r5sdk/r5dev/public/tier1/utlvector.h

1499 lines
40 KiB
C
Raw Normal View History

//====== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
// A growable array class that maintains a free list and keeps elements
// in the same location
//=============================================================================//
#ifndef UTLVECTOR_H
#define UTLVECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include "tier1/utlmemory.h"
#include "tier1/utlblockmemory.h"
#include "tier1/strtools.h"
#define FOR_EACH_VEC( vecName, iteratorName ) \
for ( int iteratorName = 0; (vecName).IsUtlVector && iteratorName < (vecName).Count(); iteratorName++ )
#define FOR_EACH_VEC_BACK( vecName, iteratorName ) \
for ( int iteratorName = (vecName).Count()-1; (vecName).IsUtlVector && iteratorName >= 0; iteratorName-- )
// UtlVector derives from this so we can do the type check above
struct base_vector_t
{
public:
enum { IsUtlVector = true }; // Used to match this at compiletime
};
//-----------------------------------------------------------------------------
// The CUtlVector class:
// A growable array class which doubles in size by default.
// It will always keep all elements consecutive in memory, and may move the
// elements around in memory (via a PvRealloc) when elements are inserted or
// removed. Clients should therefore refer to the elements of the vector
// by index (they should *never* maintain pointers to elements in the vector).
//-----------------------------------------------------------------------------
template< class T, class A = CUtlMemory<T> >
class CUtlVector : public base_vector_t
{
typedef A CAllocator;
public:
typedef T ElemType_t;
typedef T* iterator;
typedef const T* const_iterator;
// Set the growth policy and initial capacity. Count will always be zero. This is different from std::vector
// where the constructor sets count as well as capacity.
// growSize of zero implies the default growth pattern which is exponential.
explicit CUtlVector(int growSize = 0, int initialCapacity = 0);
// Initialize with separately allocated buffer, setting the capacity and count.
// The container will not be growable.
CUtlVector(T* pMemory, int initialCapacity, int initialCount = 0);
~CUtlVector();
// Copy the array.
CUtlVector<T, A>& operator=(const CUtlVector<T, A>& other);
// NOTE<R5SDK>:
// Do not call after initialization or after adding elements.
// This is added so it could be constructed nicely. Since the
// game executable in monolithic, we couldn't import the malloc
// functions, and thus not construct automatically when using
// the game's memalloc singleton.
void Init();
// element access
T& operator[](int i);
const T& operator[](int i) const;
T& Element(int i);
const T& Element(int i) const;
T& Head();
const T& Head() const;
T& Tail();
const T& Tail() const;
// STL compatible member functions. These allow easier use of std::sort
// and they are forward compatible with the C++ 11 range-based for loops.
iterator begin() { return Base(); }
const_iterator begin() const { return Base(); }
iterator end() { return Base() + Count(); }
const_iterator end() const { return Base() + Count(); }
// Gets the base address (can change when adding elements!)
T* Base() { return m_Memory.Base(); }
const T* Base() const { return m_Memory.Base(); }
// Returns the number of elements in the vector
int Count() const;
/// are there no elements? For compatibility with lists.
inline bool IsEmpty(void) const
{
return (Count() == 0);
}
// Is element index valid?
bool IsValidIndex(int i) const;
static int InvalidIndex();
// Adds an element, uses default constructor
int AddToHead();
int AddToTail();
T* AddToTailGetPtr();
int InsertBefore(int elem);
int InsertAfter(int elem);
// Adds an element, uses copy constructor
int AddToHead(const T& src);
int AddToTail(const T& src);
int InsertBefore(int elem, const T& src);
int InsertAfter(int elem, const T& src);
// Adds multiple elements, uses default constructor
int AddMultipleToHead(int num);
int AddMultipleToTail(int num);
int AddMultipleToTail(int num, const T* pToCopy);
int InsertMultipleBefore(int elem, int num);
int InsertMultipleBefore(int elem, int num, const T* pToCopy);
int InsertMultipleAfter(int elem, int num);
// Calls RemoveAll() then AddMultipleToTail.
// SetSize is a synonym for SetCount
void SetSize(int size);
// SetCount deletes the previous contents of the container and sets the
// container to have this many elements.
