r5sdk/r5dev/mathlib/vector.h

3135 lines
77 KiB
C
Raw Normal View History

//====== Copyright 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR_H
#define VECTOR_H
#ifdef _WIN32
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
#pragma once
#endif
#include <math.h>
#include <float.h>
// For vec_t, put this somewhere else?
#include "tier0/basetypes.h"
#if defined( _PS3 )
//#include <ssemath.h>
#include <vectormath/c/vectormath_aos.h>
#include "tier0/platform.h"
#include "mathlib/math_pfns.h"
#endif
#ifndef PLATFORM_PPC // we want our linux with xmm support
// For MMX intrinsics
#include <xmmintrin.h>
#endif
#ifndef ALIGN16_POST
#define ALIGN16_POST
#endif
#define NO_MALLOC_OVERRIDE
#if !defined(NO_MALLOC_OVERRIDE)
#include "tier0/memalloc.h"
#endif // !NO_MALLOC_OVERRIDE
#include "tier0/dbg.h"
#include "tier0/platform.h"
#if !defined( __SPU__ )
#include "tier0/threadtools.h"
#endif
#include "mathlib/vector2d.h"
#include "mathlib/math_pfns.h"
#include "vstdlib/random.h"
// Uncomment this to add extra Asserts to check for NANs, uninitialized vecs, etc.
//#define VECTOR_PARANOIA 1
// Uncomment this to make sure we don't do anything slow with our vectors
//#define VECTOR_NO_SLOW_OPERATIONS 1
// Used to make certain code easier to read.
#define X_INDEX 0
#define Y_INDEX 1
#define Z_INDEX 2
#ifdef VECTOR_PARANOIA
#define CHECK_VALID( _v) Assert( (_v).IsValid() )
#else
#ifdef GNUC
#define CHECK_VALID( _v)
#else
#define CHECK_VALID( _v) 0
#endif
#endif
#define VecToString(v) (static_cast<const char *>(CFmtStr("(%f, %f, %f)", (v).x, (v).y, (v).z))) // ** Note: this generates a temporary, don't hold reference!
class VectorByValue;
class QAngle;
//=========================================================
// 3D Vector
//=========================================================
class Vector3D
{
public:
// Members
vec_t x, y, z;
// Construction/destruction:
Vector3D(void);
Vector3D(vec_t X, vec_t Y, vec_t Z);
// Initialization
void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f);
// TODO (Ilya): Should there be an init that takes a single float for consistency?
// Got any nasty NAN's?
bool IsValid() const;
bool IsReasonable(float range = 1000000) const; ///< Check for reasonably-sized values (if used as a game world position)
void Invalidate();
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
vec_t* Base();
vec_t const* Base() const;
// Cast to Vector2D...
Vector2D& AsVector2D();
const Vector2D& AsVector2D() const;
// Cast to QAngle...
QAngle& AsQAngle();
const QAngle& AsQAngle() const;
// Initialization methods
void Random(vec_t minVal, vec_t maxVal);
inline void Zero(); ///< zero out a vector
// equality
bool operator==(const Vector3D& v) const;
bool operator!=(const Vector3D& v) const;
// arithmetic operations
FORCEINLINE Vector3D& operator+=(const Vector3D& v);
FORCEINLINE Vector3D& operator-=(const Vector3D& v);
FORCEINLINE Vector3D& operator*=(const Vector3D& v);
FORCEINLINE Vector3D& operator*=(float s);
FORCEINLINE Vector3D& operator/=(const Vector3D& v);
FORCEINLINE Vector3D& operator/=(float s);
FORCEINLINE Vector3D& operator+=(float fl); ///< broadcast add
FORCEINLINE Vector3D& operator-=(float fl); ///< broadcast sub
// negate the vector components
void Negate();
// Get the vector's magnitude.
inline vec_t Length() const;
// Get the vector's magnitude squared.
FORCEINLINE vec_t LengthSqr(void) const
{
CHECK_VALID(*this);
return (x * x + y * y + z * z);
}
// Get one over the vector's length
// via fast hardware approximation
inline vec_t LengthRecipFast(void) const
{
return FastRSqrtFast(LengthSqr());
}
// return true if this vector is (0,0,0) within tolerance
bool IsZero(float tolerance = 0.01f) const
{
return (x > -tolerance && x < tolerance&&
y > -tolerance && y < tolerance&&
z > -tolerance && z < tolerance);
}
// return true if this vector is exactly (0,0,0) -- only fast if vector is coming from memory, not registers
inline bool IsZeroFast() const RESTRICT
{
static_assert(sizeof(vec_t) == sizeof(int));
return (*reinterpret_cast<const int*>(&x) == 0 &&
*reinterpret_cast<const int*>(&y) == 0 &&
*reinterpret_cast<const int*>(&z) == 0);
}
vec_t NormalizeInPlace(); ///< Normalize all components
vec_t NormalizeInPlaceSafe(const Vector3D& vFallback);///< Normalize all components
Vector3D Normalized() const; ///< Return normalized vector
Vector3D NormalizedSafe(const Vector3D& vFallback)const; ///< Return normalized vector, falling back to vFallback if the length of this is 0
bool IsLengthGreaterThan(float val) const;
bool IsLengthLessThan(float val) const;
// check if a vector is within the box defined by two other vectors
FORCEINLINE bool WithinAABox(Vector3D const& boxmin, Vector3D const& boxmax);
// Get the distance from this vector to the other one.
vec_t DistTo(const Vector3D& vOther) const;
// Get the distance from this vector to the other one squared.
// NJS: note, VC wasn't inlining it correctly in several deeply nested inlines due to being an 'out of line' inline.
// may be able to tidy this up after switching to VC7
FORCEINLINE vec_t DistToSqr(const Vector3D& vOther) const
{
Vector3D delta;
delta.x = x - vOther.x;
delta.y = y - vOther.y;
delta.z = z - vOther.z;
return delta.LengthSqr();
}
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual vector equation (because it's done per-component
// rather than per-vector).
void MulAdd(const Vector3D& a, const Vector3D& b, float scalar);
// Dot product.
vec_t Dot(const Vector3D& vOther) const;
// assignment
Vector3D& operator=(const Vector3D& vOther);
// returns 0, 1, 2 corresponding to the component with the largest absolute value
inline int LargestComponent() const;
inline vec_t LargestComponentValue() const;
inline int SmallestComponent() const;
inline vec_t SmallestComponentValue() const;
// 2d
vec_t Length2D(void) const;
vec_t Length2DSqr(void) const;
/// get the component of this vector parallel to some other given vector
inline Vector3D ProjectOnto(const Vector3D& onto);
operator VectorByValue& () { return *((VectorByValue*)(this)); }
operator const VectorByValue& () const { return *((const VectorByValue*)(this)); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// Vector(const Vector &vOther);
// arithmetic operations
Vector3D operator-(void) const;
Vector3D operator+(const Vector3D& v) const;
Vector3D operator-(const Vector3D& v) const;
Vector3D operator*(const Vector3D& v) const;
Vector3D operator/(const Vector3D& v) const;
Vector3D operator+(float fl) const;
Vector3D operator-(float fl) const;
Vector3D operator*(float fl) const;
Vector3D operator/(float fl) const;
// Cross product between two vectors.
Vector3D Cross(const Vector3D& vOther) const;
// Returns a vector with the min or max in X, Y, and Z.
Vector3D Min(const Vector3D& vOther) const;
Vector3D Max(const Vector3D& vOther) const;
#else
private:
// No copy constructors allowed if we're in optimal mode
Vector(const Vector& vOther);
#endif
};
// Zero the object -- necessary for CNetworkVar and possibly other cases.
inline void EnsureValidValue(Vector3D& x) { x.Zero(); }
#define USE_M64S defined( PLATFORM_WINDOWS_PC )
//=========================================================
// 4D Short Vector (aligned on 8-byte boundary)
//=========================================================
class ALIGN8 ShortVector
{
public:
short x, y, z, w;
// Initialization
void Init(short ix = 0, short iy = 0, short iz = 0, short iw = 0);
#if USE_M64S
__m64& AsM64() { return *(__m64*) & x; }
const __m64& AsM64() const { return *(const __m64*) & x; }
#endif
// Setter
void Set(const ShortVector& vOther);
void Set(const short ix, const short iy, const short iz, const short iw);
// array access...
short operator[](int i) const;
short& operator[](int i);
// Base address...
short* Base();
short const* Base() const;
// equality
bool operator==(const ShortVector& v) const;
bool operator!=(const ShortVector& v) const;
// Arithmetic operations
FORCEINLINE ShortVector& operator+=(const ShortVector& v);
FORCEINLINE ShortVector& operator-=(const ShortVector& v);
FORCEINLINE ShortVector& operator*=(const ShortVector& v);
FORCEINLINE ShortVector& operator*=(float s);
FORCEINLINE ShortVector& operator/=(const ShortVector& v);
FORCEINLINE ShortVector& operator/=(float s);
FORCEINLINE ShortVector operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// ShortVector(ShortVector const& vOther);
// No assignment operators either...
