mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
1776 lines
71 KiB
C
1776 lines
71 KiB
C
|
// Protocol Buffers - Google's data interchange format
|
||
|
// Copyright 2008 Google Inc. All rights reserved.
|
||
|
// https://developers.google.com/protocol-buffers/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// Author: kenton@google.com (Kenton Varda)
|
||
|
// Based on original Protocol Buffers design by
|
||
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
||
|
//
|
||
|
// This file contains the CodedInputStream and CodedOutputStream classes,
|
||
|
// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
|
||
|
// and allow you to read or write individual pieces of data in various
|
||
|
// formats. In particular, these implement the varint encoding for
|
||
|
// integers, a simple variable-length encoding in which smaller numbers
|
||
|
// take fewer bytes.
|
||
|
//
|
||
|
// Typically these classes will only be used internally by the protocol
|
||
|
// buffer library in order to encode and decode protocol buffers. Clients
|
||
|
// of the library only need to know about this class if they wish to write
|
||
|
// custom message parsing or serialization procedures.
|
||
|
//
|
||
|
// CodedOutputStream example:
|
||
|
// // Write some data to "myfile". First we write a 4-byte "magic number"
|
||
|
// // to identify the file type, then write a length-delimited string. The
|
||
|
// // string is composed of a varint giving the length followed by the raw
|
||
|
// // bytes.
|
||
|
// int fd = open("myfile", O_CREAT | O_WRONLY);
|
||
|
// ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
|
||
|
// CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
|
||
|
//
|
||
|
// int magic_number = 1234;
|
||
|
// char text[] = "Hello world!";
|
||
|
// coded_output->WriteLittleEndian32(magic_number);
|
||
|
// coded_output->WriteVarint32(strlen(text));
|
||
|
// coded_output->WriteRaw(text, strlen(text));
|
||
|
//
|
||
|
// delete coded_output;
|
||
|
// delete raw_output;
|
||
|
// close(fd);
|
||
|
//
|
||
|
// CodedInputStream example:
|
||
|
// // Read a file created by the above code.
|
||
|
// int fd = open("myfile", O_RDONLY);
|
||
|
// ZeroCopyInputStream* raw_input = new FileInputStream(fd);
|
||
|
// CodedInputStream* coded_input = new CodedInputStream(raw_input);
|
||
|
//
|
||
|
// coded_input->ReadLittleEndian32(&magic_number);
|
||
|
// if (magic_number != 1234) {
|
||
|
// cerr << "File not in expected format." << endl;
|
||
|
// return;
|
||
|
// }
|
||
|
//
|
||
|
// uint32_t size;
|
||
|
// coded_input->ReadVarint32(&size);
|
||
|
//
|
||
|
// char* text = new char[size + 1];
|
||
|
// coded_input->ReadRaw(buffer, size);
|
||
|
// text[size] = '\0';
|
||
|
//
|
||
|
// delete coded_input;
|
||
|
// delete raw_input;
|
||
|
// close(fd);
|
||
|
//
|
||
|
// cout << "Text is: " << text << endl;
|
||
|
// delete [] text;
|
||
|
//
|
||
|
// For those who are interested, varint encoding is defined as follows:
|
||
|
//
|
||
|
// The encoding operates on unsigned integers of up to 64 bits in length.
|
||
|
// Each byte of the encoded value has the format:
|
||
|
// * bits 0-6: Seven bits of the number being encoded.
|
||
|
// * bit 7: Zero if this is the last byte in the encoding (in which
|
||
|
// case all remaining bits of the number are zero) or 1 if
|
||
|
// more bytes follow.
|
||
|
// The first byte contains the least-significant 7 bits of the number, the
|
||
|
// second byte (if present) contains the next-least-significant 7 bits,
|
||
|
// and so on. So, the binary number 1011000101011 would be encoded in two
|
||
|
// bytes as "10101011 00101100".
|
||
|
//
|
||
|
// In theory, varint could be used to encode integers of any length.
|
||
|
// However, for practicality we set a limit at 64 bits. The maximum encoded
|
||
|
// length of a number is thus 10 bytes.
|
||
|
|
||
|
#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
|
||
|
#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
|
||
|
|
||
|
|
||
|
#include <assert.h>
|
||
|
|
||
|
#include <atomic>
|
||
|
#include <climits>
|
||
|
#include <cstddef>
|
||
|
#include <cstring>
|
||
|
#include <limits>
|
||
|
#include <string>
|
||
|
#include <type_traits>
|
||
|
#include <utility>
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
// Assuming windows is always little-endian.
|
||
|
#if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
|
||
|
#define PROTOBUF_LITTLE_ENDIAN 1
|
||
|
#endif
|
||
|
#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
|
||
|
// If MSVC has "/RTCc" set, it will complain about truncating casts at
|
||
|
// runtime. This file contains some intentional truncating casts.
|
||
|
#pragma runtime_checks("c", off)
|
||
|
#endif
|
||
|
#else
|
||
|
#ifdef __APPLE__
|
||
|
#include <machine/endian.h> // __BYTE_ORDER
|
||
|
#elif defined(__FreeBSD__)
|
||
|
#include <sys/endian.h> // __BYTE_ORDER
|
||
|
#elif (defined(sun) || defined(__sun)) && (defined(__SVR4) || defined(__svr4__))
|
||
|
#include <sys/isa_defs.h> // __BYTE_ORDER
|
||
|
#elif defined(_AIX) || defined(__TOS_AIX__)
|
||
|
#include <sys/machine.h> // BYTE_ORDER
|
||
|
#else
|
||
|
#if !defined(__QNX__)
|
||
|
#include <endian.h> // __BYTE_ORDER
|
||
|
#endif
|
||
|
#endif
|
||
|
#if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \
|
||
|
(defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
|
||
|
!defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
|
||
|
#define PROTOBUF_LITTLE_ENDIAN 1
|
||
|
#endif
|
||
|
#endif
|
||
|
#include <thirdparty/protobuf/stubs/common.h>
|
||
|
#include <thirdparty/protobuf/stubs/logging.h>
|
||
|
#include <thirdparty/protobuf/stubs/strutil.h>
|
||
|
#include <thirdparty/protobuf/port.h>
|
||
|
#include <thirdparty/protobuf/stubs/port.h>
|
||
|
|
||
|
|
||
|
#include <thirdparty/protobuf/port_def.inc>
|
||
|
|
||
|
namespace google {
|
||
|
namespace protobuf {
|
||
|
|
||
|
class DescriptorPool;
|
||
|
class MessageFactory;
|
||
|
class ZeroCopyCodedInputStream;
|
||
|
|
||
|
namespace internal {
|
||
|
void MapTestForceDeterministic();
|
||
|
class EpsCopyByteStream;
|
||
|
} // namespace internal
|
||
|
|
||
|
namespace io {
|
||
|
|
||
|
// Defined in this file.
|
||
|
class CodedInputStream;
|
||
|
class CodedOutputStream;
|
||
|
|
||
|
// Defined in other files.
|
||
|
class ZeroCopyInputStream; // zero_copy_stream.h
|
||
|
class ZeroCopyOutputStream; // zero_copy_stream.h
|
||
|
|
||
|
// Class which reads and decodes binary data which is composed of varint-
|
||
|
// encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream.
|
||
|
// Most users will not need to deal with CodedInputStream.
|
||
|
//
|
||
|
// Most methods of CodedInputStream that return a bool return false if an
|
||
|
// underlying I/O error occurs or if the data is malformed. Once such a
|
||
|
// failure occurs, the CodedInputStream is broken and is no longer useful.
|
||
|
// After a failure, callers also should assume writes to "out" args may have
|
||
|
// occurred, though nothing useful can be determined from those writes.
|
||
|
class PROTOBUF_EXPORT CodedInputStream {
|
||
|
public:
|
||
|
// Create a CodedInputStream that reads from the given ZeroCopyInputStream.
|
||
|
explicit CodedInputStream(ZeroCopyInputStream* input);
|
||
|
|
||
|
// Create a CodedInputStream that reads from the given flat array. This is
|
||
|
// faster than using an ArrayInputStream. PushLimit(size) is implied by
|
||
|
// this constructor.
|
||
|
explicit CodedInputStream(const uint8_t* buffer, int size);
|
||
|
|
||
|
// Destroy the CodedInputStream and position the underlying
|
||
|
// ZeroCopyInputStream at the first unread byte. If an error occurred while
|
||
|
// reading (causing a method to return false), then the exact position of
|
||
|
// the input stream may be anywhere between the last value that was read
|
||
|
// successfully and the stream's byte limit.
|
||
|
~CodedInputStream();
|
||
|
|
||
|
// Return true if this CodedInputStream reads from a flat array instead of
|
||
|
// a ZeroCopyInputStream.
|
||
|
inline bool IsFlat() const;
|
||
|
|
||
|
// Skips a number of bytes. Returns false if an underlying read error
|
||
|
// occurs.