// Use GetCount to retrieve the current count.
void SetCount(int count);
void SetCountNonDestructively(int count); //sets count by adding or removing elements to tail TODO: This should probably be the default behavior for SetCount
// Calls SetSize and copies each element.
void CopyArray(const T* pArray, int size);
// Fast swap
void Swap(CUtlVector< T, A >& vec);
// Add the specified array to the tail.
int AddVectorToTail(CUtlVector<T, A> const& src);
// Finds an element (element needs operator== defined)
int Find(const T& src) const;
void FillWithValue(const T& src);
bool HasElement(const T& src) const;
// Makes sure we have enough memory allocated to store a requested # of elements
// Use NumAllocated() to retrieve the current capacity.
void EnsureCapacity(int num);
// Makes sure we have at least this many elements
// Use GetCount to retrieve the current count.
void EnsureCount(int num);
// Element removal
void FastRemove(int elem); // doesn't preserve order
void Remove(int elem); // preserves order, shifts elements
bool FindAndRemove(const T& src); // removes first occurrence of src, preserves order, shifts elements
bool FindAndFastRemove(const T& src); // removes first occurrence of src, doesn't preserve order
void RemoveMultiple(int elem, int num); // preserves order, shifts elements
void RemoveMultipleFromHead(int num); // removes num elements from tail
void RemoveMultipleFromTail(int num); // removes num elements from tail
void RemoveAll(); // doesn't deallocate memory
// Memory deallocation
void Purge();
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Compacts the vector to the number of elements actually in use
void Compact();
// Set the size by which it grows when it needs to allocate more memory.
void SetGrowSize(int size) { m_Memory.SetGrowSize(size); }
int NumAllocated() const; // Only use this if you really know what you're doing!
void Sort(int(__cdecl* pfnCompare)(const T*, const T*));
// Call this to quickly sort non-contiguously allocated vectors
void InPlaceQuickSort(int(__cdecl* pfnCompare)(const T*, const T*));
// reverse the order of elements
void Reverse();
#ifdef DBGFLAG_VALIDATE
void Validate(CValidator& validator, char* pchName); // Validate our internal structures
#endif // DBGFLAG_VALIDATE
int SortedFindLessOrEqual(const T& search, bool(__cdecl* pfnLessFunc)(const T& src1, const T& src2, void* pCtx), void* pLessContext) const;
int SortedInsert(const T& src, bool(__cdecl* pfnLessFunc)(const T& src1, const T& src2, void* pCtx), void* pLessContext);
/// sort using std:: and expecting a "<" function to be defined for the type
void Sort(void);
/// sort using std:: with a predicate. e.g. [] -> bool ( T &a, T &b ) { return a < b; }
template <class F> void SortPredicate(F&& predicate);
protected:
// Can't copy this unless we explicitly do it!
CUtlVector(CUtlVector const& vec) { Assert(0); }
// Grows the vector
void GrowVector(int num = 1);
// Shifts elements....
void ShiftElementsRight(int elem, int num = 1);
void ShiftElementsLeft(int elem, int num = 1);
CAllocator m_Memory;
int m_Size;
#ifndef _X360
// For easier access to the elements through the debugger
// it's in release builds so this can be used in libraries correctly
// Unused in r1/r2/r5?
//T* m_pElements;
//inline void ResetDbgInfo()
//{
// m_pElements = Base();
//}
#else
inline void ResetDbgInfo() {}
#endif
private:
void InPlaceQuickSort_r(int(__cdecl* pfnCompare)(const T*, const T*), int nLeft, int nRight);
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T >
class CUtlBlockVector : public CUtlVector< T, CUtlBlockMemory< T, int > >
{
public:
explicit CUtlBlockVector(int growSize = 0, int initSize = 0)
: CUtlVector< T, CUtlBlockMemory< T, int > >(growSize, initSize) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorMT class:
// An array class with spurious mutex protection. Nothing is actually protected
// unless you call Lock and Unlock. Also, the Mutex_t is actually not a type
// but a member which probably isn't used.