// ShortVector& operator=( ShortVector const& src );
} ALIGN8_POST;
//=========================================================
// 4D Integer Vector
//=========================================================
class IntVector4D
{
public:
int x, y, z, w;
// Initialization
void Init(int ix = 0, int iy = 0, int iz = 0, int iw = 0);
#if USE_M64S
__m64& AsM64() { return *(__m64*) & x; }
const __m64& AsM64() const { return *(const __m64*) & x; }
#endif
// Setter
void Set(const IntVector4D& vOther);
void Set(const int ix, const int iy, const int iz, const int iw);
// array access...
int operator[](int i) const;
int& operator[](int i);
// Base address...
int* Base();
int const* Base() const;
// equality
bool operator==(const IntVector4D& v) const;
bool operator!=(const IntVector4D& v) const;
// Arithmetic operations
FORCEINLINE IntVector4D& operator+=(const IntVector4D& v);
FORCEINLINE IntVector4D& operator-=(const IntVector4D& v);
FORCEINLINE IntVector4D& operator*=(const IntVector4D& v);
FORCEINLINE IntVector4D& operator*=(float s);
FORCEINLINE IntVector4D& operator/=(const IntVector4D& v);
FORCEINLINE IntVector4D& operator/=(float s);
FORCEINLINE IntVector4D operator*(float fl) const;
private:
// No copy constructors allowed if we're in optimal mode
// IntVector4D(IntVector4D const& vOther);
// No assignment operators either...
// IntVector4D& operator=( IntVector4D const& src );
};
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class VectorByValue : public Vector3D
{
public:
// Construction/destruction:
VectorByValue(void) : Vector3D() {}
VectorByValue(vec_t X, vec_t Y, vec_t Z) : Vector3D(X, Y, Z) {}
VectorByValue(const VectorByValue& vOther) { *this = vOther; }
};
//-----------------------------------------------------------------------------
// Utility to simplify table construction. No constructor means can use
// traditional C-style initialization
//-----------------------------------------------------------------------------
class TableVector
{
public:
vec_t x, y, z;
operator Vector3D& () { return *((Vector3D*)(this)); }
operator const Vector3D& () const { return *((const Vector3D*)(this)); }
// array access...
inline vec_t& operator[](int i)
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
inline vec_t operator[](int i) const
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
};
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 VectorAligned : public Vector3D
{
public:
inline VectorAligned(void) {};
inline VectorAligned(vec_t X, vec_t Y, vec_t Z)
{
Init(X, Y, Z);
}
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
// No copy constructors allowed if we're in optimal mode
VectorAligned(const VectorAligned& vOther);
VectorAligned(const Vector& vOther);
#else
public:
explicit VectorAligned(const Vector3D& vOther)
{
Init(vOther.x, vOther.y, vOther.z);
}
VectorAligned& operator=(const Vector3D& vOther)
{
Init(vOther.x, vOther.y, vOther.z);
return *this;
}
VectorAligned& operator=(const VectorAligned& vOther)
{
// we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base()));
#elif _WIN32
_mm_store_ps(Base(), _mm_load_ps(vOther.Base()));
#else
Init(vOther.x, vOther.y, vOther.z);
#endif
return *this;
}
#endif
float w; // this space is used anyway
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[](size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new[](size_t nSize, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new[](size_t nSize, int /*nBlockUse*/, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete[](void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete[](void* p, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete[](void* p, int /*nBlockUse*/, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
// please don't allocate a single quaternion...
void* operator new (size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new (size_t nSize, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new (size_t nSize, int /*nBlockUse*/, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete (void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete (void* p, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete (void* p, int /*nBlockUse*/, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
#endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector related operations
//-----------------------------------------------------------------------------
// Vector clear
FORCEINLINE void VectorClear(Vector3D& a);
// Copy
FORCEINLINE void VectorCopy(const Vector3D& src, Vector3D& dst);
// Vector arithmetic
FORCEINLINE void VectorAdd(const Vector3D& a, const Vector3D& b, Vector3D& result);
FORCEINLINE void VectorSubtract(const Vector3D& a, const Vector3D& b, Vector3D& result);
FORCEINLINE void VectorMultiply(const Vector3D& a, vec_t b, Vector3D& result);
FORCEINLINE void VectorMultiply(const Vector3D& a, const Vector3D& b, Vector3D& result);
FORCEINLINE void VectorDivide(const Vector3D& a, vec_t b, Vector3D& result);
FORCEINLINE void VectorDivide(const Vector3D& a, const Vector3D& b, Vector3D& result);
inline void VectorScale(const Vector3D& in, vec_t scale, Vector3D& result);
void VectorMA(const Vector3D& start, float scale, const Vector3D& direction, Vector3D& dest);
// Vector equality with tolerance
bool VectorsAreEqual(const Vector3D& src1, const Vector3D& src2, float tolerance = 0.0f);
#define VectorExpand(v) (v).x, (v).y, (v).z
// Normalization
// FIXME: Can't use quite yet
//vec_t VectorNormalize( Vector& v );
// Length
inline vec_t VectorLength(const Vector3D& v);
// Dot Product
FORCEINLINE vec_t DotProduct(const Vector3D& a, const Vector3D& b);
// Cross product
void CrossProduct(const Vector3D& a, const Vector3D& b, Vector3D& result);
// Store the min or max of each of x, y, and z into the result.
void VectorMin(const Vector3D& a, const Vector3D& b, Vector3D& result);
void VectorMax(const Vector3D& a, const Vector3D& b, Vector3D& result);
// Linearly interpolate between two vectors
void VectorLerp(const Vector3D& src1, const Vector3D& src2, vec_t t, Vector3D& dest);
Vector3D VectorLerp(const Vector3D& src1, const Vector3D& src2, vec_t t);
FORCEINLINE Vector3D ReplicateToVector(float x)
{
return Vector3D(x, x, x);
}
FORCEINLINE bool PointWithinViewAngle(Vector3D const& vecSrcPosition,
Vector3D const& vecTargetPosition,
Vector3D const& vecLookDirection, float flCosHalfFOV)
{
Vector3D vecDelta = vecTargetPosition - vecSrcPosition;
float cosDiff = DotProduct(vecLookDirection, vecDelta);
if (flCosHalfFOV <= 0) // >180
{
// signs are different, answer is implicit
if (cosDiff > 0)
return true;
// a/sqrt(b) > c == a^2 < b * c ^2
// IFF left and right sides are <= 0
float flLen2 = vecDelta.LengthSqr();
return (cosDiff * cosDiff <= flLen2 * flCosHalfFOV * flCosHalfFOV);
}
else // flCosHalfFOV > 0
{
// signs are different, answer is implicit
if (cosDiff < 0)
return false;
// a/sqrt(b) > c == a^2 > b * c ^2
// IFF left and right sides are >= 0
float flLen2 = vecDelta.LengthSqr();
return (cosDiff * cosDiff >= flLen2 * flCosHalfFOV * flCosHalfFOV);
}
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Cross product
Vector3D CrossProduct(const Vector3D& a, const Vector3D& b);
// Random vector creation
Vector3D RandomVector(vec_t minVal, vec_t maxVal);
#endif
float RandomVectorInUnitSphere(Vector3D* pVector);
Vector3D RandomVectorInUnitSphere();
Vector3D RandomVectorInUnitSphere(IUniformRandomStream* pRnd);
float RandomVectorInUnitCircle(Vector2D* pVector);
Vector3D RandomVectorOnUnitSphere();
Vector3D RandomVectorOnUnitSphere(IUniformRandomStream* pRnd);
//-----------------------------------------------------------------------------
//
// Inlined Vector methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector3D::Vector3D(void)
{
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN;
#endif
#endif
}
inline Vector3D::Vector3D(vec_t X, vec_t Y, vec_t Z)
{
x = X; y = Y; z = Z;
CHECK_VALID(*this);
}
//inline Vector::Vector(const float *pFloat)
//{
// Assert( pFloat );
// x = pFloat[0]; y = pFloat[1]; z = pFloat[2];
// CHECK_VALID(*this);
//}
#if 0
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector::Vector(const Vector& vOther)
{
CHECK_VALID(vOther);
x = vOther.x; y = vOther.y; z = vOther.z;
}
#endif
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector3D::Init(vec_t ix, vec_t iy, vec_t iz)
{
x = ix; y = iy; z = iz;
CHECK_VALID(*this);
}
#if !defined(__SPU__)
inline void Vector3D::Random(vec_t minVal, vec_t maxVal)
{
x = RandomFloat(minVal, maxVal);
y = RandomFloat(minVal, maxVal);
z = RandomFloat(minVal, maxVal);
CHECK_VALID(*this);
}
#endif
// This should really be a single opcode on the PowerPC (move r0 onto the vec reg)
inline void Vector3D::Zero()
{
x = y = z = 0.0f;
}
inline void VectorClear(Vector3D& a)
{
a.x = a.y = a.z = 0.0f;
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector3D& Vector3D::operator=(const Vector3D& vOther)
{
CHECK_VALID(vOther);
x = vOther.x; y = vOther.y; z = vOther.z;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector3D::operator[](int i)
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
inline vec_t Vector3D::operator[](int i) const
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector3D::Base()
{
return (vec_t*)this;
}
inline vec_t const* Vector3D::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// Cast to Vector2D...
