r5sdk/r5dev/mathlib/ssenoise.cpp

231 lines
9.6 KiB
C++
Raw Normal View History

//========= Copyright <20> 1996-2006, Valve Corporation, All rights reserved. ============//
//
// Purpose: Fast low quality noise suitable for real time use
//
//=====================================================================================//
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#include "mathlib/ssemath.h"
#include "mathlib/noisedata.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define MAGIC_NUMBER (1<<15) // gives 8 bits of fraction
static fltx4 Four_MagicNumbers = { MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER };
static ALIGN16 int32 idx_mask[4] = { 0xffff, 0xffff, 0xffff, 0xffff };
#define MASK255 (*((fltx4 *)(& idx_mask )))
// returns 0..1
static inline float GetLatticePointValue(int idx_x, int idx_y, int idx_z)
{
int ret_idx = perm_a[idx_x & 0xff];
ret_idx = perm_b[(idx_y + ret_idx) & 0xff];
ret_idx = perm_c[(idx_z + ret_idx) & 0xff];
return impulse_xcoords[ret_idx];
}
fltx4 NoiseSIMD(const fltx4& x, const fltx4& y, const fltx4& z)
{
// use magic to convert to integer index
fltx4 x_idx = AndSIMD(MASK255, AddSIMD(x, Four_MagicNumbers));
fltx4 y_idx = AndSIMD(MASK255, AddSIMD(y, Four_MagicNumbers));
fltx4 z_idx = AndSIMD(MASK255, AddSIMD(z, Four_MagicNumbers));
fltx4 lattice000 = Four_Zeros, lattice001 = Four_Zeros, lattice010 = Four_Zeros, lattice011 = Four_Zeros;
fltx4 lattice100 = Four_Zeros, lattice101 = Four_Zeros, lattice110 = Four_Zeros, lattice111 = Four_Zeros;
// FIXME: Converting the input vectors to int indices will cause load-hit-stores (48 bytes)
// Converting the indexed noise values back to vectors will cause more (128 bytes)
// The noise table could store vectors if we chunked it into 2x2x2 blocks.
fltx4 xfrac = Four_Zeros, yfrac = Four_Zeros, zfrac = Four_Zeros;
#define DOPASS(i) \
{ unsigned int xi = SubInt( x_idx, i ); \
unsigned int yi = SubInt( y_idx, i ); \
unsigned int zi = SubInt( z_idx, i ); \
SubFloat( xfrac, i ) = (xi & 0xff)*(1.0f/256.0f); \
SubFloat( yfrac, i ) = (yi & 0xff)*(1.0f/256.0f); \
SubFloat( zfrac, i ) = (zi & 0xff)*(1.0f/256.0f); \
xi>>=8; \
yi>>=8; \
zi>>=8; \
\
SubFloat( lattice000, i ) = GetLatticePointValue( xi,yi,zi ); \
SubFloat( lattice001, i ) = GetLatticePointValue( xi,yi,zi+1 ); \
SubFloat( lattice010, i ) = GetLatticePointValue( xi,yi+1,zi ); \
SubFloat( lattice011, i ) = GetLatticePointValue( xi,yi+1,zi+1 ); \
SubFloat( lattice100, i ) = GetLatticePointValue( xi+1,yi,zi ); \
SubFloat( lattice101, i ) = GetLatticePointValue( xi+1,yi,zi+1 ); \
SubFloat( lattice110, i ) = GetLatticePointValue( xi+1,yi+1,zi ); \
SubFloat( lattice111, i ) = GetLatticePointValue( xi+1,yi+1,zi+1 ); \
}
DOPASS(0);
DOPASS(1);
DOPASS(2);
DOPASS(3);
// now, we have 8 lattice values for each of four points as m128s, and interpolant values for
// each axis in m128 form in [xyz]frac. Perform the trilinear interpolation as SIMD ops
// first, do x interpolation
fltx4 l2d00 = AddSIMD(lattice000, MulSIMD(xfrac, SubSIMD(lattice100, lattice000)));
fltx4 l2d01 = AddSIMD(lattice001, MulSIMD(xfrac, SubSIMD(lattice101, lattice001)));