|
||
|
inline bool Skip(int count);
|
||
|
|
||
|
// Sets *data to point directly at the unread part of the CodedInputStream's
|
||
|
// underlying buffer, and *size to the size of that buffer, but does not
|
||
|
// advance the stream's current position. This will always either produce
|
||
|
// a non-empty buffer or return false. If the caller consumes any of
|
||
|
// this data, it should then call Skip() to skip over the consumed bytes.
|
||
|
// This may be useful for implementing external fast parsing routines for
|
||
|
// types of data not covered by the CodedInputStream interface.
|
||
|
bool GetDirectBufferPointer(const void** data, int* size);
|
||
|
|
||
|
// Like GetDirectBufferPointer, but this method is inlined, and does not
|
||
|
// attempt to Refresh() if the buffer is currently empty.
|
||
|
PROTOBUF_ALWAYS_INLINE
|
||
|
void GetDirectBufferPointerInline(const void** data, int* size);
|
||
|
|
||
|
// Read raw bytes, copying them into the given buffer.
|
||
|
bool ReadRaw(void* buffer, int size);
|
||
|
|
||
|
// Like ReadRaw, but reads into a string.
|
||
|
bool ReadString(std::string* buffer, int size);
|
||
|
|
||
|
|
||
|
// Read a 32-bit little-endian integer.
|
||
|
bool ReadLittleEndian32(uint32_t* value);
|
||
|
// Read a 64-bit little-endian integer.
|
||
|
bool ReadLittleEndian64(uint64_t* value);
|
||
|
|
||
|
// These methods read from an externally provided buffer. The caller is
|
||
|
// responsible for ensuring that the buffer has sufficient space.
|
||
|
// Read a 32-bit little-endian integer.
|
||
|
static const uint8_t* ReadLittleEndian32FromArray(const uint8_t* buffer,
|
||
|
uint32_t* value);
|
||
|
// Read a 64-bit little-endian integer.
|
||
|
static const uint8_t* ReadLittleEndian64FromArray(const uint8_t* buffer,
|
||
|
uint64_t* value);
|
||
|
|
||
|
// Read an unsigned integer with Varint encoding, truncating to 32 bits.
|
||
|
// Reading a 32-bit value is equivalent to reading a 64-bit one and casting
|
||
|
// it to uint32_t, but may be more efficient.
|
||
|
bool ReadVarint32(uint32_t* value);
|
||
|
// Read an unsigned integer with Varint encoding.
|
||
|
bool ReadVarint64(uint64_t* value);
|
||
|
|
||
|
// Reads a varint off the wire into an "int". This should be used for reading
|
||
|
// sizes off the wire (sizes of strings, submessages, bytes fields, etc).
|
||
|
//
|
||
|
// The value from the wire is interpreted as unsigned. If its value exceeds
|
||
|
// the representable value of an integer on this platform, instead of
|
||
|
// truncating we return false. Truncating (as performed by ReadVarint32()
|
||
|
// above) is an acceptable approach for fields representing an integer, but
|
||
|
// when we are parsing a size from the wire, truncating the value would result
|
||
|
// in us misparsing the payload.
|
||
|
bool ReadVarintSizeAsInt(int* value);
|
||
|
|
||
|
// Read a tag. This calls ReadVarint32() and returns the result, or returns
|
||
|
// zero (which is not a valid tag) if ReadVarint32() fails. Also, ReadTag
|
||
|
// (but not ReadTagNoLastTag) updates the last tag value, which can be checked
|
||
|
// with LastTagWas().
|
||
|
//
|
||
|
// Always inline because this is only called in one place per parse loop
|
||
|
// but it is called for every iteration of said loop, so it should be fast.
|
||
|
// GCC doesn't want to inline this by default.
|
||
|
PROTOBUF_ALWAYS_INLINE uint32_t ReadTag() {
|
||
|
return last_tag_ = ReadTagNoLastTag();
|
||
|
}
|
||
|
|
||
|
PROTOBUF_ALWAYS_INLINE uint32_t ReadTagNoLastTag();
|
||
|
|
||
|
// This usually a faster alternative to ReadTag() when cutoff is a manifest
|
||
|
// constant. It does particularly well for cutoff >= 127. The first part
|
||
|
// of the return value is the tag that was read, though it can also be 0 in
|
||
|
// the cases where ReadTag() would return 0. If the second part is true
|
||
|
// then the tag is known to be in [0, cutoff]. If not, the tag either is
|
||
|
// above cutoff or is 0. (There's intentional wiggle room when tag is 0,
|
||
|
// because that can arise in several ways, and for best performance we want
|
||
|
// to avoid an extra "is tag == 0?" check here.)
|
||
|
PROTOBUF_ALWAYS_INLINE
|
||
|
std::pair<uint32_t, bool> ReadTagWithCutoff(uint32_t cutoff) {
|
||
|
std::pair<uint32_t, bool> result = ReadTagWithCutoffNoLastTag(cutoff);
|
||
|
last_tag_ = result.first;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
PROTOBUF_ALWAYS_INLINE
|
||
|
std::pair<uint32_t, bool> ReadTagWithCutoffNoLastTag(uint32_t cutoff);
|
||
|
|
||
|
// Usually returns true if calling ReadVarint32() now would produce the given
|
||
|
// value. Will always return false if ReadVarint32() would not return the
|
||
|
// given value. If ExpectTag() returns true, it also advances past
|
||
|
// the varint. For best performance, use a compile-time constant as the
|
||
|
// parameter.
|
||
|
// Always inline because this collapses to a small number of instructions
|
||
|
// when given a constant parameter, but GCC doesn't want to inline by default.
|
||
|
PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32_t expected);
|
||
|
|
||
|
// Like above, except this reads from the specified buffer. The caller is
|
||
|
// responsible for ensuring that the buffer is large enough to read a varint
|
||
|
// of the expected size. For best performance, use a compile-time constant as
|
||
|
// the expected tag parameter.
|
||
|
//
|
||
|
// Returns a pointer beyond the expected tag if it was found, or NULL if it
|
||
|
// was not.
|
||
|
PROTOBUF_ALWAYS_INLINE
|
||
|
static const uint8_t* ExpectTagFromArray(const uint8_t* buffer,
|
||
|
uint32_t expected);
|
||
|
|
||
|
// Usually returns true if no more bytes can be read. Always returns false
|
||
|
// if more bytes can be read. If ExpectAtEnd() returns true, a subsequent
|
||
|
// call to LastTagWas() will act as if ReadTag() had been called and returned
|
||
|
// zero, and ConsumedEntireMessage() will return true.
|
||
|
bool ExpectAtEnd();
|
||
|
|
||
|
// If the last call to ReadTag() or ReadTagWithCutoff() returned the given
|
||
|
// value, returns true. Otherwise, returns false.
|
||
|
// ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last
|
||
|
// returned value.
|
||
|
//
|
||
|
// This is needed because parsers for some types of embedded messages
|
||
|
// (with field type TYPE_GROUP) don't actually know that they've reached the
|
||
|
// end of a message until they see an ENDGROUP tag, which was actually part
|
||
|
// of the enclosing message. The enclosing message would like to check that
|
||
|
// tag to make sure it had the right number, so it calls LastTagWas() on
|
||
|
// return from the embedded parser to check.
|
||
|
bool LastTagWas(uint32_t expected);
|
||
|
void SetLastTag(uint32_t tag) { last_tag_ = tag; }
|
||
|
|
||
|
// When parsing message (but NOT a group), this method must be called
|
||
|
// immediately after MergeFromCodedStream() returns (if it returns true)
|
||
|
// to further verify that the message ended in a legitimate way. For
|
||
|
// example, this verifies that parsing did not end on an end-group tag.
|
||
|
// It also checks for some cases where, due to optimizations,
|
||
|
// MergeFromCodedStream() can incorrectly return true.
|
||
|
bool ConsumedEntireMessage();
|
||
|
void SetConsumed() { legitimate_message_end_ = true; }
|
||
|
|
||
|
// Limits ----------------------------------------------------------
|
||
|
// Limits are used when parsing length-delimited embedded messages.
|
||
|
// After the message's length is read, PushLimit() is used to prevent
|
||
|
// the CodedInputStream from reading beyond that length. Once the
|
||
|
// embedded message has been parsed, PopLimit() is called to undo the
|
||
|
// limit.
|
||
|
|
||
|
// Opaque type used with PushLimit() and PopLimit(). Do not modify
|
||
|
// values of this type yourself. The only reason that this isn't a
|
||
|
// struct with private internals is for efficiency.
|
||
|
typedef int Limit;
|
||
|
|
||
|
// Places a limit on the number of bytes that the stream may read,
|
||
|
// starting from the current position. Once the stream hits this limit,
|
||
|
// it will act like the end of the input has been reached until PopLimit()
|
||
|
// is called.
|
||
|
//
|
||
|
// As the names imply, the stream conceptually has a stack of limits. The
|
||
|
// shortest limit on the stack is always enforced, even if it is not the
|
||
|
// top limit.
|
||
|
//
|
||
|
// The value returned by PushLimit() is opaque to the caller, and must
|
||
|
// be passed unchanged to the corresponding call to PopLimit().
|
||
|
Limit PushLimit(int byte_limit);
|
||
|
|
||
|
// Pops the last limit pushed by PushLimit(). The input must be the value
|
||
|
// returned by that call to PushLimit().