//-----------------------------------------------------------------------------
template< class BASE_UTLVECTOR, class MUTEX_TYPE = CThreadFastMutex >
class CUtlVectorMT : public BASE_UTLVECTOR, public MUTEX_TYPE
{
typedef BASE_UTLVECTOR BaseClass;
public:
// MUTEX_TYPE Mutex_t;
// constructor, destructor
explicit CUtlVectorMT(int growSize = 0, int initSize = 0) : BaseClass(growSize, initSize) {}
CUtlVectorMT(typename BaseClass::ElemType_t* pMemory, int numElements) : BaseClass(pMemory, numElements) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorFixed class:
// A array class with a fixed allocation scheme
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CUtlVectorFixed : public CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > >
{
typedef CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorFixed(int growSize = 0, int initSize = 0) : BaseClass(growSize, initSize) {}
CUtlVectorFixed(T* pMemory, int numElements) : BaseClass(pMemory, numElements) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorFixedGrowable class:
// A array class with a fixed allocation scheme backed by a dynamic one
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CUtlVectorFixedGrowable : public CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > >
{
typedef CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorFixedGrowable(int growSize = 0) : BaseClass(growSize, MAX_SIZE) {}
};
// A fixed growable vector that's castable to CUtlVector
template< class T, size_t FIXED_SIZE >
class CUtlVectorFixedGrowableCompat : public CUtlVector< T >
{
typedef CUtlVector< T > BaseClass;
public:
// constructor, destructor
CUtlVectorFixedGrowableCompat(int growSize = 0) : BaseClass(nullptr, FIXED_SIZE, growSize)
{
this->m_Memory.m_pMemory = m_FixedMemory.Base();
}
AlignedByteArray_t< FIXED_SIZE, T > m_FixedMemory;
};
//-----------------------------------------------------------------------------
// The CUtlVectorConservative class:
// A array class with a conservative allocation scheme
//-----------------------------------------------------------------------------
template< class T >
class CUtlVectorConservative : public CUtlVector< T, CUtlMemoryConservative<T> >
{
typedef CUtlVector< T, CUtlMemoryConservative<T> > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorConservative(int growSize = 0, int initSize = 0) : BaseClass(growSize, initSize) {}
CUtlVectorConservative(T* pMemory, int numElements) : BaseClass(pMemory, numElements) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorUltra Conservative class:
// A array class with a very conservative allocation scheme, with customizable allocator
// Especially useful if you have a lot of vectors that are sparse, or if you're
// carefully packing holders of vectors
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable : 4200) // warning C4200: nonstandard extension used : zero-sized array in struct/union
#pragma warning(disable : 4815 ) // warning C4815: 'staticData' : zero-sized array in stack object will have no elements
class CUtlVectorUltraConservativeAllocator
{
public:
static void* Alloc(size_t nSize)
{
return malloc(nSize);
}
static void* Realloc(void* pMem, size_t nSize)
{
return realloc(pMem, nSize);
}
static void Free(void* pMem)
{
free(pMem);
}
static size_t GetSize(void* pMem)
{
return mallocsize(pMem);
}
};
template <typename T, typename A = CUtlVectorUltraConservativeAllocator >
class CUtlVectorUltraConservative : private A
{
public:
// Don't inherit from base_vector_t because multiple-inheritance increases
// class size!
enum { IsUtlVector = true }; // Used to match this at compiletime
CUtlVectorUltraConservative()
{
m_pData = StaticData();
}
~CUtlVectorUltraConservative()
{
RemoveAll();
}
int Count() const
{
return m_pData->m_Size;
}
static int InvalidIndex()
{
return -1;
}
inline bool IsValidIndex(int i) const
{
return (i >= 0) && (i < Count());
}
T& operator[](int i)
{
Assert(IsValidIndex(i));
return m_pData->m_Elements[i];
}
const T& operator[](int i) const
{
Assert(IsValidIndex(i));
return m_pData->m_Elements[i];
}
T& Element(int i)
{
Assert(IsValidIndex(i));
return m_pData->m_Elements[i];
}
const T& Element(int i) const
{
Assert(IsValidIndex(i));
return m_pData->m_Elements[i];
}
void EnsureCapacity(int num)
{
int nCurCount = Count();
if (num <= nCurCount)
{