//-----------------------------------------------------------------------------
inline Vector2D& Vector3D::AsVector2D()
{
return *(Vector2D*)this;
}
inline const Vector2D& Vector3D::AsVector2D() const
{
return *(const Vector2D*)this;
}
//-----------------------------------------------------------------------------
// Cast to QAngle...
//-----------------------------------------------------------------------------
inline QAngle& Vector3D::AsQAngle()
{
return *(QAngle*)this;
}
inline const QAngle& Vector3D::AsQAngle() const
{
return *(const QAngle*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector3D::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
//-----------------------------------------------------------------------------
// IsReasonable?
//-----------------------------------------------------------------------------
inline bool Vector3D::IsReasonable(float range) const
{
return (Length() < range);
}
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void Vector3D::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector3D::operator==(const Vector3D& src) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x == x) && (src.y == y) && (src.z == z);
}
inline bool Vector3D::operator!=(const Vector3D& src) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x != x) || (src.y != y) || (src.z != z);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
FORCEINLINE void VectorCopy(const Vector3D& src, Vector3D& dst)
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
inline void Vector3D::CopyToArray(float* rgfl) const
{
Assert(rgfl);
CHECK_VALID(*this);
rgfl[0] = x, rgfl[1] = y, rgfl[2] = z;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
// #pragma message("TODO: these should be SSE")
inline void Vector3D::Negate()
{
CHECK_VALID(*this);
x = -x; y = -y; z = -z;
}
FORCEINLINE Vector3D& Vector3D::operator+=(const Vector3D& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x += v.x; y += v.y; z += v.z;
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator-=(const Vector3D& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x -= v.x; y -= v.y; z -= v.z;
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator*=(const Vector3D& v)
{
CHECK_VALID(v);
x *= v.x;
y *= v.y;
z *= v.z;
CHECK_VALID(*this);
return *this;
}
// this ought to be an opcode.
FORCEINLINE Vector3D& Vector3D::operator+=(float fl)
{
x += fl;
y += fl;
z += fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator-=(float fl)
{
x -= fl;
y -= fl;
z -= fl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator/=(float fl)
{
Assert(fl != 0.0f);
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
CHECK_VALID(*this);
return *this;
}
FORCEINLINE Vector3D& Vector3D::operator/=(const Vector3D& v)
{
CHECK_VALID(v);
Assert(v.x != 0.0f && v.y != 0.0f && v.z != 0.0f);
x /= v.x;
y /= v.y;
z /= v.z;
CHECK_VALID(*this);
return *this;
}
// get the component of this vector parallel to some other given vector
inline Vector3D Vector3D::ProjectOnto(const Vector3D& onto)
{
return onto * (this->Dot(onto) / (onto.LengthSqr()));
}
//-----------------------------------------------------------------------------
//
// Inlined Short Vector methods
//
//-----------------------------------------------------------------------------
inline void ShortVector::Init(short ix, short iy, short iz, short iw)
{
x = ix; y = iy; z = iz; w = iw;
}
FORCEINLINE void ShortVector::Set(const ShortVector& vOther)
{
x = vOther.x;
y = vOther.y;
z = vOther.z;
w = vOther.w;
}
FORCEINLINE void ShortVector::Set(const short ix, const short iy, const short iz, const short iw)
{
x = ix;
y = iy;
z = iz;
w = iw;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline short ShortVector::operator[](int i) const
{
Assert((i >= 0) && (i < 4));
return ((short*)this)[i];
}
inline short& ShortVector::operator[](int i)
{
Assert((i >= 0) && (i < 4));
return ((short*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline short* ShortVector::Base()
{
return (short*)this;
}
inline short const* ShortVector::Base() const
{
return (short const*)this;
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool ShortVector::operator==(const ShortVector& src) const
{
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool ShortVector::operator!=(const ShortVector& src) const
{
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE ShortVector& ShortVector::operator+=(const ShortVector& v)
{
x += v.x; y += v.y; z += v.z; w += v.w;
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator-=(const ShortVector& v)
{
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator*=(float fl)
{
x = (short)(x * fl);
y = (short)(y * fl);
z = (short)(z * fl);
w = (short)(w * fl);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator*=(const ShortVector& v)
{
x = (short)(x * v.x);
y = (short)(y * v.y);
z = (short)(z * v.z);
w = (short)(w * v.w);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator/=(float fl)
{
Assert(fl != 0.0f);
float oofl = 1.0f / fl;
x = (short)(x * oofl);
y = (short)(y * oofl);
z = (short)(z * oofl);
w = (short)(w * oofl);
return *this;
}
FORCEINLINE ShortVector& ShortVector::operator/=(const ShortVector& v)
{
Assert(v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0);
x = (short)(x / v.x);
y = (short)(y / v.y);
z = (short)(z / v.z);
w = (short)(w / v.w);
return *this;
}
FORCEINLINE void ShortVectorMultiply(const ShortVector& src, float fl, ShortVector& res)
{
Assert(IsFinite(fl));
res.x = (short)(src.x * fl);
res.y = (short)(src.y * fl);
res.z = (short)(src.z * fl);
res.w = (short)(src.w * fl);
}
FORCEINLINE ShortVector ShortVector::operator*(float fl) const
{
ShortVector res;
ShortVectorMultiply(*this, fl, res);
return res;
}
//-----------------------------------------------------------------------------
//
// Inlined Integer Vector methods
//
//-----------------------------------------------------------------------------
inline void IntVector4D::Init(int ix, int iy, int iz, int iw)
{
x = ix; y = iy; z = iz; w = iw;
}
FORCEINLINE void IntVector4D::Set(const IntVector4D& vOther)
{
x = vOther.x;
y = vOther.y;
z = vOther.z;
w = vOther.w;
}
FORCEINLINE void IntVector4D::Set(const int ix, const int iy, const int iz, const int iw)
{
x = ix;
y = iy;
z = iz;
w = iw;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline int IntVector4D::operator[](int i) const
{
Assert((i >= 0) && (i < 4));
return ((int*)this)[i];
}
inline int& IntVector4D::operator[](int i)
{
Assert((i >= 0) && (i < 4));
return ((int*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline int* IntVector4D::Base()
{
return (int*)this;
}
inline int const* IntVector4D::Base() const
{
return (int const*)this;
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool IntVector4D::operator==(const IntVector4D& src) const
{
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool IntVector4D::operator!=(const IntVector4D& src) const
{
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
FORCEINLINE IntVector4D& IntVector4D::operator+=(const IntVector4D& v)
{
x += v.x; y += v.y; z += v.z; w += v.w;
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator-=(const IntVector4D& v)
{
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator*=(float fl)
{
x = (int)(x * fl);
y = (int)(y * fl);
z = (int)(z * fl);
w = (int)(w * fl);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator*=(const IntVector4D& v)
{
x = (int)(x * v.x);
y = (int)(y * v.y);
z = (int)(z * v.z);
w = (int)(w * v.w);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator/=(float fl)
{
Assert(fl != 0.0f);
float oofl = 1.0f / fl;
x = (int)(x * oofl);
y = (int)(y * oofl);
z = (int)(z * oofl);
w = (int)(w * oofl);
return *this;
}
FORCEINLINE IntVector4D& IntVector4D::operator/=(const IntVector4D& v)
{
Assert(v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0);
x = (int)(x / v.x);
y = (int)(y / v.y);
z = (int)(z / v.z);
w = (int)(w / v.w);
return *this;
}
FORCEINLINE void IntVector4DMultiply(const IntVector4D& src, float fl, IntVector4D& res)
{
Assert(IsFinite(fl));
res.x = (int)(src.x * fl);
res.y = (int)(src.y * fl);
res.z = (int)(src.z * fl);
res.w = (int)(src.w * fl);
}
FORCEINLINE IntVector4D IntVector4D::operator*(float fl) const
{
IntVector4D res;
IntVector4DMultiply(*this, fl, res);
return res;
}
// =======================
FORCEINLINE void VectorAdd(const Vector3D& a, vec_t b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x + b;