|
||
|
void PopLimit(Limit limit);
|
||
|
|
||
|
// Returns the number of bytes left until the nearest limit on the
|
||
|
// stack is hit, or -1 if no limits are in place.
|
||
|
int BytesUntilLimit() const;
|
||
|
|
||
|
// Returns current position relative to the beginning of the input stream.
|
||
|
int CurrentPosition() const;
|
||
|
|
||
|
// Total Bytes Limit -----------------------------------------------
|
||
|
// To prevent malicious users from sending excessively large messages
|
||
|
// and causing memory exhaustion, CodedInputStream imposes a hard limit on
|
||
|
// the total number of bytes it will read.
|
||
|
|
||
|
// Sets the maximum number of bytes that this CodedInputStream will read
|
||
|
// before refusing to continue. To prevent servers from allocating enormous
|
||
|
// amounts of memory to hold parsed messages, the maximum message length
|
||
|
// should be limited to the shortest length that will not harm usability.
|
||
|
// The default limit is INT_MAX (~2GB) and apps should set shorter limits
|
||
|
// if possible. An error will always be printed to stderr if the limit is
|
||
|
// reached.
|
||
|
//
|
||
|
// Note: setting a limit less than the current read position is interpreted
|
||
|
// as a limit on the current position.
|
||
|
//
|
||
|
// This is unrelated to PushLimit()/PopLimit().
|
||
|
void SetTotalBytesLimit(int total_bytes_limit);
|
||
|
|
||
|
// The Total Bytes Limit minus the Current Position, or -1 if the total bytes
|
||
|
// limit is INT_MAX.
|
||
|
int BytesUntilTotalBytesLimit() const;
|
||
|
|
||
|
// Recursion Limit -------------------------------------------------
|
||
|
// To prevent corrupt or malicious messages from causing stack overflows,
|
||
|
// we must keep track of the depth of recursion when parsing embedded
|
||
|
// messages and groups. CodedInputStream keeps track of this because it
|
||
|
// is the only object that is passed down the stack during parsing.
|
||
|
|
||
|
// Sets the maximum recursion depth. The default is 100.
|
||
|
void SetRecursionLimit(int limit);
|
||
|
int RecursionBudget() { return recursion_budget_; }
|
||
|
|
||
|
static int GetDefaultRecursionLimit() { return default_recursion_limit_; }
|
||
|
|
||
|
// Increments the current recursion depth. Returns true if the depth is
|
||
|
// under the limit, false if it has gone over.
|
||
|
bool IncrementRecursionDepth();
|
||
|
|
||
|
// Decrements the recursion depth if possible.
|
||
|
void DecrementRecursionDepth();
|
||
|
|
||
|
// Decrements the recursion depth blindly. This is faster than
|
||
|
// DecrementRecursionDepth(). It should be used only if all previous
|
||
|
// increments to recursion depth were successful.
|
||
|
void UnsafeDecrementRecursionDepth();
|
||
|
|
||
|
// Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
|
||
|
// Using this can reduce code size and complexity in some cases. The caller
|
||
|
// is expected to check that the second part of the result is non-negative (to
|
||
|
// bail out if the depth of recursion is too high) and, if all is well, to
|
||
|
// later pass the first part of the result to PopLimit() or similar.
|
||
|
std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
|
||
|
int byte_limit);
|
||
|
|
||
|
// Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
|
||
|
Limit ReadLengthAndPushLimit();
|
||
|
|
||
|
// Helper that is equivalent to: {
|
||
|
// bool result = ConsumedEntireMessage();
|
||
|
// PopLimit(limit);
|
||
|
// UnsafeDecrementRecursionDepth();
|
||
|
// return result; }
|
||
|
// Using this can reduce code size and complexity in some cases.
|
||
|
// Do not use unless the current recursion depth is greater than zero.
|
||
|
bool DecrementRecursionDepthAndPopLimit(Limit limit);
|
||
|
|
||
|
// Helper that is equivalent to: {
|
||
|
// bool result = ConsumedEntireMessage();
|
||
|
// PopLimit(limit);
|
||
|
// return result; }
|
||
|
// Using this can reduce code size and complexity in some cases.
|
||
|
bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
|
||
|
|
||
|
// Extension Registry ----------------------------------------------
|
||
|
// ADVANCED USAGE: 99.9% of people can ignore this section.
|
||
|
//
|
||
|
// By default, when parsing extensions, the parser looks for extension
|
||
|
// definitions in the pool which owns the outer message's Descriptor.
|
||
|
// However, you may call SetExtensionRegistry() to provide an alternative
|
||
|
// pool instead. This makes it possible, for example, to parse a message
|
||
|
// using a generated class, but represent some extensions using
|
||
|
// DynamicMessage.
|
||
|
|
||
|
// Set the pool used to look up extensions. Most users do not need to call
|
||
|
// this as the correct pool will be chosen automatically.
|
||
|
//
|
||
|
// WARNING: It is very easy to misuse this. Carefully read the requirements
|
||
|
// below. Do not use this unless you are sure you need it. Almost no one
|
||
|
// does.
|
||
|
//
|
||
|
// Let's say you are parsing a message into message object m, and you want
|
||
|
// to take advantage of SetExtensionRegistry(). You must follow these
|
||
|
// requirements:
|
||
|
//
|
||
|
// The given DescriptorPool must contain m->GetDescriptor(). It is not
|
||
|
// sufficient for it to simply contain a descriptor that has the same name
|
||
|
// and content -- it must be the *exact object*. In other words:
|
||
|
// assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
|
||
|
// m->GetDescriptor());
|
||
|
// There are two ways to satisfy this requirement:
|
||
|
// 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless
|
||
|
// because this is the pool that would be used anyway if you didn't call
|
||
|
// SetExtensionRegistry() at all.
|
||
|
// 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
|
||
|
// "underlay". Read the documentation for DescriptorPool for more
|
||
|
// information about underlays.
|
||
|
//
|
||
|
// You must also provide a MessageFactory. This factory will be used to
|
||
|
// construct Message objects representing extensions. The factory's
|
||
|
// GetPrototype() MUST return non-NULL for any Descriptor which can be found
|
||
|
// through the provided pool.
|
||
|
//
|
||
|
// If the provided factory might return instances of protocol-compiler-
|
||
|
// generated (i.e. compiled-in) types, or if the outer message object m is
|
||
|
// a generated type, then the given factory MUST have this property: If
|
||
|
// GetPrototype() is given a Descriptor which resides in
|
||
|
// DescriptorPool::generated_pool(), the factory MUST return the same
|
||
|
// prototype which MessageFactory::generated_factory() would return. That
|
||
|
// is, given a descriptor for a generated type, the factory must return an
|
||
|
// instance of the generated class (NOT DynamicMessage). However, when
|
||
|
// given a descriptor for a type that is NOT in generated_pool, the factory
|
||
|
// is free to return any implementation.
|
||
|
//
|
||
|
// The reason for this requirement is that generated sub-objects may be
|
||
|
// accessed via the standard (non-reflection) extension accessor methods,
|
||
|
// and these methods will down-cast the object to the generated class type.
|
||
|
// If the object is not actually of that type, the results would be undefined.
|
||
|
// On the other hand, if an extension is not compiled in, then there is no
|
||
|
// way the code could end up accessing it via the standard accessors -- the
|
||
|
// only way to access the extension is via reflection. When using reflection,
|
||
|
// DynamicMessage and generated messages are indistinguishable, so it's fine
|
||
|
// if these objects are represented using DynamicMessage.
|
||
|
//
|
||
|
// Using DynamicMessageFactory on which you have called
|
||
|
// SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
|
||
|
// above requirement.
|
||
|
//
|
||
|
// If either pool or factory is NULL, both must be NULL.
|
||
|
//
|
||
|
// Note that this feature is ignored when parsing "lite" messages as they do
|
||
|
// not have descriptors.
|
||
|
void SetExtensionRegistry(const DescriptorPool* pool,
|
||
|
MessageFactory* factory);
|
||
|
|
||
|
// Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
|
||
|
// has been provided.
|
||
|
const DescriptorPool* GetExtensionPool();
|
||
|
|
||
|
// Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
|
||
|
// factory has been provided.
|
||
|
MessageFactory* GetExtensionFactory();
|
||
|
|
||
|
private:
|
||
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
|
||
|
|
||
|
const uint8_t* buffer_;
|
||
|
const uint8_t* buffer_end_; // pointer to the end of the buffer.
|
||
|
ZeroCopyInputStream* input_;
|
||
|
int total_bytes_read_; // total bytes read from input_, including
|
||
|
// the current buffer
|
||
|
|
||
|
// If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
|
||
|
// so that we can BackUp() on destruction.
|
||
|
int overflow_bytes_;
|
||
|
|
||
|
// LastTagWas() stuff.
|
||
|
uint32_t last_tag_; // result of last ReadTag() or ReadTagWithCutoff().
|
||
|
|
||
|
// This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
|
||
|
// at EOF, or by ExpectAtEnd() when it returns true. This happens when we
|
||
|
// reach the end of a message and attempt to read another tag.
