r5sdk/r5dev/tier0/module.cpp

524 lines
21 KiB
C++
Raw Normal View History

//===========================================================================//
//
// Purpose: Implementation of the CModule class.
//
//===========================================================================//
#include "tier0/memaddr.h"
#include "tier0/sigcache.h"
#include "windows/tebpeb64.h"
//-----------------------------------------------------------------------------
// Purpose: constructor
// Input : *szModuleName -
//-----------------------------------------------------------------------------
CModule::CModule(const char* szModuleName)
: m_ModuleName(szModuleName)
{
m_pModuleBase = reinterpret_cast<uintptr_t>(GetModuleHandleA(szModuleName));
Init();
LoadSections();
}
//-----------------------------------------------------------------------------
// Purpose: constructor
// Input : *szModuleName -
// nModuleBase -
//-----------------------------------------------------------------------------
CModule::CModule(const char* szModuleName, const uintptr_t nModuleBase)
: m_ModuleName(szModuleName)
, m_pModuleBase(nModuleBase)
{
Init();
LoadSections();
}
//-----------------------------------------------------------------------------
// Purpose: initializes module descriptors
//-----------------------------------------------------------------------------
void CModule::Init()
{
m_pDOSHeader = reinterpret_cast<IMAGE_DOS_HEADER*>(m_pModuleBase);
m_pNTHeaders = reinterpret_cast<IMAGE_NT_HEADERS64*>(m_pModuleBase + m_pDOSHeader->e_lfanew);
m_nModuleSize = static_cast<size_t>(m_pNTHeaders->OptionalHeader.SizeOfImage);
const IMAGE_SECTION_HEADER* hSection = IMAGE_FIRST_SECTION(m_pNTHeaders); // Get first image section.
for (WORD i = 0; i < m_pNTHeaders->FileHeader.NumberOfSections; i++) // Loop through the sections.
{
const IMAGE_SECTION_HEADER& hCurrentSection = hSection[i]; // Get current section.
m_ModuleSections.push_back(ModuleSections_t(reinterpret_cast<const char*>(hCurrentSection.Name),
static_cast<uintptr_t>(m_pModuleBase + hCurrentSection.VirtualAddress), hCurrentSection.SizeOfRawData)); // Push back a struct with the section data.
}
}
//-----------------------------------------------------------------------------
// Purpose: initializes the default executable segments
//-----------------------------------------------------------------------------
void CModule::LoadSections()
{
m_ExecutableCode = GetSectionByName(".text");
m_ExceptionTable = GetSectionByName(".pdata");
m_RunTimeData = GetSectionByName(".data");
m_ReadOnlyData = GetSectionByName(".rdata");
}
2022-12-03 00:08:48 +01:00
#ifndef PLUGINSDK
//-----------------------------------------------------------------------------
// Purpose: find array of bytes in process memory using SIMD instructions
// Input : *pPattern -
// *szMask -
// *moduleSection -
// nOccurrence -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::FindPatternSIMD(const uint8_t* pPattern, const char* szMask,
const ModuleSections_t* moduleSection, const size_t nOccurrence) const
{
if (!m_ExecutableCode.IsSectionValid())
return CMemory();
const bool bSectionValid = moduleSection ? moduleSection->IsSectionValid() : false;
const uintptr_t nBase = bSectionValid ? moduleSection->m_pSectionBase : m_ExecutableCode.m_pSectionBase;
const uintptr_t nSize = bSectionValid ? moduleSection->m_nSectionSize : m_ExecutableCode.m_nSectionSize;
const size_t nMaskLen = strlen(szMask);
const uint8_t* pData = reinterpret_cast<uint8_t*>(nBase);
2022-12-05 00:57:48 +01:00
const uint8_t* pEnd = pData + nSize - nMaskLen;
size_t nOccurrenceCount = 0;
int nMasks[64]; // 64*16 = enough masks for 1024 bytes.