return;
}
if (m_pData == StaticData())
{
m_pData = (Data_t*)A::Alloc(sizeof(Data_t) + (num * sizeof(T)));
m_pData->m_Size = 0;
}
else
{
int nNeeded = sizeof(Data_t) + (num * sizeof(T));
int nHave = A::GetSize(m_pData);
if (nNeeded > nHave)
{
m_pData = (Data_t*)A::Realloc(m_pData, nNeeded);
}
}
}
int AddToTail(const T& src)
{
int iNew = Count();
EnsureCapacity(Count() + 1);
m_pData->m_Elements[iNew] = src;
m_pData->m_Size++;
return iNew;
}
T* AddToTailGetPtr()
{
return &Element(AddToTail());
}
void RemoveAll()
{
if (Count())
{
for (int i = m_pData->m_Size; --i >= 0; )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&m_pData->m_Elements[i]);
}
}
if (m_pData != StaticData())
{
A::Free(m_pData);
m_pData = StaticData();
}
}
void PurgeAndDeleteElements()
{
if (m_pData != StaticData())
{
for (int i = 0; i < m_pData->m_Size; i++)
{
delete Element(i);
}
RemoveAll();
}
}
void FastRemove(int elem)
{
Assert(IsValidIndex(elem));
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(elem));
if (Count() > 0)
{
if (elem != m_pData->m_Size - 1)
memcpy(&Element(elem), &Element(m_pData->m_Size - 1), sizeof(T));
--m_pData->m_Size;
}
if (!m_pData->m_Size)
{
A::Free(m_pData);
m_pData = StaticData();
}
}
void Remove(int elem)
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(elem));
ShiftElementsLeft(elem);
--m_pData->m_Size;
if (!m_pData->m_Size)
{
A::Free(m_pData);
m_pData = StaticData();
}
}
int Find(const T& src) const
{
int nCount = Count();
for (int i = 0; i < nCount; ++i)
{
if (Element(i) == src)
return i;
}
return -1;
}
bool FindAndRemove(const T& src)
{
int elem = Find(src);
if (elem != -1)
{
Remove(elem);
return true;
}
return false;
}
bool FindAndFastRemove(const T& src)
{
int elem = Find(src);
if (elem != -1)
{
FastRemove(elem);
return true;
}
return false;
}
bool DebugCompileError_ANonVectorIsUsedInThe_FOR_EACH_VEC_Macro(void) const { return true; }
struct Data_t
{
int m_Size;
T m_Elements[];
};
Data_t* m_pData;
private:
void ShiftElementsLeft(int elem, int num = 1)
{
int Size = Count();
Assert(IsValidIndex(elem) || (Size == 0) || (num == 0));
int numToMove = Size - elem - num;
if ((numToMove > 0) && (num > 0))
{
memmove(&Element(elem), &Element(elem + num), numToMove * sizeof(T));
#ifdef _DEBUG
memset(&Element(Size - num), 0xDD, num * sizeof(T));
#endif
}
}
static Data_t* StaticData()
{
static Data_t staticData;
Assert(staticData.m_Size == 0);
return &staticData;
}
};
#pragma warning(pop)
// Make sure nobody adds multiple inheritance and makes this class bigger.
COMPILE_TIME_ASSERT(sizeof(CUtlVectorUltraConservative<int>) == sizeof(void*));
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T >
class CCopyableUtlVector : public CUtlVector< T, CUtlMemory<T> >
{
typedef CUtlVector< T, CUtlMemory<T> > BaseClass;
public:
explicit CCopyableUtlVector(int growSize = 0, int initSize = 0) : BaseClass(growSize, initSize) {}
CCopyableUtlVector(T* pMemory, int numElements) : BaseClass(pMemory, numElements) {}
virtual ~CCopyableUtlVector() {}
CCopyableUtlVector(CCopyableUtlVector const& vec) { this->CopyArray(vec.Base(), vec.Count()); }
CCopyableUtlVector(CUtlVector<T> const& vec) { this->CopyArray(vec.Base(), vec.Count()); }
};
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CCopyableUtlVectorFixed : public CUtlVectorFixed< T, MAX_SIZE >
{
typedef CUtlVectorFixed< T, MAX_SIZE > BaseClass;
public:
explicit CCopyableUtlVectorFixed(int growSize = 0, int initSize = 0) : BaseClass(growSize, initSize) {}
CCopyableUtlVectorFixed(T* pMemory, int numElements) : BaseClass(pMemory, numElements) {}
virtual ~CCopyableUtlVectorFixed() {}
CCopyableUtlVectorFixed(CCopyableUtlVectorFixed const& vec) { this->CopyArray(vec.Base(), vec.Count()); }
};
// TODO (Ilya): It seems like all the functions in CUtlVector are simple enough that they should be inlined.
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline CUtlVector<T, A>::CUtlVector(int growSize, int initSize) :
m_Memory(growSize, initSize), m_Size(0)
{
//ResetDbgInfo();
}
template< typename T, class A >
inline CUtlVector<T, A>::CUtlVector(T* pMemory, int allocationCount, int numElements) :
m_Memory(pMemory, allocationCount), m_Size(numElements)
{
//ResetDbgInfo();
}
template< typename T, class A >
inline CUtlVector<T, A>::~CUtlVector()
{
RemoveAll();
// Destructor of allocator calls purge.