|
||
|
bool legitimate_message_end_;
|
||
|
|
||
|
// See EnableAliasing().
|
||
|
bool aliasing_enabled_;
|
||
|
|
||
|
// Limits
|
||
|
Limit current_limit_; // if position = -1, no limit is applied
|
||
|
|
||
|
// For simplicity, if the current buffer crosses a limit (either a normal
|
||
|
// limit created by PushLimit() or the total bytes limit), buffer_size_
|
||
|
// only tracks the number of bytes before that limit. This field
|
||
|
// contains the number of bytes after it. Note that this implies that if
|
||
|
// buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
|
||
|
// hit a limit. However, if both are zero, it doesn't necessarily mean
|
||
|
// we aren't at a limit -- the buffer may have ended exactly at the limit.
|
||
|
int buffer_size_after_limit_;
|
||
|
|
||
|
// Maximum number of bytes to read, period. This is unrelated to
|
||
|
// current_limit_. Set using SetTotalBytesLimit().
|
||
|
int total_bytes_limit_;
|
||
|
|
||
|
// Current recursion budget, controlled by IncrementRecursionDepth() and
|
||
|
// similar. Starts at recursion_limit_ and goes down: if this reaches
|
||
|
// -1 we are over budget.
|
||
|
int recursion_budget_;
|
||
|
// Recursion depth limit, set by SetRecursionLimit().
|
||
|
int recursion_limit_;
|
||
|
|
||
|
// See SetExtensionRegistry().
|
||
|
const DescriptorPool* extension_pool_;
|
||
|
MessageFactory* extension_factory_;
|
||
|
|
||
|
// Private member functions.
|
||
|
|
||
|
// Fallback when Skip() goes past the end of the current buffer.
|
||
|
bool SkipFallback(int count, int original_buffer_size);
|
||
|
|
||
|
// Advance the buffer by a given number of bytes.
|
||
|
void Advance(int amount);
|
||
|
|
||
|
// Back up input_ to the current buffer position.
|
||
|
void BackUpInputToCurrentPosition();
|
||
|
|
||
|
// Recomputes the value of buffer_size_after_limit_. Must be called after
|
||
|
// current_limit_ or total_bytes_limit_ changes.
|
||
|
void RecomputeBufferLimits();
|
||
|
|
||
|
// Writes an error message saying that we hit total_bytes_limit_.
|
||
|
void PrintTotalBytesLimitError();
|
||
|
|
||
|
// Called when the buffer runs out to request more data. Implies an
|
||
|
// Advance(BufferSize()).
|
||
|
bool Refresh();
|
||
|
|
||
|
// When parsing varints, we optimize for the common case of small values, and
|
||
|
// then optimize for the case when the varint fits within the current buffer
|
||
|
// piece. The Fallback method is used when we can't use the one-byte
|
||
|
// optimization. The Slow method is yet another fallback when the buffer is
|
||
|
// not large enough. Making the slow path out-of-line speeds up the common
|
||
|
// case by 10-15%. The slow path is fairly uncommon: it only triggers when a
|
||
|
// message crosses multiple buffers. Note: ReadVarint32Fallback() and
|
||
|
// ReadVarint64Fallback() are called frequently and generally not inlined, so
|
||
|
// they have been optimized to avoid "out" parameters. The former returns -1
|
||
|
// if it fails and the uint32_t it read otherwise. The latter has a bool
|
||
|
// indicating success or failure as part of its return type.
|
||
|
int64_t ReadVarint32Fallback(uint32_t first_byte_or_zero);
|
||
|
int ReadVarintSizeAsIntFallback();
|
||
|
std::pair<uint64_t, bool> ReadVarint64Fallback();
|
||
|
bool ReadVarint32Slow(uint32_t* value);
|
||
|
bool ReadVarint64Slow(uint64_t* value);
|
||
|
int ReadVarintSizeAsIntSlow();
|
||
|
bool ReadLittleEndian32Fallback(uint32_t* value);
|
||
|
bool ReadLittleEndian64Fallback(uint64_t* value);
|
||
|
|
||
|
// Fallback/slow methods for reading tags. These do not update last_tag_,
|
||
|
// but will set legitimate_message_end_ if we are at the end of the input
|
||
|
// stream.
|
||
|
uint32_t ReadTagFallback(uint32_t first_byte_or_zero);
|
||
|
uint32_t ReadTagSlow();
|
||
|
bool ReadStringFallback(std::string* buffer, int size);
|
||
|
|
||
|
// Return the size of the buffer.
|
||
|
int BufferSize() const;
|
||
|
|
||
|
static const int kDefaultTotalBytesLimit = INT_MAX;
|
||
|
|
||
|
static int default_recursion_limit_; // 100 by default.
|
||
|
|
||
|
friend class google::protobuf::ZeroCopyCodedInputStream;
|
||
|
friend class google::protobuf::internal::EpsCopyByteStream;
|
||
|
};
|
||
|
|
||
|
// EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream,
|
||
|
// which has the property you can write kSlopBytes (16 bytes) from the current
|
||
|
// position without bounds checks. The cursor into the stream is managed by
|
||
|
// the user of the class and is an explicit parameter in the methods. Careful
|
||
|
// use of this class, ie. keep ptr a local variable, eliminates the need to
|
||
|
// for the compiler to sync the ptr value between register and memory.
|
||
|
class PROTOBUF_EXPORT EpsCopyOutputStream {
|
||
|
public:
|
||
|
enum { kSlopBytes = 16 };
|
||
|
|
||
|
// Initialize from a stream.
|
||
|
EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic,
|
||
|
uint8_t** pp)
|
||
|
: end_(buffer_),
|
||
|
stream_(stream),
|
||
|
is_serialization_deterministic_(deterministic) {
|
||
|
*pp = buffer_;
|
||
|
}
|
||
|
|
||
|
// Only for array serialization. No overflow protection, end_ will be the
|
||
|
// pointed to the end of the array. When using this the total size is already
|
||
|
// known, so no need to maintain the slop region.
|
||
|
EpsCopyOutputStream(void* data, int size, bool deterministic)
|
||
|
: end_(static_cast<uint8_t*>(data) + size),
|
||
|
buffer_end_(nullptr),
|
||
|
stream_(nullptr),
|
||
|
is_serialization_deterministic_(deterministic) {}
|
||
|
|
||
|
// Initialize from stream but with the first buffer already given (eager).
|
||
|
EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream,
|
||
|
bool deterministic, uint8_t** pp)
|
||
|
: stream_(stream), is_serialization_deterministic_(deterministic) {
|
||
|
*pp = SetInitialBuffer(data, size);
|
||
|
}
|
||
|
|
||
|
// Flush everything that's written into the underlying ZeroCopyOutputStream
|
||
|
// and trims the underlying stream to the location of ptr.
|
||
|
uint8_t* Trim(uint8_t* ptr);
|
||
|
|
||
|
// After this it's guaranteed you can safely write kSlopBytes to ptr. This
|
||
|
// will never fail! The underlying stream can produce an error. Use HadError
|
||
|
// to check for errors.
|
||
|
PROTOBUF_NODISCARD uint8_t* EnsureSpace(uint8_t* ptr) {
|
||
|
if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) {
|
||
|
return EnsureSpaceFallback(ptr);
|
||
|
}
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
uint8_t* WriteRaw(const void* data, int size, uint8_t* ptr) {
|
||
|
if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) {
|
||
|
return WriteRawFallback(data, size, ptr);
|
||
|
}
|
||
|
std::memcpy(ptr, data, size);
|
||
|
return ptr + size;
|
||
|
}
|
||
|
// Writes the buffer specified by data, size to the stream. Possibly by
|
||
|
// aliasing the buffer (ie. not copying the data). The caller is responsible
|
||
|
// to make sure the buffer is alive for the duration of the
|
||
|
// ZeroCopyOutputStream.