c.y = a.y + b;
c.z = a.z + b;
}
FORCEINLINE void VectorAdd(const Vector3D& a, const Vector3D& b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
}
FORCEINLINE void VectorSubtract(const Vector3D& a, vec_t b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x - b;
c.y = a.y - b;
c.z = a.z - b;
}
FORCEINLINE void VectorSubtract(const Vector3D& a, const Vector3D& b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
}
FORCEINLINE void VectorMultiply(const Vector3D& a, vec_t b, Vector3D& c)
{
CHECK_VALID(a);
Assert(IsFinite(b));
c.x = a.x * b;
c.y = a.y * b;
c.z = a.z * b;
}
FORCEINLINE void VectorMultiply(const Vector3D& a, const Vector3D& b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
}
// for backwards compatability
inline void VectorScale(const Vector3D& in, vec_t scale, Vector3D& result)
{
VectorMultiply(in, scale, result);
}
FORCEINLINE void VectorDivide(const Vector3D& a, vec_t b, Vector3D& c)
{
CHECK_VALID(a);
Assert(b != 0.0f);
vec_t oob = 1.0f / b;
c.x = a.x * oob;
c.y = a.y * oob;
c.z = a.z * oob;
}
FORCEINLINE void VectorDivide(const Vector3D& a, const Vector3D& b, Vector3D& c)
{
CHECK_VALID(a);
CHECK_VALID(b);
Assert((b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f));
c.x = a.x / b.x;
c.y = a.y / b.y;
c.z = a.z / b.z;
}
// FIXME: Remove
// For backwards compatability
inline void Vector3D::MulAdd(const Vector3D& a, const Vector3D& b, float scalar)
{
CHECK_VALID(a);
CHECK_VALID(b);
x = a.x + b.x * scalar;
y = a.y + b.y * scalar;
z = a.z + b.z * scalar;
}
inline void VectorLerp(const Vector3D& src1, const Vector3D& src2, vec_t t, Vector3D& dest)
{
CHECK_VALID(src1);
CHECK_VALID(src2);
dest.x = src1.x + (src2.x - src1.x) * t;
dest.y = src1.y + (src2.y - src1.y) * t;
dest.z = src1.z + (src2.z - src1.z) * t;
}
inline Vector3D VectorLerp(const Vector3D& src1, const Vector3D& src2, vec_t t)
{
Vector3D result;
VectorLerp(src1, src2, t, result);
return result;
}
//-----------------------------------------------------------------------------
// Temporary storage for vector results so const Vector& results can be returned
//-----------------------------------------------------------------------------
#if !defined(__SPU__)
inline Vector3D& AllocTempVector()
{
static Vector3D s_vecTemp[128];
static CInterlockedInt s_nIndex;
int nIndex;
for (;;)
{
int nOldIndex = s_nIndex;
nIndex = ((nOldIndex + 0x10001) & 0x7F);
if (s_nIndex.AssignIf(nOldIndex, nIndex))
{
break;
}
ThreadPause();
}
return s_vecTemp[nIndex];
}
#endif
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
FORCEINLINE vec_t DotProduct(const Vector3D& a, const Vector3D& b)
{
CHECK_VALID(a);
CHECK_VALID(b);
return(a.x * b.x + a.y * b.y + a.z * b.z);
}
// for backwards compatability
inline vec_t Vector3D::Dot(const Vector3D& vOther) const
{
CHECK_VALID(vOther);
return DotProduct(*this, vOther);
}
inline int Vector3D::LargestComponent() const
{
float flAbsx = fabs(x);
float flAbsy = fabs(y);
float flAbsz = fabs(z);
if (flAbsx > flAbsy)
{
if (flAbsx > flAbsz)
return X_INDEX;
return Z_INDEX;
}
if (flAbsy > flAbsz)
return Y_INDEX;
return Z_INDEX;
}
inline int Vector3D::SmallestComponent() const
{
float flAbsx = fabs(x);
float flAbsy = fabs(y);
float flAbsz = fabs(z);
if (flAbsx < flAbsy)
{
if (flAbsx < flAbsz)
return X_INDEX;
return Z_INDEX;
}
if (flAbsy < flAbsz)
return Y_INDEX;
return Z_INDEX;
}
inline float Vector3D::LargestComponentValue() const
{
float flAbsX = fabs(x);
float flAbsY = fabs(y);
float flAbsZ = fabs(z);
return MAX(MAX(flAbsX, flAbsY), flAbsZ);
}
inline float Vector3D::SmallestComponentValue() const
{
float flAbsX = fabs(x);
float flAbsY = fabs(y);
float flAbsZ = fabs(z);
return MIN(MIN(flAbsX, flAbsY), flAbsZ);
}
inline void CrossProduct(const Vector3D& a, const Vector3D& b, Vector3D& result)
{
CHECK_VALID(a);
CHECK_VALID(b);
Assert(&a != &result);
Assert(&b != &result);
result.x = a.y * b.z - a.z * b.y;
result.y = a.z * b.x - a.x * b.z;
result.z = a.x * b.y - a.y * b.x;
}
inline vec_t DotProductAbs(const Vector3D& v0, const Vector3D& v1)
{
CHECK_VALID(v0);
CHECK_VALID(v1);
return FloatMakePositive(v0.x * v1.x) + FloatMakePositive(v0.y * v1.y) + FloatMakePositive(v0.z * v1.z);
}
inline vec_t DotProductAbs(const Vector3D& v0, const float* v1)
{
return FloatMakePositive(v0.x * v1[0]) + FloatMakePositive(v0.y * v1[1]) + FloatMakePositive(v0.z * v1[2]);
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t VectorLength(const Vector3D& v)
{
CHECK_VALID(v);
return (vec_t)FastSqrt(v.x * v.x + v.y * v.y + v.z * v.z);
}
inline vec_t Vector3D::Length(void) const
{
CHECK_VALID(*this);
return VectorLength(*this);
}
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
/*
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t VectorNormalize( Vector& v )
{
Assert( v.IsValid() );
vec_t l = v.Length();
if (l != 0.0f)
{
v /= l;
}
else
{
// FIXME:
// Just copying the existing implemenation; shouldn't res.z == 0?
v.x = v.y = 0.0f; v.z = 1.0f;
}
return l;
}
*/
// check a point against a box
bool Vector3D::WithinAABox(Vector3D const& boxmin, Vector3D const& boxmax)
{
return (
(x >= boxmin.x) && (x <= boxmax.x) &&
(y >= boxmin.y) && (y <= boxmax.y) &&
(z >= boxmin.z) && (z <= boxmax.z)
);
}
//-----------------------------------------------------------------------------
// Get the distance from this vector to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector3D::DistTo(const Vector3D& vOther) const
{
Vector3D delta;
VectorSubtract(*this, vOther, delta);
return delta.Length();
}
//-----------------------------------------------------------------------------
// Float equality with tolerance
//-----------------------------------------------------------------------------
inline bool FloatsAreEqual(float f1, float f2, float flTolerance)
{
// Sergiy: the implementation in Source2 is very inefficient, trying to start with a clean slate here, hopefully will reintegrate back to Source2
const float flAbsToleranceThreshold = 0.000003814697265625; // 2 ^ -FLOAT_EQUALITY_NOISE_CUTOFF,
return fabsf(f1 - f2) <= flTolerance * (fabsf(f1) + fabsf(f2)) + flAbsToleranceThreshold;
}
//-----------------------------------------------------------------------------
// Vector equality with percentage tolerance
// are all components within flPercentageTolerance (expressed as a percentage of the larger component, per component)?
// and all components have the same sign
//-----------------------------------------------------------------------------
inline bool VectorsAreWithinPercentageTolerance(const Vector3D& src1, const Vector3D& src2, float flPercentageTolerance)
{
if (!FloatsAreEqual(src1.x, src2.x, flPercentageTolerance))
return false;
if (!FloatsAreEqual(src1.y, src2.y, flPercentageTolerance))
return false;
return (FloatsAreEqual(src1.z, src2.z, flPercentageTolerance));
}
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool VectorsAreEqual(const Vector3D& src1, const Vector3D& src2, float tolerance)
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
}
//-----------------------------------------------------------------------------
// Computes the closest point to vecTarget no farther than flMaxDist from vecStart
//-----------------------------------------------------------------------------
inline void ComputeClosestPoint(const Vector3D& vecStart, float flMaxDist, const Vector3D& vecTarget, Vector3D* pResult)
{
Vector3D vecDelta;
VectorSubtract(vecTarget, vecStart, vecDelta);
float flDistSqr = vecDelta.LengthSqr();
if (flDistSqr <= flMaxDist * flMaxDist)
{
*pResult = vecTarget;
}
else
{
vecDelta /= FastSqrt(flDistSqr);
VectorMA(vecStart, flMaxDist, vecDelta, *pResult);
}
}
//-----------------------------------------------------------------------------
// Takes the absolute value of a vector
//-----------------------------------------------------------------------------
inline void VectorAbs(const Vector3D& src, Vector3D& dst)
{
dst.x = FloatMakePositive(src.x);
dst.y = FloatMakePositive(src.y);
dst.z = FloatMakePositive(src.z);
}
inline Vector3D VectorAbs(const Vector3D& src)
{
return Vector3D(fabsf(src.x), fabsf(src.y), fabsf(src.z));
}
//-----------------------------------------------------------------------------
//
// Slow methods
//
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Returns a vector with the min or max in X, Y, and Z.