fltx4 l2d10 = AddSIMD(lattice010, MulSIMD(xfrac, SubSIMD(lattice110, lattice010)));
fltx4 l2d11 = AddSIMD(lattice011, MulSIMD(xfrac, SubSIMD(lattice111, lattice011)));
// now, do y interpolation
fltx4 l1d0 = AddSIMD(l2d00, MulSIMD(yfrac, SubSIMD(l2d10, l2d00)));
fltx4 l1d1 = AddSIMD(l2d01, MulSIMD(yfrac, SubSIMD(l2d11, l2d01)));
// final z interpolation
fltx4 rslt = AddSIMD(l1d0, MulSIMD(zfrac, SubSIMD(l1d1, l1d0)));
// map to 0..1
return MulSIMD(Four_Twos, SubSIMD(rslt, Four_PointFives));
}
static inline void GetVectorLatticePointValue(int idx, fltx4& x, fltx4& y, fltx4& z,
int idx_x, int idx_y, int idx_z)
{
int ret_idx = perm_a[idx_x & 0xff];
ret_idx = perm_b[(idx_y + ret_idx) & 0xff];
ret_idx = perm_c[(idx_z + ret_idx) & 0xff];
float const* pData = s_randomGradients + ret_idx * 3;
SubFloat(x, idx) = pData[0];
SubFloat(y, idx) = pData[1];
SubFloat(z, idx) = pData[2];
}
FourVectors DNoiseSIMD(const fltx4& x, const fltx4& y, const fltx4& z)
{
// use magic to convert to integer index
fltx4 x_idx = AndSIMD(MASK255, AddSIMD(x, Four_MagicNumbers));
fltx4 y_idx = AndSIMD(MASK255, AddSIMD(y, Four_MagicNumbers));
fltx4 z_idx = AndSIMD(MASK255, AddSIMD(z, Four_MagicNumbers));
fltx4 xlattice000 = Four_Zeros, xlattice001 = Four_Zeros, xlattice010 = Four_Zeros, xlattice011 = Four_Zeros;
fltx4 xlattice100 = Four_Zeros, xlattice101 = Four_Zeros, xlattice110 = Four_Zeros, xlattice111 = Four_Zeros;
fltx4 ylattice000 = Four_Zeros, ylattice001 = Four_Zeros, ylattice010 = Four_Zeros, ylattice011 = Four_Zeros;
fltx4 ylattice100 = Four_Zeros, ylattice101 = Four_Zeros, ylattice110 = Four_Zeros, ylattice111 = Four_Zeros;
fltx4 zlattice000 = Four_Zeros, zlattice001 = Four_Zeros, zlattice010 = Four_Zeros, zlattice011 = Four_Zeros;
fltx4 zlattice100 = Four_Zeros, zlattice101 = Four_Zeros, zlattice110 = Four_Zeros, zlattice111 = Four_Zeros;
// FIXME: Converting the input vectors to int indices will cause load-hit-stores (48 bytes)
// Converting the indexed noise values back to vectors will cause more (128 bytes)
// The noise table could store vectors if we chunked it into 2x2x2 blocks.
fltx4 xfrac = Four_Zeros, yfrac = Four_Zeros, zfrac = Four_Zeros;
#define DODPASS(i) \
{ unsigned int xi = SubInt( x_idx, i ); \
unsigned int yi = SubInt( y_idx, i ); \
unsigned int zi = SubInt( z_idx, i ); \
SubFloat( xfrac, i ) = (xi & 0xff)*(1.0f/256.0f); \
SubFloat( yfrac, i ) = (yi & 0xff)*(1.0f/256.0f); \
SubFloat( zfrac, i ) = (zi & 0xff)*(1.0f/256.0f); \
xi>>=8; \
yi>>=8; \
zi>>=8; \
\
GetVectorLatticePointValue( i, xlattice000, ylattice000, zlattice000, xi,yi,zi ); \
GetVectorLatticePointValue( i, xlattice001, ylattice001, zlattice001, xi,yi,zi+1 ); \
GetVectorLatticePointValue( i, xlattice010, ylattice010, zlattice010, xi,yi+1,zi ); \
GetVectorLatticePointValue( i, xlattice011, ylattice011, zlattice011, xi,yi+1,zi+1 ); \
GetVectorLatticePointValue( i, xlattice100, ylattice100, zlattice100, xi+1,yi,zi ); \
GetVectorLatticePointValue( i, xlattice101, ylattice101, zlattice101, xi+1,yi,zi+1 ); \
GetVectorLatticePointValue( i, xlattice110, ylattice110, zlattice110, xi+1,yi+1,zi ); \