|
||
|
#ifndef NDEBUG
|
||
|
PROTOBUF_NOINLINE
|
||
|
#endif
|
||
|
uint8_t* WriteRawMaybeAliased(const void* data, int size, uint8_t* ptr) {
|
||
|
if (aliasing_enabled_) {
|
||
|
return WriteAliasedRaw(data, size, ptr);
|
||
|
} else {
|
||
|
return WriteRaw(data, size, ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
PROTOBUF_NOINLINE
|
||
|
#endif
|
||
|
uint8_t* WriteStringMaybeAliased(uint32_t num, const std::string& s,
|
||
|
uint8_t* ptr) {
|
||
|
std::ptrdiff_t size = s.size();
|
||
|
if (PROTOBUF_PREDICT_FALSE(
|
||
|
size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
|
||
|
return WriteStringMaybeAliasedOutline(num, s, ptr);
|
||
|
}
|
||
|
ptr = UnsafeVarint((num << 3) | 2, ptr);
|
||
|
*ptr++ = static_cast<uint8_t>(size);
|
||
|
std::memcpy(ptr, s.data(), size);
|
||
|
return ptr + size;
|
||
|
}
|
||
|
uint8_t* WriteBytesMaybeAliased(uint32_t num, const std::string& s,
|
||
|
uint8_t* ptr) {
|
||
|
return WriteStringMaybeAliased(num, s, ptr);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteString(uint32_t num, const T& s,
|
||
|
uint8_t* ptr) {
|
||
|
std::ptrdiff_t size = s.size();
|
||
|
if (PROTOBUF_PREDICT_FALSE(
|
||
|
size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
|
||
|
return WriteStringOutline(num, s, ptr);
|
||
|
}
|
||
|
ptr = UnsafeVarint((num << 3) | 2, ptr);
|
||
|
*ptr++ = static_cast<uint8_t>(size);
|
||
|
std::memcpy(ptr, s.data(), size);
|
||
|
return ptr + size;
|
||
|
}
|
||
|
template <typename T>
|
||
|
#ifndef NDEBUG
|
||
|
PROTOBUF_NOINLINE
|
||
|
#endif
|
||
|
uint8_t* WriteBytes(uint32_t num, const T& s, uint8_t* ptr) {
|
||
|
return WriteString(num, s, ptr);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt32Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, Encode64);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt32Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, Encode32);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt32Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteInt64Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, Encode64);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteUInt64Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, Encode64);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteSInt64Packed(int num, const T& r,
|
||
|
int size, uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64);
|
||
|
}
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteEnumPacked(int num, const T& r, int size,
|
||
|
uint8_t* ptr) {
|
||
|
return WriteVarintPacked(num, r, size, ptr, Encode64);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteFixedPacked(int num, const T& r,
|
||
|
uint8_t* ptr) {
|
||
|
ptr = EnsureSpace(ptr);
|
||
|
constexpr auto element_size = sizeof(typename T::value_type);
|
||
|
auto size = r.size() * element_size;
|
||
|
ptr = WriteLengthDelim(num, size, ptr);
|
||
|
return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size),
|
||
|
ptr);
|
||
|
}
|
||
|
|
||
|
// Returns true if there was an underlying I/O error since this object was
|
||
|
// created.
|
||
|
bool HadError() const { return had_error_; }
|
||
|
|
||
|
// Instructs the EpsCopyOutputStream to allow the underlying
|
||
|
// ZeroCopyOutputStream to hold pointers to the original structure instead of
|
||
|
// copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
|
||
|
// underlying stream does not support aliasing, then enabling it has no
|
||
|
// affect. For now, this only affects the behavior of
|
||
|
// WriteRawMaybeAliased().
|
||
|
//
|
||
|
// NOTE: It is caller's responsibility to ensure that the chunk of memory
|
||
|
// remains live until all of the data has been consumed from the stream.
|
||
|
void EnableAliasing(bool enabled);
|
||
|
|
||
|
// See documentation on CodedOutputStream::SetSerializationDeterministic.
|
||
|
void SetSerializationDeterministic(bool value) {
|
||
|
is_serialization_deterministic_ = value;
|
||
|
}
|
||
|
|
||
|
// See documentation on CodedOutputStream::IsSerializationDeterministic.
|
||
|
bool IsSerializationDeterministic() const {
|
||
|
return is_serialization_deterministic_;
|
||
|
}
|
||
|
|
||
|
// The number of bytes written to the stream at position ptr, relative to the
|
||
|
// stream's overall position.
|
||
|
int64_t ByteCount(uint8_t* ptr) const;
|
||
|
|
||
|
|
||
|
private:
|
||
|
uint8_t* end_;
|
||
|
uint8_t* buffer_end_ = buffer_;
|
||
|
uint8_t buffer_[2 * kSlopBytes];
|
||
|
ZeroCopyOutputStream* stream_;
|
||
|
bool had_error_ = false;
|
||
|
bool aliasing_enabled_ = false; // See EnableAliasing().
|
||
|
bool is_serialization_deterministic_;
|
||
|
|
||
|
uint8_t* EnsureSpaceFallback(uint8_t* ptr);
|
||
|
inline uint8_t* Next();
|
||
|
int Flush(uint8_t* ptr);
|
||
|
std::ptrdiff_t GetSize(uint8_t* ptr) const {
|
||
|
GOOGLE_DCHECK(ptr <= end_ + kSlopBytes); // NOLINT
|
||
|
return end_ + kSlopBytes - ptr;
|
||
|
}
|
||
|
|
||
|
uint8_t* Error() {
|
||
|
had_error_ = true;
|
||
|
// We use the patch buffer to always guarantee space to write to.
|
||
|
end_ = buffer_ + kSlopBytes;
|
||
|
return buffer_;
|
||
|
}
|
||
|
|
||
|
static constexpr int TagSize(uint32_t tag) {
|
||
|
return (tag < (1 << 7)) ? 1
|
||
|
: (tag < (1 << 14)) ? 2
|
||
|
: (tag < (1 << 21)) ? 3
|
||
|
: (tag < (1 << 28)) ? 4
|
||
|
: 5;
|
||
|
}
|
||
|
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteTag(uint32_t num, uint32_t wt,
|
||
|
uint8_t* ptr) {
|
||
|
GOOGLE_DCHECK(ptr < end_); // NOLINT
|
||
|
return UnsafeVarint((num << 3) | wt, ptr);
|
||
|
}
|
||
|
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteLengthDelim(int num, uint32_t size,
|
||
|
uint8_t* ptr) {
|
||
|
ptr = WriteTag(num, 2, ptr);
|
||
|
return UnsafeWriteSize(size, ptr);
|
||
|
}
|
||
|
|
||
|
uint8_t* WriteRawFallback(const void* data, int size, uint8_t* ptr);
|
||
|
|
||
|
uint8_t* WriteAliasedRaw(const void* data, int size, uint8_t* ptr);
|
||
|
|
||
|
uint8_t* WriteStringMaybeAliasedOutline(uint32_t num, const std::string& s,
|
||
|
uint8_t* ptr);
|
||
|
uint8_t* WriteStringOutline(uint32_t num, const std::string& s, uint8_t* ptr);
|
||
|
|
||
|
template <typename T, typename E>
|
||
|
PROTOBUF_ALWAYS_INLINE uint8_t* WriteVarintPacked(int num, const T& r,
|
||
|
int size, uint8_t* ptr,
|
||
|
const E& encode) {
|
||
|
ptr = EnsureSpace(ptr);
|
||
|
ptr = WriteLengthDelim(num, size, ptr);
|
||
|
auto it = r.data();
|
||
|
auto end = it + r.size();
|
||
|
do {
|
||
|
ptr = EnsureSpace(ptr);
|
||
|
ptr = UnsafeVarint(encode(*it++), ptr);
|
||
|
} while (it < end);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
static uint32_t Encode32(uint32_t v) { return v; }
|
||
|
static uint64_t Encode64(uint64_t v) { return v; }
|
||
|
static uint32_t ZigZagEncode32(int32_t v) {
|
||
|
return (static_cast<uint32_t>(v) << 1) ^ static_cast<uint32_t>(v >> 31);
|
||
|
}
|
||
|
static uint64_t ZigZagEncode64(int64_t v) {
|
||
|
return (static_cast<uint64_t>(v) << 1) ^ static_cast<uint64_t>(v >> 63);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeVarint(T value, uint8_t* ptr) {
|
||
|
static_assert(std::is_unsigned<T>::value,
|
||
|
"Varint serialization must be unsigned");
|
||
|
ptr[0] = static_cast<uint8_t>(value);
|
||
|
if (value < 0x80) {
|
||
|
return ptr + 1;
|
||
|
}
|
||
|
// Turn on continuation bit in the byte we just wrote.
|
||
|
ptr[0] |= static_cast<uint8_t>(0x80);
|
||
|
value >>= 7;
|
||
|
ptr[1] = static_cast<uint8_t>(value);
|
||
|
if (value < 0x80) {
|
||
|
return ptr + 2;
|
||
|
}
|
||
|
ptr += 2;
|
||
|
do {
|
||
|
// Turn on continuation bit in the byte we just wrote.
|
||
|
ptr[-1] |= static_cast<uint8_t>(0x80);
|
||
|
value >>= 7;
|
||
|
*ptr = static_cast<uint8_t>(value);
|
||
|
++ptr;
|
||
|
} while (value >= 0x80);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
PROTOBUF_ALWAYS_INLINE static uint8_t* UnsafeWriteSize(uint32_t value,
|
||
|
uint8_t* ptr) {
|
||
|
while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) {
|
||
|
*ptr = static_cast<uint8_t>(value | 0x80);
|
||
|
value >>= 7;
|
||
|
++ptr;
|
||
|
}
|
||
|
*ptr++ = static_cast<uint8_t>(value);
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
template <int S>
|
||
|
uint8_t* WriteRawLittleEndian(const void* data, int size, uint8_t* ptr);
|
||
|
#ifndef PROTOBUF_LITTLE_ENDIAN
|
||
|
uint8_t* WriteRawLittleEndian32(const void* data, int size, uint8_t* ptr);
|
||
|
uint8_t* WriteRawLittleEndian64(const void* data, int size, uint8_t* ptr);
|
||
|
#endif
|
||
|
|
||
|
// These methods are for CodedOutputStream. Ideally they should be private
|
||
|
// but to match current behavior of CodedOutputStream as close as possible
|
||
|
// we allow it some functionality.