//-----------------------------------------------------------------------------
inline Vector3D Vector3D::Min(const Vector3D& vOther) const
{
return Vector3D(x < vOther.x ? x : vOther.x,
y < vOther.y ? y : vOther.y,
z < vOther.z ? z : vOther.z);
}
inline Vector3D Vector3D::Max(const Vector3D& vOther) const
{
return Vector3D(x > vOther.x ? x : vOther.x,
y > vOther.y ? y : vOther.y,
z > vOther.z ? z : vOther.z);
}
//-----------------------------------------------------------------------------
// arithmetic operations
//-----------------------------------------------------------------------------
inline Vector3D Vector3D::operator-(void) const
{
return Vector3D(-x, -y, -z);
}
inline Vector3D Vector3D::operator+(float fl) const
{
Vector3D res;
VectorAdd(*this, fl, res);
return res;
}
inline Vector3D Vector3D::operator+(const Vector3D& v) const
{
Vector3D res;
VectorAdd(*this, v, res);
return res;
}
inline Vector3D Vector3D::operator-(float fl) const
{
Vector3D res;
VectorSubtract(*this, fl, res);
return res;
}
inline Vector3D Vector3D::operator-(const Vector3D& v) const
{
Vector3D res;
VectorSubtract(*this, v, res);
return res;
}
inline Vector3D Vector3D::operator*(float fl) const
{
Vector3D res;
VectorMultiply(*this, fl, res);
return res;
}
inline Vector3D Vector3D::operator*(const Vector3D& v) const
{
Vector3D res;
VectorMultiply(*this, v, res);
return res;
}
inline Vector3D Vector3D::operator/(float fl) const
{
Vector3D res;
VectorDivide(*this, fl, res);
return res;
}
inline Vector3D Vector3D::operator/(const Vector3D& v) const
{
Vector3D res;
VectorDivide(*this, v, res);
return res;
}
inline Vector3D operator*(float fl, const Vector3D& v)
{
return v * fl;
}
//-----------------------------------------------------------------------------
// cross product
//-----------------------------------------------------------------------------
inline Vector3D Vector3D::Cross(const Vector3D& vOther) const
{
Vector3D res;
CrossProduct(*this, vOther, res);
return res;
}
//-----------------------------------------------------------------------------
// 2D
//-----------------------------------------------------------------------------
inline vec_t Vector3D::Length2D(void) const
{
return (vec_t)FastSqrt(x * x + y * y);
}
inline vec_t Vector3D::Length2DSqr(void) const
{
return (x * x + y * y);
}
inline Vector3D CrossProduct(const Vector3D& a, const Vector3D& b)
{
return Vector3D(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
inline void VectorMin(const Vector3D& a, const Vector3D& b, Vector3D& result)
{
result.x = fmin(a.x, b.x);
result.y = fmin(a.y, b.y);
result.z = fmin(a.z, b.z);
}
inline void VectorMax(const Vector3D& a, const Vector3D& b, Vector3D& result)
{
result.x = fmax(a.x, b.x);
result.y = fmax(a.y, b.y);
result.z = fmax(a.z, b.z);
}
// and when you want to return the vector rather than cause a LHS with it...
inline Vector3D VectorMin(const Vector3D& a, const Vector3D& b)
{
return Vector3D(fmin(a.x, b.x), fmin(a.y, b.y), fmin(a.z, b.z));
}
inline Vector3D VectorMax(const Vector3D& a, const Vector3D& b)
{
return Vector3D(fmax(a.x, b.x), fmax(a.y, b.y), fmax(a.z, b.z));
}
inline float ComputeVolume(const Vector3D& vecMins, const Vector3D& vecMaxs)
{
Vector3D vecDelta;
VectorSubtract(vecMaxs, vecMins, vecDelta);
return DotProduct(vecDelta, vecDelta);
}
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
#if !defined(__SPU__)
// Get a random vector.
inline Vector3D RandomVector(float minVal, float maxVal)
{
Vector3D random;
random.Random(minVal, maxVal);
return random;
}
#endif
#endif //slow
//-----------------------------------------------------------------------------
// Helper debugging stuff....
//-----------------------------------------------------------------------------
inline bool operator==(float const* f, const Vector3D& v)
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator==(const Vector3D& v, float const* f)
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator!=(float const* f, const Vector3D& v)
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
inline bool operator!=(const Vector3D& v, float const* f)
{
// AIIIEEEE!!!!
Assert(0);
return false;
}
// return a vector perpendicular to another, with smooth variation. The difference between this and
// something like VectorVectors is that there are now discontinuities. _unlike_ VectorVectors,
// you won't get an "u
void VectorPerpendicularToVector(Vector3D const& in, Vector3D* pvecOut);
inline const Vector3D VectorPerpendicularToVector(const Vector3D& in)
{
Vector3D out;
VectorPerpendicularToVector(in, &out);
return out;
}
//-----------------------------------------------------------------------------
// AngularImpulse
//-----------------------------------------------------------------------------
// AngularImpulse are exponetial maps (an axis scaled by a "twist" angle in degrees)
typedef Vector3D AngularImpulse;
#ifndef VECTOR_NO_SLOW_OPERATIONS
#if !defined(__SPU__)
inline AngularImpulse RandomAngularImpulse(float minVal, float maxVal)
{
AngularImpulse angImp;
angImp.Random(minVal, maxVal);
return angImp;
}
#endif
#endif
//-----------------------------------------------------------------------------
// Quaternion
//-----------------------------------------------------------------------------
class RadianEuler;
class DegreeEuler;
class QAngle;
class Quaternion // same data-layout as engine's vec4_t,
{ // which is a vec_t[4]
public:
inline Quaternion(void) {
// Initialize to NAN to catch errors
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN;
#endif
#endif
}
inline Quaternion(vec_t ix, vec_t iy, vec_t iz, vec_t iw) : x(ix), y(iy), z(iz), w(iw) { }
inline explicit Quaternion(RadianEuler const& angle);
inline explicit Quaternion(DegreeEuler const& angle);
inline void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f, vec_t iw = 0.0f) { x = ix; y = iy; z = iz; w = iw; }
inline void Init(const Vector3D& vImaginaryPart, float flRealPart) { x = vImaginaryPart.x; y = vImaginaryPart.y; z = vImaginaryPart.z; w = flRealPart; }
bool IsValid() const;
void Invalidate();
bool operator==(const Quaternion& src) const;
bool operator!=(const Quaternion& src) const;
inline Quaternion Conjugate() const { return Quaternion(-x, -y, -z, w); }
//
const Vector3D GetForward()const;
const Vector3D GetLeft()const;
const Vector3D GetUp()const;
vec_t* Base() { return (vec_t*)this; }
const vec_t* Base() const { return (vec_t*)this; }
// convenience for debugging
inline void Print() const;
// Imaginary part
Vector3D& ImaginaryPart() { return *(Vector3D*)this; }
const Vector3D& ImaginaryPart() const { return *(Vector3D*)this; }
float& RealPart() { return w; }
float RealPart() const { return w; }
inline QAngle ToQAngle() const;
inline struct matrix3x4_t ToMatrix() const;
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
inline Quaternion operator+(void) const { return *this; }
inline Quaternion operator-(void) const { return Quaternion(-x, -y, -z, -w); }
vec_t x, y, z, w;
};
// Random Quaternion that is UNIFORMLY distributed over the S^3
// should be good for random generation of orientation for unit tests and for game
// NOTE: Nothing trivial like Quaternion(RandomAngle(0,180)) will do the trick ,
// one needs to take special care to generate a uniformly distributed quaternion.
const Quaternion RandomQuaternion();
const Quaternion RandomQuaternion();
inline const Quaternion Conjugate(const Quaternion& q)
{
return Quaternion(-q.x, -q.y, -q.z, q.w);
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Quaternion::operator[](int i)
{
Assert((i >= 0) && (i < 4));
return ((vec_t*)this)[i];
}
inline vec_t Quaternion::operator[](int i) const
{
Assert((i >= 0) && (i < 4));
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Equality test
//-----------------------------------------------------------------------------
inline bool Quaternion::operator==(const Quaternion& src) const
{
return (x == src.x) && (y == src.y) && (z == src.z) && (w == src.w);
}
inline bool Quaternion::operator!=(const Quaternion& src) const
{
return !operator==(src);
}
//-----------------------------------------------------------------------------
// Debugging only
//-----------------------------------------------------------------------------
void Quaternion::Print() const
{
#ifndef _CERT
#if !defined(__SPU__)
DevMsg(eDLL_T::ENGINE, "q{ %.3fi + %.3fj + %.3fk + %.3f }", x, y, z, w);
#endif
#endif
}
//-----------------------------------------------------------------------------
// Binaray operators
//-----------------------------------------------------------------------------
inline Quaternion operator+(const Quaternion& q1, const Quaternion& q2)
{
return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
}
inline Quaternion operator-(const Quaternion& q1, const Quaternion& q2)
{
return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
}
inline Quaternion operator*(float s, const Quaternion& q)
{
return Quaternion(s * q.x, s * q.y, s * q.z, s * q.w);
}
inline Quaternion operator*(const Quaternion& q, float s)
{
return Quaternion(q.x * s, q.y * s, q.z * s, q.w * s);
}
inline Quaternion operator/(const Quaternion& q, float s)
{
Assert(s != 0.0f);
return Quaternion(q.x / s, q.y / s, q.z / s, q.w / s);
}
//-----------------------------------------------------------------------------
// Quaternion equality with tolerance
//-----------------------------------------------------------------------------
inline bool QuaternionsAreEqual(const Quaternion& src1, const Quaternion& src2, float tolerance)
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
if (FloatMakePositive(src1.z - src2.z) > tolerance)
return false;
return (FloatMakePositive(src1.w - src2.w) <= tolerance);
}
//-----------------------------------------------------------------------------
// Here's where we add all those lovely SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 QuaternionAligned : public Quaternion
{
public:
inline QuaternionAligned(void) {};
inline QuaternionAligned(vec_t X, vec_t Y, vec_t Z, vec_t W)
{
Init(X, Y, Z, W);
}
operator Quaternion* () { return this; }
operator const Quaternion* () { return this; }
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
// No copy constructors allowed if we're in optimal mode
QuaternionAligned(const QuaternionAligned& vOther);
QuaternionAligned(const Quaternion& vOther);
#else
public:
explicit QuaternionAligned(const Quaternion& vOther)
{
Init(vOther.x, vOther.y, vOther.z, vOther.w);
}
QuaternionAligned& operator=(const Quaternion& vOther)
{
Init(vOther.x, vOther.y, vOther.z, vOther.w);
return *this;
}
QuaternionAligned& operator=(const QuaternionAligned& vOther)
{
// we know we're aligned, so use simd
// we can't use the convenient abstract interface coz it gets declared later
#ifdef _X360
XMStoreVector4A(Base(), XMLoadVector4A(vOther.Base()));
#elif _WIN32
_mm_store_ps(Base(), _mm_load_ps(vOther.Base()));
#else
Init(vOther.x, vOther.y, vOther.z, vOther.w);
#endif
return *this;
}
#endif
#if !defined(NO_MALLOC_OVERRIDE)
void* operator new[](size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new[](size_t nSize, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new[](size_t nSize, int /*nBlockUse*/, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete[](void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete[](void* p, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete[](void* p, int /*nBlockUse*/, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
// please don't allocate a single quaternion...