const int iNumMasks = static_cast<int>(ceil(static_cast<float>(nMaskLen) / 16.f));
memset(nMasks, '\0', iNumMasks * sizeof(int));
for (intptr_t i = 0; i < iNumMasks; ++i)
{
for (intptr_t j = strnlen(szMask + i * 16, 16) - 1; j >= 0; --j)
{
if (szMask[i * 16 + j] == 'x')
{
_bittestandset(reinterpret_cast<LONG*>(&nMasks[i]), static_cast<LONG>(j));
}
}
}
const __m128i xmm1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pPattern));
__m128i xmm2, xmm3, msks;
for (; pData != pEnd; _mm_prefetch(reinterpret_cast<const char*>(++pData + 64), _MM_HINT_NTA))
{
if (pPattern[0] == pData[0])
{
xmm2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pData));
msks = _mm_cmpeq_epi8(xmm1, xmm2);
if ((_mm_movemask_epi8(msks) & nMasks[0]) == nMasks[0])
{
for (uintptr_t i = 1; i < static_cast<uintptr_t>(iNumMasks); ++i)
{
xmm2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((pData + i * 16)));
xmm3 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((pPattern + i * 16)));
msks = _mm_cmpeq_epi8(xmm2, xmm3);
if ((_mm_movemask_epi8(msks) & nMasks[i]) == nMasks[i])
{
if ((i + 1) == iNumMasks)
{
if (nOccurrenceCount == nOccurrence)
{
return static_cast<CMemory>(const_cast<uint8_t*>(pData));
}
nOccurrenceCount++;
}
}
else
{
goto cont;
}
}
if (nOccurrenceCount == nOccurrence)
{
return static_cast<CMemory>((&*(const_cast<uint8_t*>(pData))));
}
nOccurrenceCount++;
}
}cont:;
}
return CMemory();
}
//-----------------------------------------------------------------------------
// Purpose: find a string pattern in process memory using SIMD instructions
// Input : *szPattern -
// *moduleSection -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::FindPatternSIMD(const char* szPattern, const ModuleSections_t* moduleSection) const
{
uint64_t nRVA;
if (g_SigCache.FindEntry(szPattern, nRVA))
{
return CMemory(nRVA + GetModuleBase());
}
const pair<vector<uint8_t>, string> patternInfo = PatternToMaskedBytes(szPattern);
2022-12-05 00:57:48 +01:00
const CMemory memory = FindPatternSIMD(patternInfo.first.data(), patternInfo.second.c_str(), moduleSection);
g_SigCache.AddEntry(szPattern, GetRVA(memory.GetPtr()));
return memory;
}
//-----------------------------------------------------------------------------
// Purpose: find address of reference to string constant in executable memory
// Input : *szString -
// bNullTerminator -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::FindString(const char* szString, const ptrdiff_t nOccurrence, bool bNullTerminator) const
{
if (!m_ExecutableCode.IsSectionValid())
return CMemory();
uint64_t nRVA;
string svPackedString = szString + std::to_string(nOccurrence);
if (g_SigCache.FindEntry(svPackedString.c_str(), nRVA))
{
return CMemory(nRVA + GetModuleBase());
}
const CMemory stringAddress = FindStringReadOnly(szString, bNullTerminator); // Get Address for the string in the .rdata section.
if (!stringAddress)
return CMemory();
uint8_t* pLatestOccurrence = nullptr;
uint8_t* pTextStart = reinterpret_cast<uint8_t*>(m_ExecutableCode.m_pSectionBase); // Get the start of the .text section.
ptrdiff_t dOccurrencesFound = 0;
CMemory resultAddress;
for (size_t i = 0ull; i < m_ExecutableCode.m_nSectionSize - 0x5; i++)
{
byte byte = pTextStart[i];
if (byte == LEA)
{
const CMemory skipOpCode = CMemory(reinterpret_cast<uintptr_t>(&pTextStart[i])).OffsetSelf(0x2); // Skip next 2 opcodes, those being the instruction and the register.
const int32_t relativeAddress = skipOpCode.GetValue<int32_t>(); // Get 4-byte long string relative Address
const uintptr_t nextInstruction = skipOpCode.Offset(0x4).GetPtr(); // Get location of next instruction.
const CMemory potentialLocation = CMemory(nextInstruction + relativeAddress); // Get potential string location.
if (potentialLocation == stringAddress)
{
dOccurrencesFound++;
if (nOccurrence == dOccurrencesFound)
{
resultAddress = CMemory(&pTextStart[i]);
g_SigCache.AddEntry(svPackedString.c_str(), GetRVA(resultAddress.GetPtr()));
return resultAddress;
}
pLatestOccurrence = &pTextStart[i]; // Stash latest occurrence.
}
}
}
resultAddress = CMemory(pLatestOccurrence);
g_SigCache.AddEntry(svPackedString.c_str(), GetRVA(resultAddress.GetPtr()));
return resultAddress;
}
//-----------------------------------------------------------------------------
// Purpose: find address of input string constant in read only memory
// Input : *szString -
// bNullTerminator -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::FindStringReadOnly(const char* szString, bool bNullTerminator) const
{
if (!m_ReadOnlyData.IsSectionValid())
return CMemory();
uint64_t nRVA;
if (g_SigCache.FindEntry(szString, nRVA))
{
return CMemory(nRVA + GetModuleBase());
}
const vector<int> vBytes = StringToBytes(szString, bNullTerminator); // Convert our string to a byte array.
const pair<size_t, const int*> bytesInfo = std::make_pair<size_t, const int*>(vBytes.size(), vBytes.data()); // Get the size and data of our bytes.