|
||
|
public:
|
||
|
uint8_t* SetInitialBuffer(void* data, int size) {
|
||
|
auto ptr = static_cast<uint8_t*>(data);
|
||
|
if (size > kSlopBytes) {
|
||
|
end_ = ptr + size - kSlopBytes;
|
||
|
buffer_end_ = nullptr;
|
||
|
return ptr;
|
||
|
} else {
|
||
|
end_ = buffer_ + size;
|
||
|
buffer_end_ = ptr;
|
||
|
return buffer_;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
// Needed by CodedOutputStream HadError. HadError needs to flush the patch
|
||
|
// buffers to ensure there is no error as of yet.
|
||
|
uint8_t* FlushAndResetBuffer(uint8_t*);
|
||
|
|
||
|
// The following functions mimic the old CodedOutputStream behavior as close
|
||
|
// as possible. They flush the current state to the stream, behave as
|
||
|
// the old CodedOutputStream and then return to normal operation.
|
||
|
bool Skip(int count, uint8_t** pp);
|
||
|
bool GetDirectBufferPointer(void** data, int* size, uint8_t** pp);
|
||
|
uint8_t* GetDirectBufferForNBytesAndAdvance(int size, uint8_t** pp);
|
||
|
|
||
|
friend class CodedOutputStream;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data,
|
||
|
int size,
|
||
|
uint8_t* ptr) {
|
||
|
return WriteRaw(data, size, ptr);
|
||
|
}
|
||
|
template <>
|
||
|
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data,
|
||
|
int size,
|
||
|
uint8_t* ptr) {
|
||
|
#ifdef PROTOBUF_LITTLE_ENDIAN
|
||
|
return WriteRaw(data, size, ptr);
|
||
|
#else
|
||
|
return WriteRawLittleEndian32(data, size, ptr);
|
||
|
#endif
|
||
|
}
|
||
|
template <>
|
||
|
inline uint8_t* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data,
|
||
|
int size,
|
||
|
uint8_t* ptr) {
|
||
|
#ifdef PROTOBUF_LITTLE_ENDIAN
|
||
|
return WriteRaw(data, size, ptr);
|
||
|
#else
|
||
|
return WriteRawLittleEndian64(data, size, ptr);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Class which encodes and writes binary data which is composed of varint-
|
||
|
// encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream.
|
||
|
// Most users will not need to deal with CodedOutputStream.
|
||
|
//
|
||
|
// Most methods of CodedOutputStream which return a bool return false if an
|
||
|
// underlying I/O error occurs. Once such a failure occurs, the
|
||
|
// CodedOutputStream is broken and is no longer useful. The Write* methods do
|
||
|
// not return the stream status, but will invalidate the stream if an error
|
||
|
// occurs. The client can probe HadError() to determine the status.
|
||
|
//
|
||
|
// Note that every method of CodedOutputStream which writes some data has
|
||
|
// a corresponding static "ToArray" version. These versions write directly
|
||
|
// to the provided buffer, returning a pointer past the last written byte.
|
||
|
// They require that the buffer has sufficient capacity for the encoded data.
|
||
|
// This allows an optimization where we check if an output stream has enough
|
||
|
// space for an entire message before we start writing and, if there is, we
|
||
|
// call only the ToArray methods to avoid doing bound checks for each
|
||
|
// individual value.
|
||
|
// i.e., in the example above:
|
||
|
//
|
||
|
// CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
|
||
|
// int magic_number = 1234;
|
||
|
// char text[] = "Hello world!";
|
||
|
//
|
||
|
// int coded_size = sizeof(magic_number) +
|
||
|
// CodedOutputStream::VarintSize32(strlen(text)) +
|
||
|
// strlen(text);
|
||
|
//
|
||
|
// uint8_t* buffer =
|
||
|
// coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
|
||
|
// if (buffer != nullptr) {
|
||
|
// // The output stream has enough space in the buffer: write directly to
|
||
|
// // the array.
|
||
|
// buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
|
||
|
// buffer);
|
||
|
// buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
|
||
|
// buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
|
||
|
// } else {
|
||
|
// // Make bound-checked writes, which will ask the underlying stream for
|
||
|
// // more space as needed.
|
||
|
// coded_output->WriteLittleEndian32(magic_number);
|
||
|
// coded_output->WriteVarint32(strlen(text));
|
||
|
// coded_output->WriteRaw(text, strlen(text));
|
||
|
// }
|
||
|
//
|
||
|
// delete coded_output;
|
||
|
class PROTOBUF_EXPORT CodedOutputStream {
|
||
|
public:
|
||
|
// Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
|
||
|
explicit CodedOutputStream(ZeroCopyOutputStream* stream)
|
||
|
: CodedOutputStream(stream, true) {}
|
||
|
CodedOutputStream(ZeroCopyOutputStream* stream, bool do_eager_refresh);
|
||
|
|
||
|
// Destroy the CodedOutputStream and position the underlying
|
||
|
// ZeroCopyOutputStream immediately after the last byte written.
|
||
|
~CodedOutputStream();
|
||
|
|
||
|
// Returns true if there was an underlying I/O error since this object was
|
||
|
// created. On should call Trim before this function in order to catch all
|
||
|
// errors.
|
||
|
bool HadError() {
|
||
|
cur_ = impl_.FlushAndResetBuffer(cur_);
|
||
|
GOOGLE_DCHECK(cur_);
|
||
|
return impl_.HadError();
|
||
|
}
|
||
|
|
||
|
// Trims any unused space in the underlying buffer so that its size matches
|
||
|
// the number of bytes written by this stream. The underlying buffer will
|
||
|
// automatically be trimmed when this stream is destroyed; this call is only
|
||
|
// necessary if the underlying buffer is accessed *before* the stream is
|
||
|
// destroyed.
|
||
|
void Trim() { cur_ = impl_.Trim(cur_); }
|
||
|
|
||
|
// Skips a number of bytes, leaving the bytes unmodified in the underlying
|
||
|
// buffer. Returns false if an underlying write error occurs. This is
|
||
|
// mainly useful with GetDirectBufferPointer().
|
||
|
// Note of caution, the skipped bytes may contain uninitialized data. The
|
||
|
// caller must make sure that the skipped bytes are properly initialized,
|
||
|
// otherwise you might leak bytes from your heap.
|
||
|
bool Skip(int count) { return impl_.Skip(count, &cur_); }
|
||
|
|
||
|
// Sets *data to point directly at the unwritten part of the
|
||
|
// CodedOutputStream's underlying buffer, and *size to the size of that
|
||
|
// buffer, but does not advance the stream's current position. This will
|
||
|
// always either produce a non-empty buffer or return false. If the caller
|
||
|
// writes any data to this buffer, it should then call Skip() to skip over
|
||
|
// the consumed bytes. This may be useful for implementing external fast
|
||
|
// serialization routines for types of data not covered by the
|
||
|
// CodedOutputStream interface.
|
||
|
bool GetDirectBufferPointer(void** data, int* size) {
|
||
|
return impl_.GetDirectBufferPointer(data, size, &cur_);
|
||
|
}
|
||
|
|
||
|
// If there are at least "size" bytes available in the current buffer,
|
||
|
// returns a pointer directly into the buffer and advances over these bytes.
|
||
|
// The caller may then write directly into this buffer (e.g. using the
|
||
|
// *ToArray static methods) rather than go through CodedOutputStream. If
|
||
|
// there are not enough bytes available, returns NULL. The return pointer is
|
||
|
// invalidated as soon as any other non-const method of CodedOutputStream
|
||
|
// is called.
|
||
|
inline uint8_t* GetDirectBufferForNBytesAndAdvance(int size) {
|
||
|
return impl_.GetDirectBufferForNBytesAndAdvance(size, &cur_);
|
||
|
}
|
||
|
|
||
|
// Write raw bytes, copying them from the given buffer.
|
||
|
void WriteRaw(const void* buffer, int size) {
|
||
|
cur_ = impl_.WriteRaw(buffer, size, cur_);
|
||
|
}
|
||
|
// Like WriteRaw() but will try to write aliased data if aliasing is
|
||
|
// turned on.
|
||
|
void WriteRawMaybeAliased(const void* data, int size);
|
||
|
// Like WriteRaw() but writing directly to the target array.
|
||
|
// This is _not_ inlined, as the compiler often optimizes memcpy into inline
|
||
|
// copy loops. Since this gets called by every field with string or bytes
|
||
|
// type, inlining may lead to a significant amount of code bloat, with only a
|
||
|
// minor performance gain.
|
||
|
static uint8_t* WriteRawToArray(const void* buffer, int size,
|
||
|
uint8_t* target);
|
||
|
|
||
|
// Equivalent to WriteRaw(str.data(), str.size()).
|
||
|
void WriteString(const std::string& str);
|
||
|
// Like WriteString() but writing directly to the target array.
|
||
|
static uint8_t* WriteStringToArray(const std::string& str, uint8_t* target);
|
||
|
// Write the varint-encoded size of str followed by str.