void* operator new (size_t nSize)
{
return MemAlloc_AllocAligned(nSize, 16);
}
void* operator new (size_t nSize, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void* operator new (size_t nSize, int /*nBlockUse*/, const char* pFileName, int nLine)
{
return MemAlloc_AllocAlignedFileLine(nSize, 16, pFileName, nLine);
}
void operator delete (void* p)
{
MemAlloc_FreeAligned(p);
}
void operator delete (void* p, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
void operator delete (void* p, int /*nBlockUse*/, const char* pFileName, int nLine)
{
MemAlloc_FreeAligned(p, pFileName, nLine);
}
#endif
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Src data hasn't changed, but work data is of a form more friendly for SPU
//-----------------------------------------------------------------------------
#if defined( _PS3 )
//typedef Vector BoneVector;
typedef VectorAligned BoneVector;
typedef QuaternionAligned BoneQuaternion;
typedef QuaternionAligned BoneQuaternionAligned;
#else
typedef Vector3D BoneVector;
typedef Quaternion BoneQuaternion;
typedef QuaternionAligned BoneQuaternionAligned;
#endif
//-----------------------------------------------------------------------------
// Radian Euler angle aligned to axis (NOT ROLL/PITCH/YAW)
//-----------------------------------------------------------------------------
2021-12-26 23:58:06 +01:00
class QAngle;
#define VEC_DEG2RAD( a ) (a) * (3.14159265358979323846f / 180.0f)
#define VEC_RAD2DEG( a ) (a) * (180.0f / 3.14159265358979323846f)
class RadianEuler
{
public:
inline RadianEuler(void) { }
inline RadianEuler(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; }
inline explicit RadianEuler(Quaternion const& q);
inline explicit RadianEuler(QAngle const& angles);
inline explicit RadianEuler(DegreeEuler const& angles);
// Initialization
inline void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f) { x = ix; y = iy; z = iz; }
// conversion to qangle
QAngle ToQAngle(void) const;
bool IsValid() const;
void Invalidate();
inline vec_t* Base() { return &x; }
inline const vec_t* Base() const { return &x; }
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
vec_t x, y, z;
};
extern void AngleQuaternion(RadianEuler const& angles, Quaternion& qt);
extern void QuaternionAngles(Quaternion const& q, RadianEuler& angles);
inline Quaternion::Quaternion(RadianEuler const& angle)
{
AngleQuaternion(angle, *this);
}
inline bool Quaternion::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w);
}
FORCEINLINE float QuaternionLength(const Quaternion& q)
{
return sqrtf(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w);
}
FORCEINLINE bool QuaternionIsNormalized(const Quaternion& q, float flTolerance = 1e-6f)
{
float flLen = QuaternionLength(q);
return (fabs(flLen - 1.0) < flTolerance);
}
inline void Quaternion::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = w = VEC_T_NAN;
//#endif
//#endif
}
inline RadianEuler::RadianEuler(Quaternion const& q)
{
QuaternionAngles(q, *this);
}
inline void VectorCopy(RadianEuler const& src, RadianEuler& dst)
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
inline void VectorScale(RadianEuler const& src, float b, RadianEuler& dst)
{
CHECK_VALID(src);
Assert(IsFinite(b));
dst.x = src.x * b;
dst.y = src.y * b;
dst.z = src.z * b;
}
inline bool RadianEuler::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
inline void RadianEuler::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& RadianEuler::operator[](int i)
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
inline vec_t RadianEuler::operator[](int i) const
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
//-----------------------------------------------------------------------------
// Degree Euler angle aligned to axis (NOT ROLL/PITCH/YAW)
//-----------------------------------------------------------------------------
class DegreeEuler
{
public:
///\name Initialization
//@{
inline DegreeEuler(void) ///< Create with un-initialized components. If VECTOR_PARANOIA is set, will init with NANS.
{
// Initialize to NAN to catch errors
#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
#endif
}
inline DegreeEuler(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; }
inline explicit DegreeEuler(Quaternion const& q);
inline explicit DegreeEuler(QAngle const& angles);
inline explicit DegreeEuler(RadianEuler const& angles);
// Initialization
inline void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f) { x = ix; y = iy; z = iz; }
inline QAngle ToQAngle() const;
// conversion to qangle
bool IsValid() const;
void Invalidate();
inline vec_t* Base() { return &x; }
inline const vec_t* Base() const { return &x; }
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
vec_t x, y, z;
};
//-----------------------------------------------------------------------------
// DegreeEuler equality with tolerance
//-----------------------------------------------------------------------------
inline bool DegreeEulersAreEqual(const DegreeEuler& src1, const DegreeEuler& src2, float tolerance = 0.0f)
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
}
/*
extern void AngleQuaternion( DegreeEuler const &angles, Quaternion &qt );
extern void QuaternionAngles( Quaternion const &q, DegreeEuler &angles );
extern void QuaternionVectorsFLU( Quaternion const &q, Vector *pForward, Vector *pLeft, Vector *pUp );
*/
inline Quaternion::Quaternion(DegreeEuler const& angles)
{
RadianEuler radians(angles);
AngleQuaternion(radians, *this);
}
inline DegreeEuler::DegreeEuler(RadianEuler const& angles)
{
Init(VEC_RAD2DEG(angles.x), VEC_RAD2DEG(angles.y), VEC_RAD2DEG(angles.z));
}
inline RadianEuler::RadianEuler(DegreeEuler const& angles)
{
Init(VEC_DEG2RAD(angles.x), VEC_DEG2RAD(angles.y), VEC_DEG2RAD(angles.z));
}
inline DegreeEuler::DegreeEuler(Quaternion const& q)
{
RadianEuler radians(q);
Init(VEC_RAD2DEG(radians.x), VEC_RAD2DEG(radians.y), VEC_RAD2DEG(radians.z));
}
inline bool DegreeEuler::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
inline void DegreeEuler::Invalidate()
{
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& DegreeEuler::operator[](int i)
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
inline vec_t DegreeEuler::operator[](int i) const
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Degree Euler QAngle pitch, yaw, roll
//-----------------------------------------------------------------------------
class QAngleByValue;
class QAngle
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
{
public:
// Members
vec_t x, y, z;
// Construction/destruction
QAngle(void);
QAngle(vec_t X, vec_t Y, vec_t Z);
#ifndef _PS3
// QAngle(RadianEuler const &angles); // evil auto type promotion!!!
#endif
// Allow pass-by-value
operator QAngleByValue& () { return *((QAngleByValue*)(this)); }
operator const QAngleByValue& () const { return *((const QAngleByValue*)(this)); }
// Initialization
void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f);
void Random(vec_t minVal, vec_t maxVal);
// Got any nasty NAN's?
bool IsValid() const;
void Invalidate();
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
vec_t* Base();
vec_t const* Base() const;
// equality
bool operator==(const QAngle& v) const;
bool operator!=(const QAngle& v) const;
// arithmetic operations
QAngle& operator+=(const QAngle& v);
QAngle& operator-=(const QAngle& v);
QAngle& operator*=(float s);
QAngle& operator/=(float s);
// Get the vector's magnitude.
vec_t Length() const;
vec_t LengthSqr() const;
// negate the QAngle components
//void Negate();
// No assignment operators either...
