNear, vec_t zFar);
void MatrixBuildPerspectiveX(VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar);
void MatrixBuildPerspectiveOffCenterX(VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right);
inline void MatrixOrtho(VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar)
{
VMatrix mat;
MatrixBuildOrtho(mat, left, top, right, bottom, zNear, zFar);
VMatrix temp;
MatrixMultiply(dst, mat, temp);
dst = temp;
}
inline void MatrixBuildOrthoLH(VMatrix& dst, vec_t left, vec_t top, vec_t right, vec_t bottom, vec_t zNear, vec_t zFar)
{
// Same as XMMatrixOrthographicOffCenterLH().
dst.Init(
2.0f / (right - left), 0.0f, 0.0f, (left + right) / (left - right),
0.0f, 2.0f / (bottom - top), 0.0f, (bottom + top) / (top - bottom),
0.0f, 0.0f, 1.0f / (zFar - zNear), zNear / (zNear - zFar),
0.0f, 0.0f, 0.0f, 1.0f);
}
inline void MatrixPerspectiveX(VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar)
{
VMatrix mat;
MatrixBuildPerspectiveX(mat, flFovX, flAspect, flZNear, flZFar);
VMatrix temp;
MatrixMultiply(dst, mat, temp);
dst = temp;
}
inline void MatrixPerspectiveOffCenterX(VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right)
{
VMatrix mat;
MatrixBuildPerspectiveOffCenterX(mat, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right);
VMatrix temp;
MatrixMultiply(dst, mat, temp);
dst = temp;
}
inline Vector4D GetMatrixColumnAsVector4D(const VMatrix& mMatrix, int nCol)
{
Vector4D vColumnOut;
vColumnOut.x = mMatrix.m[0][nCol];
vColumnOut.y = mMatrix.m[1][nCol];
vColumnOut.z = mMatrix.m[2][nCol];
vColumnOut.w = mMatrix.m[3][nCol];
return vColumnOut;
}
inline Vector4D MatrixGetRowAsVector4D(const VMatrix& src, int nRow)
{
Assert((nRow >= 0) && (nRow <= 3));
return Vector4D(src[nRow]);
}
//-----------------------------------------------------------------------------
// Extracts clip planes from an arbitrary view projection matrix.
// This function assumes the matrix has been transposed.
//-----------------------------------------------------------------------------
inline void ExtractClipPlanesFromTransposedMatrix(const VMatrix& transposedViewProjMatrix, VPlane* pPlanesOut)
{
// Left
Vector4D vPlane = GetMatrixColumnAsVector4D(transposedViewProjMatrix, 0) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_LEFT].Init(vPlane.AsVector3D(), -vPlane.w);
// Right
vPlane = -GetMatrixColumnAsVector4D(transposedViewProjMatrix, 0) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_RIGHT].Init(vPlane.AsVector3D(), -vPlane.w);
// Bottom
vPlane = GetMatrixColumnAsVector4D(transposedViewProjMatrix, 1) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_BOTTOM].Init(vPlane.AsVector3D(), -vPlane.w);
// Top
vPlane = -GetMatrixColumnAsVector4D(transposedViewProjMatrix, 1) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_TOP].Init(vPlane.AsVector3D(), -vPlane.w);
// Near
vPlane = GetMatrixColumnAsVector4D(transposedViewProjMatrix, 2) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_NEARZ].Init(vPlane.AsVector3D(), -vPlane.w);
// Far
vPlane = -GetMatrixColumnAsVector4D(transposedViewProjMatrix, 2) + GetMatrixColumnAsVector4D(transposedViewProjMatrix, 3);
pPlanesOut[FRUSTUM_FARZ].Init(vPlane.AsVector3D(), -vPlane.w);
}
//-----------------------------------------------------------------------------
// Extracts clip planes from an arbitrary view projection matrix.
// Differences from ExtractClipPlanesFromTransposedMatrix():
// This function assumes the matrix has NOT been transposed.
// If bD3DClippingRange is true, the projection space clipping range is assumed
// to be [0,1], vs. the OpenGL range [-1,1].
// This function always returns normalized planes.
//-----------------------------------------------------------------------------
void ExtractClipPlanesFromNonTransposedMatrix(const VMatrix& viewProjMatrix, VPlane* pPlanesOut, bool bD3DClippingRange = true);
#endif