2022-12-05 00:57:48 +01:00
const uint8_t* pBase = reinterpret_cast<uint8_t*>(m_ReadOnlyData.m_pSectionBase); // Get start of .rdata section.
for (size_t i = 0ull; i < m_ReadOnlyData.m_nSectionSize - bytesInfo.first; i++)
{
bool bFound = true;
// If either the current byte equals to the byte in our pattern or our current byte in the pattern is a wildcard
// our if clause will be false.
for (size_t j = 0ull; j < bytesInfo.first; j++)
{
if (pBase[i + j] != bytesInfo.second[j] && bytesInfo.second[j] != -1)
{
bFound = false;
break;
}
}
if (bFound)
{
CMemory result = CMemory(&pBase[i]);
g_SigCache.AddEntry(szString, GetRVA(result.GetPtr()));
return result;
}
}
return CMemory();
}
//-----------------------------------------------------------------------------
// Purpose: find 'free' page in r/w/x sections
// Input : nSize -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::FindFreeDataPage(const size_t nSize) const
{
auto checkDataSection = [](const void* address, const std::size_t size)
{
MEMORY_BASIC_INFORMATION membInfo = { 0 };
VirtualQuery(address, &membInfo, sizeof(membInfo));
if (membInfo.AllocationBase && membInfo.BaseAddress && membInfo.State == MEM_COMMIT && !(membInfo.Protect & PAGE_GUARD) && membInfo.Protect != PAGE_NOACCESS)
{
if ((membInfo.Protect & (PAGE_EXECUTE_READWRITE | PAGE_READWRITE)) && membInfo.RegionSize >= size)
{
return ((membInfo.Protect & (PAGE_EXECUTE_READWRITE | PAGE_READWRITE)) && membInfo.RegionSize >= size) ? true : false;
}
}
return false;
};
// This is very unstable, this doesn't check for the actual 'page' sizes.
// Also can be optimized to search per 'section'.
const uintptr_t endOfModule = m_pModuleBase + m_pNTHeaders->OptionalHeader.SizeOfImage - sizeof(uintptr_t);
for (uintptr_t currAddr = endOfModule; m_pModuleBase < currAddr; currAddr -= sizeof(uintptr_t))
{
if (*reinterpret_cast<uintptr_t*>(currAddr) == 0 && checkDataSection(reinterpret_cast<void*>(currAddr), nSize))
{
bool bIsGoodPage = true;
uint32_t nPageCount = 0;
for (; nPageCount < nSize && bIsGoodPage; nPageCount += sizeof(uintptr_t))
{
const uintptr_t pageData = *reinterpret_cast<std::uintptr_t*>(currAddr + nPageCount);
if (pageData != 0)
bIsGoodPage = false;
}
if (bIsGoodPage && nPageCount >= nSize)
return currAddr;
}
}
return CMemory();
}
2022-12-03 00:08:48 +01:00
//-----------------------------------------------------------------------------
// Purpose: get address of a virtual method table by rtti type descriptor name.
// Input : *szTableName -
// nRefIndex -
// Output : address of virtual method table, null if not found.
2022-12-03 00:08:48 +01:00
//-----------------------------------------------------------------------------
CMemory CModule::GetVirtualMethodTable(const char* szTableName, const size_t nRefIndex)
2022-12-03 00:08:48 +01:00
{
uint64_t nRVA; // Packed together as we can have multiple VFTable searches, but with different ref indexes.
string svPackedTableName = szTableName + std::to_string(nRefIndex);
2022-12-03 00:08:48 +01:00
if (g_SigCache.FindEntry(svPackedTableName.c_str(), nRVA))
2022-12-03 00:08:48 +01:00
{
return CMemory(nRVA + GetModuleBase());
}
ModuleSections_t moduleSection(".data", m_RunTimeData.m_pSectionBase, m_RunTimeData.m_nSectionSize);
const auto tableNameInfo = StringToMaskedBytes(szTableName, false);
CMemory rttiTypeDescriptor = FindPatternSIMD(tableNameInfo.first.data(), tableNameInfo.second.c_str(), &moduleSection).OffsetSelf(-0x10);
2022-12-03 00:08:48 +01:00
if (!rttiTypeDescriptor)
return CMemory();
uintptr_t scanStart = m_ReadOnlyData.m_pSectionBase; // Get the start address of our scan.