QAngle& operator=(const QAngle& src);
void Normalize();
void NormalizePositive();
inline struct matrix3x4_t ToMatrix() const;
inline Quaternion ToQuaternion() const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// copy constructors
// arithmetic operations
QAngle operator-(void) const;
QAngle operator+(const QAngle& v) const;
QAngle operator-(const QAngle& v) const;
QAngle operator*(float fl) const;
QAngle operator/(float fl) const;
#else
private:
// No copy constructors allowed if we're in optimal mode
QAngle(const QAngle& vOther);
#endif
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
};
// Zero the object -- necessary for CNetworkVar and possibly other cases.
inline void EnsureValidValue(QAngle& x) { x.Init(); }
//-----------------------------------------------------------------------------
// Allows us to specifically pass the vector by value when we need to
//-----------------------------------------------------------------------------
class QAngleByValue : public QAngle
Code base refactor + major performance and readability improvement. Read description for details. * Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable. * Document most functions with valve style 'Purpose' blocks. * Rename variables to match the rest of the codebase and Valve's naming convention. * Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK. * Obtain globals or pointers directly instead of waiting for runtime initialized data. * Dynamically search for all functions and globals (this doesn't count for dedicated yet!). * Initialize most in-SDK variables. * Move certain prints and other utilities under ConVars to reduce verbosity and increase performance. * Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future. * Type global var pointers appropriately if class or type is known and implemented. * Forward declare 'CClient' class to avoid having 2 'g_pClient' copies. * Add IDA's pseudo definitions for easier prototyping with decompiled assembly code. * RPAK decompress Command callback implementation. * Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\'). * VPK decompress Command callback implementation. * Move CRC32 ands Adler32 to implementation files. * Server will print out more details about the connecting client. * Upgrade ImGui lib to v1.86. * Don't compile id3dx.h for dedicated. * Don't compile id3dx.cpp for dedicated * Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console * Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors. * Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up. * Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00
{
public:
// Construction/destruction:
QAngleByValue(void) : QAngle() {}
QAngleByValue(vec_t X, vec_t Y, vec_t Z) : QAngle(X, Y, Z) {}
QAngleByValue(const QAngleByValue& vOther) { *this = vOther; }
};
inline void VectorAdd(const QAngle& a, const QAngle& b, QAngle& result)
{
CHECK_VALID(a);
CHECK_VALID(b);
result.x = a.x + b.x;
result.y = a.y + b.y;
result.z = a.z + b.z;
}
inline void VectorMA(const QAngle& start, float scale, const QAngle& direction, QAngle& dest)
{
CHECK_VALID(start);
CHECK_VALID(direction);
dest.x = start.x + scale * direction.x;
dest.y = start.y + scale * direction.y;
dest.z = start.z + scale * direction.z;
}
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline QAngle::QAngle(void)
{
#ifdef _DEBUG
#ifdef VECTOR_PARANOIA
// Initialize to NAN to catch errors
x = y = z = VEC_T_NAN;
#endif
#endif
}
inline QAngle::QAngle(vec_t X, vec_t Y, vec_t Z)
{
x = X; y = Y; z = Z;
CHECK_VALID(*this);
}
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void QAngle::Init(vec_t ix, vec_t iy, vec_t iz)
{
x = ix; y = iy; z = iz;
CHECK_VALID(*this);
}
extern float AngleNormalize(float angle);
extern float AngleNormalizePositive(float angle);
inline void QAngle::Normalize()
{
x = AngleNormalize(x);
y = AngleNormalize(y);
z = AngleNormalize(z);
}
inline void QAngle::NormalizePositive()
{
x = AngleNormalizePositive(x);
y = AngleNormalizePositive(y);
z = AngleNormalizePositive(z);
}
#if !defined(__SPU__)
inline void QAngle::Random(vec_t minVal, vec_t maxVal)
{
x = RandomFloat(minVal, maxVal);
y = RandomFloat(minVal, maxVal);
z = RandomFloat(minVal, maxVal);
CHECK_VALID(*this);
}
#endif
#ifndef VECTOR_NO_SLOW_OPERATIONS
#if !defined(__SPU__)
inline QAngle RandomAngle(float minVal, float maxVal)
{
Vector3D random;
random.Random(minVal, maxVal);
QAngle ret(random.x, random.y, random.z);
return ret;
}
#endif
#endif
inline RadianEuler::RadianEuler(QAngle const& angles)
{
Init(
angles.z * 3.14159265358979323846f / 180.f,
angles.x * 3.14159265358979323846f / 180.f,
angles.y * 3.14159265358979323846f / 180.f);
}
inline DegreeEuler::DegreeEuler(QAngle const& angles)
{
Init(angles.z, angles.x, angles.y);
}
inline QAngle RadianEuler::ToQAngle(void) const
{
return QAngle(VEC_RAD2DEG(y), VEC_RAD2DEG(z), VEC_RAD2DEG(x));
}
inline QAngle DegreeEuler::ToQAngle() const
{
return QAngle(y, z, x);
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator=(const QAngle& vOther)
{
CHECK_VALID(vOther);
x = vOther.x; y = vOther.y; z = vOther.z;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& QAngle::operator[](int i)
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
inline vec_t QAngle::operator[](int i) const
{
Assert((i >= 0) && (i < 3));
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* QAngle::Base()
{
return (vec_t*)this;
}
inline vec_t const* QAngle::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool QAngle::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z);
}
//-----------------------------------------------------------------------------
// Invalidate
//-----------------------------------------------------------------------------
inline void QAngle::Invalidate()
{
//#ifdef _DEBUG
//#ifdef VECTOR_PARANOIA
x = y = z = VEC_T_NAN;
//#endif
//#endif
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool QAngle::operator==(const QAngle& src) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x == x) && (src.y == y) && (src.z == z);
}
inline bool QAngle::operator!=(const QAngle& src) const
{
CHECK_VALID(src);
CHECK_VALID(*this);
return (src.x != x) || (src.y != y) || (src.z != z);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void VectorCopy(const QAngle& src, QAngle& dst)
{
CHECK_VALID(src);
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline QAngle& QAngle::operator+=(const QAngle& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x += v.x; y += v.y; z += v.z;
return *this;
}
inline QAngle& QAngle::operator-=(const QAngle& v)
{
CHECK_VALID(*this);
CHECK_VALID(v);
x -= v.x; y -= v.y; z -= v.z;
return *this;
}
inline QAngle& QAngle::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
CHECK_VALID(*this);
return *this;
}
inline QAngle& QAngle::operator/=(float fl)
{
Assert(fl != 0.0f);
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
CHECK_VALID(*this);
return *this;
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t QAngle::Length() const
{
CHECK_VALID(*this);
return (vec_t)FastSqrt(LengthSqr());
}
inline vec_t QAngle::LengthSqr() const
{
CHECK_VALID(*this);
return x * x + y * y + z * z;
}
//-----------------------------------------------------------------------------
// Vector equality with tolerance
//-----------------------------------------------------------------------------
inline bool QAnglesAreEqual(const QAngle& src1, const QAngle& src2, float tolerance = 0.0f)
{
if (FloatMakePositive(src1.x - src2.x) > tolerance)
return false;
if (FloatMakePositive(src1.y - src2.y) > tolerance)
return false;
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
}
//-----------------------------------------------------------------------------
// arithmetic operations (SLOW!!)
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline QAngle QAngle::operator-(void) const
{
QAngle ret(-x, -y, -z);
return ret;
}
inline QAngle QAngle::operator+(const QAngle& v) const
{
QAngle res;
res.x = x + v.x;
res.y = y + v.y;
res.z = z + v.z;
return res;
}
inline QAngle QAngle::operator-(const QAngle& v) const
{
QAngle res;
res.x = x - v.x;
res.y = y - v.y;
res.z = z - v.z;
return res;
}
inline QAngle QAngle::operator*(float fl) const
{
QAngle res;
res.x = x * fl;
res.y = y * fl;
res.z = z * fl;
return res;
}
inline QAngle QAngle::operator/(float fl) const
{
QAngle res;
res.x = x / fl;
res.y = y / fl;
res.z = z / fl;
return res;
}
inline QAngle operator*(float fl, const QAngle& v)
{
QAngle ret(v * fl);
return ret;
}
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// NOTE: These are not completely correct. The representations are not equivalent
// unless the QAngle represents a rotational impulse along a coordinate axis (x,y,z)
inline void QAngleToAngularImpulse(const QAngle& angles, AngularImpulse& impulse)
{
impulse.x = angles.z;
impulse.y = angles.x;
impulse.z = angles.y;
}
inline void AngularImpulseToQAngle(const AngularImpulse& impulse, QAngle& angles)
{
angles.x = impulse.y;
angles.y = impulse.z;
angles.z = impulse.x;
}
inline QAngle Quaternion::ToQAngle() const
{
extern void QuaternionAngles(const Quaternion & q, QAngle & angles);
QAngle anglesOut;
QuaternionAngles(*this, anglesOut);
return anglesOut;
}
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE vec_t InvRSquared(const float* v)
{
2022-08-14 18:35:01 +02:00
return 1.0f / MAX(1.0f, v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
FORCEINLINE vec_t InvRSquared(const Vector3D& v)
{
return InvRSquared(v.Base());
}
#else
// call directly
#if defined(__SPU__)
FORCEINLINE float _VMX_InvRSquared(Vector& v)
#else
FORCEINLINE float _VMX_InvRSquared(const Vector& v)
#endif
{
#if !defined (_PS3)
XMVECTOR xmV = XMVector3ReciprocalLength(XMLoadVector3(v.Base()));
xmV = XMVector3Dot(xmV, xmV);
return xmV.x;
#else //!_PS3
vector_float_union vRet;
vec_float4 v0, v1, vIn, vOut;
vector unsigned char permMask;
v0 = vec_ld(0, v.Base());
permMask = vec_lvsl(0, v.Base());
v1 = vec_ld(11, v.Base());
vIn = vec_perm(v0, v1, permMask);
vOut = vec_madd(vIn, vIn, _VEC_ZEROF);
vec_float4 vTmp = vec_sld(vIn, vIn, 4);
vec_float4 vTmp2 = vec_sld(vIn, vIn, 8);
vOut = vec_madd(vTmp, vTmp, vOut);
vOut = vec_madd(vTmp2, vTmp2, vOut);
vOut = vec_re(vec_add(vOut, _VEC_EPSILONF));
vec_st(vOut, 0, &vRet.vf);
float ret = vRet.f[0];
return ret;
#endif //!_PS3
}
#define InvRSquared(x) _VMX_InvRSquared(x)
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
// FIXME: Change this back to a #define once we get rid of the vec_t version
float VectorNormalize(Vector3D& v);
// FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize(float* v)
{
return VectorNormalize(*(reinterpret_cast<Vector3D*>(v)));
}
#else
#if !defined( _PS3 )
// modified version of Microsoft's XMVector3Length
// microsoft's version will return INF for very small vectors
// e.g. Vector vTest(7.98555446e-20,-6.85012984e-21,0); VectorNormalize( vTest );
// so we clamp to epsilon instead of checking for zero
XMFINLINE XMVECTOR XMVector3Length_Fixed
(
FXMVECTOR V
)
{
// Returns a QNaN on infinite vectors.