|
||
|
static uint8_t* WriteStringWithSizeToArray(const std::string& str,
|
||
|
uint8_t* target);
|
||
|
|
||
|
|
||
|
// Write a 32-bit little-endian integer.
|
||
|
void WriteLittleEndian32(uint32_t value) {
|
||
|
cur_ = impl_.EnsureSpace(cur_);
|
||
|
SetCur(WriteLittleEndian32ToArray(value, Cur()));
|
||
|
}
|
||
|
// Like WriteLittleEndian32() but writing directly to the target array.
|
||
|
static uint8_t* WriteLittleEndian32ToArray(uint32_t value, uint8_t* target);
|
||
|
// Write a 64-bit little-endian integer.
|
||
|
void WriteLittleEndian64(uint64_t value) {
|
||
|
cur_ = impl_.EnsureSpace(cur_);
|
||
|
SetCur(WriteLittleEndian64ToArray(value, Cur()));
|
||
|
}
|
||
|
// Like WriteLittleEndian64() but writing directly to the target array.
|
||
|
static uint8_t* WriteLittleEndian64ToArray(uint64_t value, uint8_t* target);
|
||
|
|
||
|
// Write an unsigned integer with Varint encoding. Writing a 32-bit value
|
||
|
// is equivalent to casting it to uint64_t and writing it as a 64-bit value,
|
||
|
// but may be more efficient.
|
||
|
void WriteVarint32(uint32_t value);
|
||
|
// Like WriteVarint32() but writing directly to the target array.
|
||
|
static uint8_t* WriteVarint32ToArray(uint32_t value, uint8_t* target);
|
||
|
// Like WriteVarint32() but writing directly to the target array, and with
|
||
|
// the less common-case paths being out of line rather than inlined.
|
||
|
static uint8_t* WriteVarint32ToArrayOutOfLine(uint32_t value,
|
||
|
uint8_t* target);
|
||
|
// Write an unsigned integer with Varint encoding.
|
||
|
void WriteVarint64(uint64_t value);
|
||
|
// Like WriteVarint64() but writing directly to the target array.
|
||
|
static uint8_t* WriteVarint64ToArray(uint64_t value, uint8_t* target);
|
||
|
|
||
|
// Equivalent to WriteVarint32() except when the value is negative,
|
||
|
// in which case it must be sign-extended to a full 10 bytes.
|
||
|
void WriteVarint32SignExtended(int32_t value);
|
||
|
// Like WriteVarint32SignExtended() but writing directly to the target array.
|
||
|
static uint8_t* WriteVarint32SignExtendedToArray(int32_t value,
|
||
|
uint8_t* target);
|
||
|
|
||
|
// This is identical to WriteVarint32(), but optimized for writing tags.
|
||
|
// In particular, if the input is a compile-time constant, this method
|
||
|
// compiles down to a couple instructions.
|
||
|
// Always inline because otherwise the aforementioned optimization can't work,
|
||
|
// but GCC by default doesn't want to inline this.
|
||
|
void WriteTag(uint32_t value);
|
||
|
// Like WriteTag() but writing directly to the target array.
|
||
|
PROTOBUF_ALWAYS_INLINE
|
||
|
static uint8_t* WriteTagToArray(uint32_t value, uint8_t* target);
|
||
|
|
||
|
// Returns the number of bytes needed to encode the given value as a varint.
|
||
|
static size_t VarintSize32(uint32_t value);
|
||
|
// Returns the number of bytes needed to encode the given value as a varint.
|
||
|
static size_t VarintSize64(uint64_t value);
|
||
|
|
||
|
// If negative, 10 bytes. Otherwise, same as VarintSize32().
|
||
|
static size_t VarintSize32SignExtended(int32_t value);
|
||
|
|
||
|
// Same as above, plus one. The additional one comes at no compute cost.
|
||
|
static size_t VarintSize32PlusOne(uint32_t value);
|
||
|
static size_t VarintSize64PlusOne(uint64_t value);
|
||
|
static size_t VarintSize32SignExtendedPlusOne(int32_t value);
|
||
|
|
||
|
// Compile-time equivalent of VarintSize32().
|
||
|
template <uint32_t Value>
|
||
|
struct StaticVarintSize32 {
|
||
|
static const size_t value = (Value < (1 << 7)) ? 1
|
||
|
: (Value < (1 << 14)) ? 2
|
||
|
: (Value < (1 << 21)) ? 3
|
||
|
: (Value < (1 << 28)) ? 4
|
||
|
: 5;
|
||
|
};
|
||
|
|
||
|
// Returns the total number of bytes written since this object was created.
|
||
|
int ByteCount() const {
|
||
|
return static_cast<int>(impl_.ByteCount(cur_) - start_count_);
|
||
|
}
|
||
|
|
||
|
// Instructs the CodedOutputStream to allow the underlying
|
||
|
// ZeroCopyOutputStream to hold pointers to the original structure instead of
|
||
|
// copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
|
||
|
// underlying stream does not support aliasing, then enabling it has no
|
||
|
// affect. For now, this only affects the behavior of
|
||
|
// WriteRawMaybeAliased().
|
||
|
//
|
||
|
// NOTE: It is caller's responsibility to ensure that the chunk of memory
|
||
|
// remains live until all of the data has been consumed from the stream.
|
||
|
void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); }
|
||
|
|
||
|
// Indicate to the serializer whether the user wants derministic
|
||
|
// serialization. The default when this is not called comes from the global
|
||
|
// default, controlled by SetDefaultSerializationDeterministic.
|
||
|
//
|
||
|
// What deterministic serialization means is entirely up to the driver of the
|
||
|
// serialization process (i.e. the caller of methods like WriteVarint32). In
|
||
|
// the case of serializing a proto buffer message using one of the methods of
|
||
|
// MessageLite, this means that for a given binary equal messages will always
|
||
|
// be serialized to the same bytes. This implies:
|
||
|
//
|
||
|
// * Repeated serialization of a message will return the same bytes.
|
||
|
//
|
||
|
// * Different processes running the same binary (including on different
|
||
|
// machines) will serialize equal messages to the same bytes.
|
||
|
//
|
||
|
// Note that this is *not* canonical across languages. It is also unstable
|
||
|
// across different builds with intervening message definition changes, due to
|
||
|
// unknown fields. Users who need canonical serialization (e.g. persistent
|
||
|
// storage in a canonical form, fingerprinting) should define their own
|
||
|
// canonicalization specification and implement the serializer using
|
||
|
// reflection APIs rather than relying on this API.
|
||
|
void SetSerializationDeterministic(bool value) {
|
||
|
impl_.SetSerializationDeterministic(value);
|
||
|
}
|
||
|
|
||
|
// Return whether the user wants deterministic serialization. See above.
|
||
|
bool IsSerializationDeterministic() const {
|
||
|
return impl_.IsSerializationDeterministic();
|
||
|
}
|
||
|
|
||
|
static bool IsDefaultSerializationDeterministic() {
|
||
|
return default_serialization_deterministic_.load(
|
||
|
std::memory_order_relaxed) != 0;
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
void Serialize(const Func& func);
|
||
|
|
||
|
uint8_t* Cur() const { return cur_; }
|
||
|
void SetCur(uint8_t* ptr) { cur_ = ptr; }
|
||
|
EpsCopyOutputStream* EpsCopy() { return &impl_; }
|
||
|
|
||
|
private:
|
||
|
EpsCopyOutputStream impl_;
|
||
|
uint8_t* cur_;
|
||
|
int64_t start_count_;
|
||
|
static std::atomic<bool> default_serialization_deterministic_;
|
||
|
|
||
|
// See above. Other projects may use "friend" to allow them to call this.
|
||
|
// After SetDefaultSerializationDeterministic() completes, all protocol
|
||
|
// buffer serializations will be deterministic by default. Thread safe.
|
||
|
// However, the meaning of "after" is subtle here: to be safe, each thread
|
||
|
// that wants deterministic serialization by default needs to call
|
||
|
// SetDefaultSerializationDeterministic() or ensure on its own that another
|
||
|
// thread has done so.
|
||
|
friend void internal::MapTestForceDeterministic();
|
||
|
static void SetDefaultSerializationDeterministic() {
|
||
|
default_serialization_deterministic_.store(true, std::memory_order_relaxed);
|
||
|
}
|
||
|
// REQUIRES: value >= 0x80, and that (value & 7f) has been written to *target.
|
||
|
static uint8_t* WriteVarint32ToArrayOutOfLineHelper(uint32_t value,
|
||
|
uint8_t* target);
|
||
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
|
||
|
};
|
||
|
|
||
|
// inline methods ====================================================
|
||
|
// The vast majority of varints are only one byte. These inline
|
||
|
// methods optimize for that case.