const uintptr_t scanEnd = (m_ReadOnlyData.m_pSectionBase + m_ReadOnlyData.m_nSectionSize) - 0x4; // Calculate the end of our scan.
const uintptr_t rttiTDRva = rttiTypeDescriptor.GetPtr() - m_pModuleBase; // The RTTI gets referenced by a 4-Byte RVA address. We need to scan for that address.
while (scanStart < scanEnd)
{
moduleSection = { ".rdata", scanStart, m_ReadOnlyData.m_nSectionSize };
CMemory reference = FindPatternSIMD(reinterpret_cast<rsig_t>(&rttiTDRva), "xxxx", &moduleSection, nRefIndex);
2022-12-03 00:08:48 +01:00
if (!reference)
break;
CMemory referenceOffset = reference.Offset(-0xC);
if (referenceOffset.GetValue<int32_t>() != 1) // Check if we got a RTTI Object Locator for this reference by checking if -0xC is 1, which is the 'signature' field which is always 1 on x64.
{
scanStart = reference.Offset(0x4).GetPtr(); // Set location to current reference + 0x4 so we avoid pushing it back again into the vector.
continue;
}
moduleSection = { ".rdata", m_ReadOnlyData.m_pSectionBase, m_ReadOnlyData.m_nSectionSize };
CMemory vfTable = FindPatternSIMD(reinterpret_cast<rsig_t>(&referenceOffset), "xxxxxxxx", &moduleSection).OffsetSelf(0x8);
g_SigCache.AddEntry(svPackedTableName.c_str(), GetRVA(vfTable.GetPtr()));
2022-12-03 00:08:48 +01:00
return vfTable;
}
return CMemory();
}
2022-12-03 00:08:48 +01:00
#endif // !PLUGINSDK
//-----------------------------------------------------------------------------
// Purpose: get address of imported function in target module
// Input : *szModuleName -
// *szFunctionName -
// bGetFunctionReference -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::GetImportedFunction(const char* szModuleName, const char* szFunctionName, const bool bGetFunctionReference) const
{
if (!m_pDOSHeader || m_pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE) // Is dosHeader valid?
return CMemory();
if (!m_pNTHeaders || m_pNTHeaders->Signature != IMAGE_NT_SIGNATURE) // Is ntHeader valid?
return CMemory();
// Get the location of IMAGE_IMPORT_DESCRIPTOR for this module by adding the IMAGE_DIRECTORY_ENTRY_IMPORT relative virtual address onto our module base address.
IMAGE_IMPORT_DESCRIPTOR* pImageImportDescriptors = reinterpret_cast<IMAGE_IMPORT_DESCRIPTOR*>(m_pModuleBase + m_pNTHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
if (!pImageImportDescriptors)
return CMemory();
for (IMAGE_IMPORT_DESCRIPTOR* pIID = pImageImportDescriptors; pIID->Name != 0; pIID++)
{
// Get virtual relative Address of the imported module name. Then add module base Address to get the actual location.
const char* szImportedModuleName = reinterpret_cast<char*>(reinterpret_cast<DWORD*>(m_pModuleBase + pIID->Name));
if (stricmp(szImportedModuleName, szModuleName) == 0) // Is this our wanted imported module?.
{
// Original First Thunk to get function name.
IMAGE_THUNK_DATA* pOgFirstThunk = reinterpret_cast<IMAGE_THUNK_DATA*>(m_pModuleBase + pIID->OriginalFirstThunk);
// To get actual function address.
IMAGE_THUNK_DATA* pFirstThunk = reinterpret_cast<IMAGE_THUNK_DATA*>(m_pModuleBase + pIID->FirstThunk);
for (; pOgFirstThunk->u1.AddressOfData; ++pOgFirstThunk, ++pFirstThunk)
{
// Get image import by name.
const IMAGE_IMPORT_BY_NAME* pImageImportByName = reinterpret_cast<IMAGE_IMPORT_BY_NAME*>(m_pModuleBase + pOgFirstThunk->u1.AddressOfData);
if (strcmp(pImageImportByName->Name, szFunctionName) == 0) // Is this our wanted imported function?
{
// Grab function address from firstThunk.
uintptr_t* pFunctionAddress = &pFirstThunk->u1.Function;
// Reference or address?
return bGetFunctionReference ? CMemory(pFunctionAddress) : CMemory(*pFunctionAddress); // Return as CMemory class.