static CONST XMVECTOR g_fl4SmallVectorEpsilon = { 1e-24f,1e-24f,1e-24f,1e-24f };
XMVECTOR D;
XMVECTOR Rsq;
XMVECTOR Rcp;
XMVECTOR Zero;
XMVECTOR RT;
XMVECTOR Result;
XMVECTOR Length;
XMVECTOR H;
H = __vspltisw(1);
D = __vmsum3fp(V, V);
H = __vcfsx(H, 1);
Rsq = __vrsqrtefp(D);
RT = __vmulfp(D, H);
Rcp = __vmulfp(Rsq, Rsq);
H = __vnmsubfp(RT, Rcp, H);
Rsq = __vmaddfp(Rsq, H, Rsq);
Zero = __vspltisw(0);
Result = __vcmpgefp(g_fl4SmallVectorEpsilon, D);
Length = __vmulfp(D, Rsq);
Result = __vsel(Length, Zero, Result);
return Result;
}
#endif
// call directly
FORCEINLINE float _VMX_VectorNormalize(Vector& vec)
{
#if !defined _PS3
float mag = XMVector3Length_Fixed(XMLoadVector3(vec.Base())).x;
float den = 1.f / (mag + FLT_EPSILON);
vec.x *= den;
vec.y *= den;
vec.z *= den;
return mag;
#else // !_PS3
vec_float4 vIn;
vec_float4 v0, v1;
vector unsigned char permMask;
v0 = vec_ld(0, vec.Base());
permMask = vec_lvsl(0, vec.Base());
v1 = vec_ld(11, vec.Base());
vIn = vec_perm(v0, v1, permMask);
float mag = vmathV3Length((VmathVector3*)&vIn);
float den = 1.f / (mag + FLT_EPSILON);
vec.x *= den;
vec.y *= den;
vec.z *= den;
return mag;
#endif // !_PS3
}
// FIXME: Change this back to a #define once we get rid of the vec_t version
FORCEINLINE float VectorNormalize(Vector& v)
{
return _VMX_VectorNormalize(v);
}
// FIXME: Obsolete version of VectorNormalize, once we remove all the friggin float*s
FORCEINLINE float VectorNormalize(float* pV)
{
return _VMX_VectorNormalize(*(reinterpret_cast<Vector*>(pV)));
}
#endif // _X360
#if !defined( _X360 ) && !defined( _PS3 )
FORCEINLINE void VectorNormalizeFast(Vector3D& vec)
{
float ool = FastRSqrt(FLT_EPSILON + vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
vec.x *= ool;
vec.y *= ool;
vec.z *= ool;
}
#else
// call directly
FORCEINLINE void VectorNormalizeFast(Vector& vec)
{
#if !defined (_PS3)
XMVECTOR xmV = XMVector3LengthEst(XMLoadVector3(vec.Base()));
float den = 1.f / (xmV.x + FLT_EPSILON);
vec.x *= den;
vec.y *= den;
vec.z *= den;
#else // !_PS3
vector_float_union vVec;
vec_float4 vIn, vOut, vOOLen, vDot;
// load
vec_float4 v0, v1;
vector unsigned char permMask;
v0 = vec_ld(0, vec.Base());
permMask = vec_lvsl(0, vec.Base());
v1 = vec_ld(11, vec.Base());
vIn = vec_perm(v0, v1, permMask);
// vec.vec
vOut = vec_madd(vIn, vIn, _VEC_ZEROF);
vec_float4 vTmp = vec_sld(vIn, vIn, 4);
vec_float4 vTmp2 = vec_sld(vIn, vIn, 8);
vOut = vec_madd(vTmp, vTmp, vOut);
vOut = vec_madd(vTmp2, vTmp2, vOut);
// splat dot to all
vDot = vec_splat(vOut, 0);
vOOLen = vec_rsqrte(vec_add(vDot, _VEC_EPSILONF));
// vec * 1.0/sqrt(vec.vec)
vOut = vec_madd(vIn, vOOLen, _VEC_ZEROF);
// store
vec_st(vOut, 0, &vVec.vf);
// store vec
vec.x = vVec.f[0];
vec.y = vVec.f[1];
vec.z = vVec.f[2];
#endif // !_PS3
}
#endif // _X360
inline vec_t Vector3D::NormalizeInPlace()
{
return VectorNormalize(*this);
}
inline vec_t Vector3D::NormalizeInPlaceSafe(const Vector3D& vFallback)
{
float flLength = VectorNormalize(*this);
if (flLength == 0.0f)
{
*this = vFallback;
}
return flLength;
}
inline Vector3D Vector3D::Normalized() const
{
Vector3D norm = *this;
VectorNormalize(norm);
return norm;
}
inline Vector3D Vector3D::NormalizedSafe(const Vector3D& vFallback)const
{
Vector3D vNorm = *this;
float flLength = VectorNormalize(vNorm);
return (flLength != 0.0f) ? vNorm : vFallback;
}
inline bool Vector3D::IsLengthGreaterThan(float val) const
{
return LengthSqr() > val * val;
}
inline bool Vector3D::IsLengthLessThan(float val) const
{
return LengthSqr() < val * val;
}
inline const Vector3D ScaleVector(const Vector3D& a, const Vector3D& b)
{
return Vector3D(a.x * b.x, a.y * b.y, a.z * b.z);
}
inline const Quaternion Exp(const Vector3D& v)
{
float theta = v.Length();
if (theta < 0.001f)
{
// limit case, cos(theta) ~= 1 - theta^2/2 + theta^4/24
// sin(theta)/theta ~= 1 - theta^2/6 + theta^4/120
float theta2_2 = theta * theta * 0.5f, theta4_24 = theta2_2 * theta2_2 * (1.0f / 6.0f);
float k = 1.0f - theta2_2 * (1.0f / 3.0f) + theta4_24 * 0.05f;
return Quaternion(k * v.x, k * v.y, k * v.z, 1 - theta2_2 + theta4_24);
}
else
{
float k = sinf(theta) / theta;
return Quaternion(k * v.x, k * v.y, k * v.z, cosf(theta));
}
}
inline const Vector3D QuaternionLog(const Quaternion& q)
{
Vector3D axis = q.ImaginaryPart();
float sinTheta = axis.Length(), factor;
if (sinTheta > 0.001f)
{
// there's some substantial rotation; if w < 0, it's an over-180-degree rotation (in real space)
float theta = asinf(MIN(sinTheta, 1.0f));
factor = (q.w < 0.0f ? M_PI_F - theta : theta) / sinTheta;
}
else
{
// ArcSin[x]/x = 1 + x^2/6 + x^4 * 3/40 + o( x^5 )
float sinTheta2 = sinTheta * sinTheta;
float sinTheta4 = sinTheta2 * sinTheta2;
factor = (1 + sinTheta2 * (1.0f / 6.0f) + sinTheta4 * (3.0f / 40.0f));
if (q.w < 0)
{
factor = -factor; // because the axis of rotation is not defined, we'll just consider this rotation to be close enough to identity
}
}
return axis * factor;
}
inline float Snap(float a, float flSnap)
{
return floorf(a / flSnap + 0.5f) * flSnap;
}
inline const Vector3D Snap(const Vector3D& a, float flSnap)
{
return Vector3D(Snap(a.x, flSnap), Snap(a.y, flSnap), Snap(a.z, flSnap));
}
#endif