GetVectorLatticePointValue( i, xlattice111, ylattice111, zlattice111, xi+1,yi+1,zi+1 ); \
}
DODPASS(0);
DODPASS(1);
DODPASS(2);
DODPASS(3);
// now, we have 8 lattice values for each of four points as m128s, and interpolant values for
// each axis in m128 form in [xyz]frac. Perform the trilinear interpolation as SIMD ops
// first, do x interpolation
fltx4 xl2d00 = AddSIMD(xlattice000, MulSIMD(xfrac, SubSIMD(xlattice100, xlattice000)));
fltx4 xl2d01 = AddSIMD(xlattice001, MulSIMD(xfrac, SubSIMD(xlattice101, xlattice001)));
fltx4 xl2d10 = AddSIMD(xlattice010, MulSIMD(xfrac, SubSIMD(xlattice110, xlattice010)));
fltx4 xl2d11 = AddSIMD(xlattice011, MulSIMD(xfrac, SubSIMD(xlattice111, xlattice011)));
// now, do y interpolation
fltx4 xl1d0 = AddSIMD(xl2d00, MulSIMD(yfrac, SubSIMD(xl2d10, xl2d00)));
fltx4 xl1d1 = AddSIMD(xl2d01, MulSIMD(yfrac, SubSIMD(xl2d11, xl2d01)));
// final z interpolation
FourVectors rslt;
rslt.x = AddSIMD(xl1d0, MulSIMD(zfrac, SubSIMD(xl1d1, xl1d0)));
fltx4 yl2d00 = AddSIMD(ylattice000, MulSIMD(xfrac, SubSIMD(ylattice100, ylattice000)));
fltx4 yl2d01 = AddSIMD(ylattice001, MulSIMD(xfrac, SubSIMD(ylattice101, ylattice001)));
fltx4 yl2d10 = AddSIMD(ylattice010, MulSIMD(xfrac, SubSIMD(ylattice110, ylattice010)));
fltx4 yl2d11 = AddSIMD(ylattice011, MulSIMD(xfrac, SubSIMD(ylattice111, ylattice011)));
// now, do y interpolation
fltx4 yl1d0 = AddSIMD(yl2d00, MulSIMD(yfrac, SubSIMD(yl2d10, yl2d00)));
fltx4 yl1d1 = AddSIMD(yl2d01, MulSIMD(yfrac, SubSIMD(yl2d11, yl2d01)));
// final z interpolation
rslt.y = AddSIMD(yl1d0, MulSIMD(zfrac, SubSIMD(yl1d1, yl1d0)));
fltx4 zl2d00 = AddSIMD(zlattice000, MulSIMD(xfrac, SubSIMD(zlattice100, zlattice000)));
fltx4 zl2d01 = AddSIMD(zlattice001, MulSIMD(xfrac, SubSIMD(zlattice101, zlattice001)));
fltx4 zl2d10 = AddSIMD(zlattice010, MulSIMD(xfrac, SubSIMD(zlattice110, zlattice010)));
fltx4 zl2d11 = AddSIMD(zlattice011, MulSIMD(xfrac, SubSIMD(zlattice111, zlattice011)));
// now, do y interpolation
fltx4 zl1d0 = AddSIMD(zl2d00, MulSIMD(yfrac, SubSIMD(zl2d10, zl2d00)));
fltx4 zl1d1 = AddSIMD(zl2d01, MulSIMD(yfrac, SubSIMD(zl2d11, zl2d01)));
// final z interpolation
rslt.z = AddSIMD(zl1d0, MulSIMD(zfrac, SubSIMD(zl1d1, zl1d0)));
return rslt;
}
fltx4 NoiseSIMD(FourVectors const& pos)
{
return NoiseSIMD(pos.x, pos.y, pos.z);
}
FourVectors DNoiseSIMD(FourVectors const& pos)
{
return DNoiseSIMD(pos.x, pos.y, pos.z);
}
FourVectors CurlNoiseSIMD(FourVectors const& pos)
{
FourVectors fl4Comp1 = DNoiseSIMD(pos);
FourVectors fl4Pos = pos;
fl4Pos.x = AddSIMD(fl4Pos.x, ReplicateX4(43.256f));
fl4Pos.y = AddSIMD(fl4Pos.y, ReplicateX4(-67.89f));
fl4Pos.z = AddSIMD(fl4Pos.z, ReplicateX4(1338.2f));
FourVectors fl4Comp2 = DNoiseSIMD(fl4Pos);
fl4Pos.x = AddSIMD(fl4Pos.x, ReplicateX4(-129.856f));
fl4Pos.y = AddSIMD(fl4Pos.y, ReplicateX4(-967.23f));
fl4Pos.z = AddSIMD(fl4Pos.z, ReplicateX4(2338.98f));
FourVectors fl4Comp3 = DNoiseSIMD(fl4Pos);
// now we have the 3 derivatives of a vector valued field. return the curl of the field.
FourVectors fl4Ret;
fl4Ret.x = SubSIMD(fl4Comp3.y, fl4Comp2.z);
fl4Ret.y = SubSIMD(fl4Comp1.z, fl4Comp3.x);
fl4Ret.z = SubSIMD(fl4Comp2.x, fl4Comp1.y);
return fl4Ret;
}