}
}
}
}
return CMemory();
}
//-----------------------------------------------------------------------------
// Purpose: get address of exported function in this module
// Input : *szFunctionName -
// bNullTerminator -
// Output : CMemory
//-----------------------------------------------------------------------------
CMemory CModule::GetExportedFunction(const char* szFunctionName) const
{
if (!m_pDOSHeader || m_pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE) // Is dosHeader valid?
return CMemory();
if (!m_pNTHeaders || m_pNTHeaders->Signature != IMAGE_NT_SIGNATURE) // Is ntHeader valid?
return CMemory();
// Get the location of IMAGE_EXPORT_DIRECTORY for this module by adding the IMAGE_DIRECTORY_ENTRY_EXPORT relative virtual address onto our module base address.
2022-07-15 19:43:29 +02:00
const IMAGE_EXPORT_DIRECTORY* pImageExportDirectory = reinterpret_cast<IMAGE_EXPORT_DIRECTORY*>(m_pModuleBase + m_pNTHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
if (!pImageExportDirectory)
return CMemory();
// Are there any exported functions?
if (!pImageExportDirectory->NumberOfFunctions)
return CMemory();
// Get the location of the functions via adding the relative virtual address from the struct into our module base address.
2022-07-15 19:43:29 +02:00
const DWORD* pAddressOfFunctions = reinterpret_cast<DWORD*>(m_pModuleBase + pImageExportDirectory->AddressOfFunctions);
if (!pAddressOfFunctions)
return CMemory();
// Get the names of the functions via adding the relative virtual address from the struct into our module base Address.
2022-07-15 19:43:29 +02:00
const DWORD* pAddressOfName = reinterpret_cast<DWORD*>(m_pModuleBase + pImageExportDirectory->AddressOfNames);
if (!pAddressOfName)
return CMemory();
// Get the ordinals of the functions via adding the relative virtual Address from the struct into our module base address.
DWORD* pAddressOfOrdinals = reinterpret_cast<DWORD*>(m_pModuleBase + pImageExportDirectory->AddressOfNameOrdinals);
if (!pAddressOfOrdinals)
return CMemory();
for (DWORD i = 0; i < pImageExportDirectory->NumberOfFunctions; i++) // Iterate through all the functions.
{
// Get virtual relative Address of the function name. Then add module base Address to get the actual location.
const char* ExportFunctionName = reinterpret_cast<char*>(reinterpret_cast<DWORD*>(m_pModuleBase + pAddressOfName[i]));
if (strcmp(ExportFunctionName, szFunctionName) == 0) // Is this our wanted exported function?
{
// Get the function ordinal. Then grab the relative virtual address of our wanted function. Then add module base address so we get the actual location.
return CMemory(m_pModuleBase + pAddressOfFunctions[reinterpret_cast<WORD*>(pAddressOfOrdinals)[i]]); // Return as CMemory class.
}
}
return CMemory();
}
//-----------------------------------------------------------------------------
// Purpose: get the module section by name (example: '.rdata', '.text')
// Input : *szSectionName -
// Output : ModuleSections_t
//-----------------------------------------------------------------------------
CModule::ModuleSections_t CModule::GetSectionByName(const char* szSectionName) const
{
for (const ModuleSections_t& section : m_ModuleSections)
{
if (section.m_SectionName.compare(szSectionName) == 0)
return section;
}
return ModuleSections_t();
}
//-----------------------------------------------------------------------------
// Purpose: unlink module from peb
//-----------------------------------------------------------------------------
void CModule::UnlinkFromPEB() const // Disclaimer: This does not bypass GetMappedFileName. That function calls NtQueryVirtualMemory which does a syscall to ntoskrnl for getting info on a section.
{
#define UNLINK_FROM_PEB(entry) \
(entry).Flink->Blink = (entry).Blink; \
(entry).Blink->Flink = (entry).Flink;
const PEB64* processEnvBlock = reinterpret_cast<PEB64*>(__readgsqword(0x60)); // https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
const LIST_ENTRY* inLoadOrderList = &processEnvBlock->Ldr->InLoadOrderModuleList;
for (LIST_ENTRY* entry = inLoadOrderList->Flink; entry != inLoadOrderList; entry = entry->Flink)
{
const PLDR_DATA_TABLE_ENTRY pldrEntry = reinterpret_cast<PLDR_DATA_TABLE_ENTRY>(entry->Flink);
const std::uintptr_t baseAddr = reinterpret_cast<std::uintptr_t>(pldrEntry->DllBase);
if (baseAddr != m_pModuleBase)
continue;
UNLINK_FROM_PEB(pldrEntry->InInitializationOrderLinks);
UNLINK_FROM_PEB(pldrEntry->InMemoryOrderLinks);
UNLINK_FROM_PEB(pldrEntry->InLoadOrderLinks);
break;
}
#undef UNLINK_FROM_PEB
}