}
template< typename T, class A >
inline CUtlVector<T, A>& CUtlVector<T, A>::operator=(const CUtlVector<T, A>& other)
{
int nCount = other.Count();
SetSize(nCount);
for (int i = 0; i < nCount; i++)
{
(*this)[i] = other[i];
}
return *this;
}
template< typename T, class A >
void CUtlVector<T, A>::Init()
{
m_Memory.m_pMemory = nullptr;
m_Memory.m_nAllocationCount = 0;
m_Memory.m_nGrowSize = 0;
m_Size = 0;
}
//-----------------------------------------------------------------------------
// element access
//-----------------------------------------------------------------------------
template< typename T, class A >
inline T& CUtlVector<T, A>::operator[](int i)
{
Assert(i < m_Size);
return m_Memory[i];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::operator[](int i) const
{
Assert(i < m_Size);
return m_Memory[i];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Element(int i)
{
Assert(i < m_Size);
return m_Memory[i];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Element(int i) const
{
Assert(i < m_Size);
return m_Memory[i];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Head()
{
Assert(m_Size > 0);
return m_Memory[0];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Head() const
{
Assert(m_Size > 0);
return m_Memory[0];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Tail()
{
Assert(m_Size > 0);
return m_Memory[m_Size - 1];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Tail() const
{
Assert(m_Size > 0);
return m_Memory[m_Size - 1];
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Reverse - reverse the order of elements, akin to std::vector<>::reverse()
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::Reverse()
{
for (int i = 0; i < m_Size / 2; i++)
{
V_swap(m_Memory[i], m_Memory[m_Size - 1 - i]);
#if defined( UTLVECTOR_TRACK_STACKS )
if (bTrackingEnabled)
{
V_swap(m_pElementStackStatsIndices[i], m_pElementStackStatsIndices[m_Size - 1 - i]);
}
#endif
}
}
// Count
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::Count() const
{
return m_Size;
}
//-----------------------------------------------------------------------------
// Is element index valid?
//-----------------------------------------------------------------------------
template< typename T, class A >
inline bool CUtlVector<T, A>::IsValidIndex(int i) const
{
return (i >= 0) && (i < m_Size);
}
//-----------------------------------------------------------------------------
// Returns in invalid index
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::InvalidIndex()
{
return -1;
}
//-----------------------------------------------------------------------------
// Grows the vector
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::GrowVector(int num)
{
if (m_Size + num > m_Memory.NumAllocated())
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.Grow(m_Size + num - m_Memory.NumAllocated());
}
m_Size += num;
//ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// finds a particular element
// You must sort the list before using or your results will be wrong
//-----------------------------------------------------------------------------
template< typename T, class A >
int CUtlVector<T, A>::SortedFindLessOrEqual(const T& search, bool(__cdecl* pfnLessFunc)(const T& src1, const T& src2, void* pCtx), void* pLessContext) const
{
int start = 0, end = Count() - 1;
while (start <= end)
{
int mid = (start + end) >> 1;
if (pfnLessFunc(Element(mid), search, pLessContext))
{
start = mid + 1;
}
else if (pfnLessFunc(search, Element(mid), pLessContext))
{
end = mid - 1;
}
else
{
return mid;
}
}
return end;
}
template< typename T, class A >
int CUtlVector<T, A>::SortedInsert(const T& src, bool(__cdecl* pfnLessFunc)(const T& src1, const T& src2, void* pCtx), void* pLessContext)
{
int pos = SortedFindLessOrEqual(src, pfnLessFunc, pLessContext) + 1;
GrowVector();
ShiftElementsRight(pos);
CopyConstruct<T>(&Element(pos), src);
//UTLVECTOR_STACK_STATS_ALLOCATED_SINGLE( pos );
return pos;
}
//-----------------------------------------------------------------------------
// Sorts the vector
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::Sort(int(__cdecl* pfnCompare)(const T*, const T*))
{
typedef int(__cdecl* QSortCompareFunc_t)(const void*, const void*);
if (Count() <= 1)
return;
if (Base())
{
qsort(Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare));
}
else
{
Assert(0);
// this path is untested
// if you want to sort vectors that use a non-sequential memory allocator,
// you'll probably want to patch in a quicksort algorithm here
// I just threw in this bubble sort to have something just in case...
for (int i = m_Size - 1; i >= 0; --i)
{
for (int j = 1; j <= i; ++j)
{
if (pfnCompare(&Element(j - 1), &Element(j)) < 0)
{
V_swap(Element(j - 1), Element(j));
}
}
}
}
}
//----------------------------------------------------------------------------------------------
// Private function that does the in-place quicksort for non-contiguously allocated vectors.
//----------------------------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::InPlaceQuickSort_r(int(__cdecl* pfnCompare)(const T*, const T*), int nLeft, int nRight)
{
int nPivot;
int nLeftIdx = nLeft;
int nRightIdx = nRight;
if (nRight - nLeft > 0)
{
nPivot = (nLeft + nRight) / 2;
while ((nLeftIdx <= nPivot) && (nRightIdx >= nPivot))
{
while ((pfnCompare(&Element(nLeftIdx), &Element(nPivot)) < 0) && (nLeftIdx <= nPivot))
{
nLeftIdx++;
}
while ((pfnCompare(&Element(nRightIdx), &Element(nPivot)) > 0) && (nRightIdx >= nPivot))
{
nRightIdx--;
}
V_swap(Element(nLeftIdx), Element(nRightIdx));
nLeftIdx++;
nRightIdx--;
if ((nLeftIdx - 1) == nPivot)
{
nPivot = nRightIdx = nRightIdx + 1;
}
else if (nRightIdx + 1 == nPivot)
{
nPivot = nLeftIdx = nLeftIdx - 1;
}
}
InPlaceQuickSort_r(pfnCompare, nLeft, nPivot - 1);
InPlaceQuickSort_r(pfnCompare, nPivot + 1, nRight);
}
}
//----------------------------------------------------------------------------------------------
// Call this to quickly sort non-contiguously allocated vectors. Sort uses a slower bubble sort.
//----------------------------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::InPlaceQuickSort(int(__cdecl* pfnCompare)(const T*, const T*))
{
InPlaceQuickSort_r(pfnCompare, 0, Count() - 1);
}
template< typename T, class A >
void CUtlVector<T, A>::Sort(void)
{
//STACK STATS TODO: Do we care about allocation tracking precision enough to match element origins across a sort?
std::sort(Base(), Base() + Count());
}
template< typename T, class A >
template <class F>
void CUtlVector<T, A>::SortPredicate(F&& predicate)
{
std::sort(Base(), Base() + Count(), predicate);
}
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::EnsureCapacity(int num)
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.EnsureCapacity(num);
//ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Makes sure we have at least this many elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::EnsureCount(int num)
{
if (Count() < num)
{
AddMultipleToTail(num - Count());
}
}
//-----------------------------------------------------------------------------
// Shifts elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::ShiftElementsRight(int elem, int num)
{
Assert(IsValidIndex(elem) || (m_Size == 0) || (num == 0));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0))
memmove(&Element(elem + num), &Element(elem), numToMove * sizeof(T));
}
template< typename T, class A >
void CUtlVector<T, A>::ShiftElementsLeft(int elem, int num)
{
Assert(IsValidIndex(elem) || (m_Size == 0) || (num == 0));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0))
{
memmove(&Element(elem), &Element(elem + num), numToMove * sizeof(T));
#ifdef _DEBUG
memset(&Element(m_Size - num), 0xDD, num * sizeof(T));
#endif
}
}
//-----------------------------------------------------------------------------
// Adds an element, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddToHead()
{
return InsertBefore(0);
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddToTail()
{
return InsertBefore(m_Size);
}
template< typename T, class A >
inline T* CUtlVector<T, A>::AddToTailGetPtr()
{
return &Element(AddToTail());
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertAfter(int elem)
{
return InsertBefore(elem + 1);
}
template< typename T, class A >
int CUtlVector<T, A>::InsertBefore(int elem)
{
// Can insert at the end
Assert((elem == Count()) || IsValidIndex(elem));
GrowVector();
ShiftElementsRight(elem);
Construct(&Element(elem));
return elem;
}
//-----------------------------------------------------------------------------
// Adds an element, uses copy constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddToHead(const T& src)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count())));
return InsertBefore(0, src);
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddToTail(const T& src)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count())));
return InsertBefore(m_Size, src);
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertAfter(int elem, const T& src)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count())));
return InsertBefore(elem + 1, src);
}
template< typename T, class A >
int CUtlVector<T, A>::InsertBefore(int elem, const T& src)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count())));
// Can insert at the end
Assert((elem == Count()) || IsValidIndex(elem));
GrowVector();
ShiftElementsRight(elem);
CopyConstruct(&Element(elem), src);
return elem;
}
//-----------------------------------------------------------------------------
// Adds multiple elements, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToHead(int num)
{
return InsertMultipleBefore(0, num);
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToTail(int num)
{
return InsertMultipleBefore(m_Size, num);
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToTail(int num, const T* pToCopy)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || !pToCopy || (pToCopy + num <= Base()) || (pToCopy >= (Base() + Count())));
return InsertMultipleBefore(m_Size, num, pToCopy);
}
template< typename T, class A >
int CUtlVector<T, A>::InsertMultipleAfter(int elem, int num)
{
return InsertMultipleBefore(elem + 1, num);
}
template< typename T, class A >
void CUtlVector<T, A>::SetCount(int count)
{
RemoveAll();
AddMultipleToTail(count);
}
template< typename T, class A >
inline void CUtlVector<T, A>::SetSize(int size)
{
SetCount(size);
}
template< typename T, class A >
void CUtlVector<T, A>::SetCountNonDestructively(int count)
{
int delta = count - m_Size;
if (delta > 0) AddMultipleToTail(delta);
else if (delta < 0) RemoveMultipleFromTail(-delta);
}
template< typename T, class A >
void CUtlVector<T, A>::CopyArray(const T* pArray, int size)
{
// Can't insert something that's in the list... reallocation may hose us
Assert((Base() == NULL) || !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count())));
SetSize(size);
for (int i = 0; i < size; i++)
{
(*this)[i] = pArray[i];
}
}
template< typename T, class A >
void CUtlVector<T, A>::Swap(CUtlVector< T, A >& vec)
{
m_Memory.Swap(vec.m_Memory);
V_swap(m_Size, vec.m_Size);
#ifndef _X360
//V_swap(m_pElements, vec.m_pElements);
#endif
}
template< typename T, class A >
int CUtlVector<T, A>::AddVectorToTail(CUtlVector const& src)
{
Assert(&src != this);
int base = Count();
// Make space.
int nSrcCount = src.Count();
EnsureCapacity(base + nSrcCount);
// Copy the elements.
m_Size += nSrcCount;
for (int i = 0; i < nSrcCount; i++)
{
CopyConstruct(&Element(base + i), src[i]);
}
return base;
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertMultipleBefore(int elem, int num)
{
if (num == 0)
return elem;
// Can insert at the end
Assert((elem == Count()) || IsValidIndex(elem));
GrowVector(num);
ShiftElementsRight(elem, num);
// Invoke default constructors
for (int i = 0; i < num; ++i)
{
Construct(&Element(elem + i));
}
return elem;
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertMultipleBefore(int elem, int num, const T* pToInsert)
{
if (num == 0)
return elem;
// Can insert at the end
Assert((elem == Count()) || IsValidIndex(elem));
GrowVector(num);
ShiftElementsRight(elem, num);
// Invoke default constructors
if (!pToInsert)
{
for (int i = 0; i < num; ++i)
{
Construct(&Element(elem + i));
}
}
else
{
for (int i = 0; i < num; i++)
{
CopyConstruct(&Element(elem + i), pToInsert[i]);
}
}
return elem;
}
//-----------------------------------------------------------------------------
// Finds an element (element needs operator== defined)
//-----------------------------------------------------------------------------
template< typename T, class A >
int CUtlVector<T, A>::Find(const T& src) const
{
for (int i = 0; i < Count(); ++i)
{
if (Element(i) == src)
return i;
}
return -1;
}
template< typename T, class A >
void CUtlVector<T, A>::FillWithValue(const T& src)
{
for (int i = 0; i < Count(); i++)
{
Element(i) = src;
}
}
template< typename T, class A >
bool CUtlVector<T, A>::HasElement(const T& src) const
{
return (Find(src) >= 0);
}
//-----------------------------------------------------------------------------
// Element removal
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::FastRemove(int elem)
{
Assert(IsValidIndex(elem));
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(elem));
if (m_Size > 0)
{
if (elem != m_Size - 1)
memcpy(&Element(elem), &Element(m_Size - 1), sizeof(T));
--m_Size;
}
}
template< typename T, class A >
void CUtlVector<T, A>::Remove(int elem)
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(elem));
ShiftElementsLeft(elem);
--m_Size;
}
template< typename T, class A >
bool CUtlVector<T, A>::FindAndRemove(const T& src)
{
int elem = Find(src);
if (elem != -1)
{
Remove(elem);
return true;
}
return false;
}
template< typename T, class A >
bool CUtlVector<T, A>::FindAndFastRemove(const T& src)
{
int elem = Find(src);
if (elem != -1)
{
FastRemove(elem);
return true;
}
return false;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultiple(int elem, int num)
{
Assert(elem >= 0);
Assert(elem + num <= Count());
// Global scope to resolve conflict with Scaleform 4.0
for (int i = elem + num; --i >= elem; )
::Destruct(&Element(i));
ShiftElementsLeft(elem, num);
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultipleFromHead(int num)
{
Assert(num <= Count());
// Global scope to resolve conflict with Scaleform 4.0
for (int i = num; --i >= 0; )
::Destruct(&Element(i));
ShiftElementsLeft(0, num);
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultipleFromTail(int num)
{
Assert(num <= Count());
// Global scope to resolve conflict with Scaleform 4.0
for (int i = m_Size - num; i < m_Size; i++)
::Destruct(&Element(i));
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveAll()
{
for (int i = m_Size; --i >= 0; )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(i));
}
m_Size = 0;
}
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template< typename T, class A >
inline void CUtlVector<T, A>::Purge()
{
RemoveAll();
m_Memory.Purge();
//ResetDbgInfo();
}
template< typename T, class A >
inline void CUtlVector<T, A>::PurgeAndDeleteElements()
{
for (int i = 0; i < m_Size; i++)
{
delete Element(i);
}
Purge();
}
template< typename T, class A >
inline void CUtlVector<T, A>::Compact()
{
m_Memory.Purge(m_Size);
}
template< typename T, class A >
inline int CUtlVector<T, A>::NumAllocated() const
{
return m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Data and memory validation
//-----------------------------------------------------------------------------
#ifdef DBGFLAG_VALIDATE
template< typename T, class A >
void CUtlVector<T, A>::Validate(CValidator& validator, char* pchName)
{
validator.Push(typeid(*this).name(), this, pchName);
m_Memory.Validate(validator, "m_Memory");
validator.Pop();
}
#endif // DBGFLAG_VALIDATE
// A vector class for storing pointers, so that the elements pointed to by the pointers are deleted
// on exit.
template<class T> class CUtlVectorAutoPurge : public CUtlVector< T, CUtlMemory< T, int> >
{
public:
~CUtlVectorAutoPurge(void)
{
this->PurgeAndDeleteElements();
}
};
// easy string list class with dynamically allocated strings. For use with V_SplitString, etc.
// Frees the dynamic strings in destructor.
class CUtlStringList : public CUtlVectorAutoPurge< char*>
{
public:
void CopyAndAddToTail(char const* pString) // clone the string and add to the end
{
char* pNewStr = new char[1 + strlen(pString)];
strcpy(pNewStr, pString);
AddToTail(pNewStr);
}
static int __cdecl SortFunc(char* const* sz1, char* const* sz2)
{
return strcmp(*sz1, *sz2);
}
CUtlStringList() {}
// !TODO:
//CUtlStringList(char const* pString, char const* pSeparator)
//{
// SplitString(pString, pSeparator);
//}
//CUtlStringList(char const* pString, const char** pSeparators, int nSeparators)
//{
// SplitString2(pString, pSeparators, nSeparators);
//}
//void SplitString(char const* pString, char const* pSeparator)
//{
// V_SplitString(pString, pSeparator, *this);
//}
//void SplitString2(char const* pString, const char** pSeparators, int nSeparators)
//{
// V_SplitString2(pString, pSeparators, nSeparators, *this);
//}
private:
CUtlStringList(const CUtlStringList& other); // copying directly will cause double-release of the same strings; maybe we need to do a deep copy, but unless and until such need arises, this will guard against double-release
};
// <Sergiy> placing it here a few days before Cert to minimize disruption to the rest of codebase
class CSplitString : public CUtlVector<char*, CUtlMemory<char*, int> >
{
public:
CSplitString();
CSplitString(const char* pString, const char* pSeparator);
CSplitString(const char* pString, const char** pSeparators, int nSeparators);
~CSplitString();
void Set(const char* pString, const char** pSeparators, int nSeparators);
//
// NOTE: If you want to make Construct() public and implement Purge() here, you'll have to free m_szBuffer there
//
private:
void Construct(const char* pString, const char** pSeparators, int nSeparators);
void PurgeAndDeleteElements();
private:
char* m_szBuffer; // a copy of original string, with '\0' instead of separators
};
#endif // CCVECTOR_H