|
||
|
|
||
|
inline bool CodedInputStream::ReadVarint32(uint32_t* value) {
|
||
|
uint32_t v = 0;
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
|
||
|
v = *buffer_;
|
||
|
if (v < 0x80) {
|
||
|
*value = v;
|
||
|
Advance(1);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
int64_t result = ReadVarint32Fallback(v);
|
||
|
*value = static_cast<uint32_t>(result);
|
||
|
return result >= 0;
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ReadVarint64(uint64_t* value) {
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
|
||
|
*value = *buffer_;
|
||
|
Advance(1);
|
||
|
return true;
|
||
|
}
|
||
|
std::pair<uint64_t, bool> p = ReadVarint64Fallback();
|
||
|
*value = p.first;
|
||
|
return p.second;
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) {
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
|
||
|
int v = *buffer_;
|
||
|
if (v < 0x80) {
|
||
|
*value = v;
|
||
|
Advance(1);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
*value = ReadVarintSizeAsIntFallback();
|
||
|
return *value >= 0;
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
inline const uint8_t* CodedInputStream::ReadLittleEndian32FromArray(
|
||
|
const uint8_t* buffer, uint32_t* value) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
memcpy(value, buffer, sizeof(*value));
|
||
|
return buffer + sizeof(*value);
|
||
|
#else
|
||
|
*value = (static_cast<uint32_t>(buffer[0])) |
|
||
|
(static_cast<uint32_t>(buffer[1]) << 8) |
|
||
|
(static_cast<uint32_t>(buffer[2]) << 16) |
|
||
|
(static_cast<uint32_t>(buffer[3]) << 24);
|
||
|
return buffer + sizeof(*value);
|
||
|
#endif
|
||
|
}
|
||
|
// static
|
||
|
inline const uint8_t* CodedInputStream::ReadLittleEndian64FromArray(
|
||
|
const uint8_t* buffer, uint64_t* value) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
memcpy(value, buffer, sizeof(*value));
|
||
|
return buffer + sizeof(*value);
|
||
|
#else
|
||
|
uint32_t part0 = (static_cast<uint32_t>(buffer[0])) |
|
||
|
(static_cast<uint32_t>(buffer[1]) << 8) |
|
||
|
(static_cast<uint32_t>(buffer[2]) << 16) |
|
||
|
(static_cast<uint32_t>(buffer[3]) << 24);
|
||
|
uint32_t part1 = (static_cast<uint32_t>(buffer[4])) |
|
||
|
(static_cast<uint32_t>(buffer[5]) << 8) |
|
||
|
(static_cast<uint32_t>(buffer[6]) << 16) |
|
||
|
(static_cast<uint32_t>(buffer[7]) << 24);
|
||
|
*value = static_cast<uint64_t>(part0) | (static_cast<uint64_t>(part1) << 32);
|
||
|
return buffer + sizeof(*value);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ReadLittleEndian32(uint32_t* value) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
|
||
|
buffer_ = ReadLittleEndian32FromArray(buffer_, value);
|
||
|
return true;
|
||
|
} else {
|
||
|
return ReadLittleEndian32Fallback(value);
|
||
|
}
|
||
|
#else
|
||
|
return ReadLittleEndian32Fallback(value);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ReadLittleEndian64(uint64_t* value) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
|
||
|
buffer_ = ReadLittleEndian64FromArray(buffer_, value);
|
||
|
return true;
|
||
|
} else {
|
||
|
return ReadLittleEndian64Fallback(value);
|
||
|
}
|
||
|
#else
|
||
|
return ReadLittleEndian64Fallback(value);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline uint32_t CodedInputStream::ReadTagNoLastTag() {
|
||
|
uint32_t v = 0;
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
|
||
|
v = *buffer_;
|
||
|
if (v < 0x80) {
|
||
|
Advance(1);
|
||
|
return v;
|
||
|
}
|
||
|
}
|
||
|
v = ReadTagFallback(v);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
inline std::pair<uint32_t, bool> CodedInputStream::ReadTagWithCutoffNoLastTag(
|
||
|
uint32_t cutoff) {
|
||
|
// In performance-sensitive code we can expect cutoff to be a compile-time
|
||
|
// constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
|
||
|
// compile time.
|
||
|
uint32_t first_byte_or_zero = 0;
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
|
||
|
// Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
|
||
|
// TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
|
||
|
// is large enough then is it better to check for the two-byte case first?
|
||
|
first_byte_or_zero = buffer_[0];
|
||
|
if (static_cast<int8_t>(buffer_[0]) > 0) {
|
||
|
const uint32_t kMax1ByteVarint = 0x7f;
|
||
|
uint32_t tag = buffer_[0];
|
||
|
Advance(1);
|
||
|
return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
|
||
|
}
|
||
|
// Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
|
||
|
// and tag is two bytes. The latter is tested by bitwise-and-not of the
|
||
|
// first byte and the second byte.
|
||
|
if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
|
||
|
PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
|
||
|
const uint32_t kMax2ByteVarint = (0x7f << 7) + 0x7f;
|
||
|
uint32_t tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
|
||
|
Advance(2);
|
||
|
// It might make sense to test for tag == 0 now, but it is so rare that
|
||
|
// that we don't bother. A varint-encoded 0 should be one byte unless
|
||
|
// the encoder lost its mind. The second part of the return value of
|
||
|
// this function is allowed to be either true or false if the tag is 0,
|
||
|
// so we don't have to check for tag == 0. We may need to check whether
|
||
|
// it exceeds cutoff.
|
||
|
bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
|
||
|
return std::make_pair(tag, at_or_below_cutoff);
|
||
|
}
|
||
|
}
|
||
|
// Slow path
|
||
|
const uint32_t tag = ReadTagFallback(first_byte_or_zero);
|
||
|
return std::make_pair(tag, static_cast<uint32_t>(tag - 1) < cutoff);
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::LastTagWas(uint32_t expected) {
|
||
|
return last_tag_ == expected;
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ConsumedEntireMessage() {
|
||
|
return legitimate_message_end_;
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ExpectTag(uint32_t expected) {
|
||
|
if (expected < (1 << 7)) {
|
||
|
if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) &&
|
||
|
buffer_[0] == expected) {
|
||
|
Advance(1);
|
||
|
return true;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
} else if (expected < (1 << 14)) {
|
||
|
if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) &&
|
||
|
buffer_[0] == static_cast<uint8_t>(expected | 0x80) &&
|
||
|
buffer_[1] == static_cast<uint8_t>(expected >> 7)) {
|
||
|
Advance(2);
|
||
|
return true;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
} else {
|
||
|
// Don't bother optimizing for larger values.
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline const uint8_t* CodedInputStream::ExpectTagFromArray(
|
||
|
const uint8_t* buffer, uint32_t expected) {
|
||
|
if (expected < (1 << 7)) {
|
||
|
if (buffer[0] == expected) {
|
||
|
return buffer + 1;
|
||
|
}
|
||
|
} else if (expected < (1 << 14)) {
|
||
|
if (buffer[0] == static_cast<uint8_t>(expected | 0x80) &&
|
||
|
buffer[1] == static_cast<uint8_t>(expected >> 7)) {
|
||
|
return buffer + 2;
|
||
|
}
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
|
||
|
int* size) {
|
||
|
*data = buffer_;
|
||
|
*size = static_cast<int>(buffer_end_ - buffer_);
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::ExpectAtEnd() {
|
||
|
// If we are at a limit we know no more bytes can be read. Otherwise, it's
|
||
|
// hard to say without calling Refresh(), and we'd rather not do that.
|
||
|
|
||
|
if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) ||
|
||
|
(total_bytes_read_ == current_limit_))) {
|
||
|
last_tag_ = 0; // Pretend we called ReadTag()...
|
||
|
legitimate_message_end_ = true; // ... and it hit EOF.
|
||
|
return true;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline int CodedInputStream::CurrentPosition() const {
|
||
|
return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
|
||
|
}
|
||
|
|
||
|
inline void CodedInputStream::Advance(int amount) { buffer_ += amount; }
|
||
|
|
||
|
inline void CodedInputStream::SetRecursionLimit(int limit) {
|
||
|
recursion_budget_ += limit - recursion_limit_;
|
||
|
recursion_limit_ = limit;
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::IncrementRecursionDepth() {
|
||
|
--recursion_budget_;
|
||
|
return recursion_budget_ >= 0;
|
||
|
}
|
||
|
|
||
|
inline void CodedInputStream::DecrementRecursionDepth() {
|
||
|
if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
|
||
|
}
|
||
|
|
||
|
inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
|
||
|
assert(recursion_budget_ < recursion_limit_);
|
||
|
++recursion_budget_;
|
||
|
}
|
||
|
|
||
|
inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
|
||
|
MessageFactory* factory) {
|
||
|
extension_pool_ = pool;
|
||
|
extension_factory_ = factory;
|
||
|
}
|
||
|
|
||
|
inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
|
||
|
return extension_pool_;
|
||
|
}
|
||
|
|
||
|
inline MessageFactory* CodedInputStream::GetExtensionFactory() {
|
||
|
return extension_factory_;
|
||
|
}
|
||
|
|
||
|
inline int CodedInputStream::BufferSize() const {
|
||
|
return static_cast<int>(buffer_end_ - buffer_);
|
||
|
}
|
||
|
|
||
|
inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
|
||
|
: buffer_(nullptr),
|
||
|
buffer_end_(nullptr),
|
||
|
input_(input),
|
||
|
total_bytes_read_(0),
|
||
|
overflow_bytes_(0),
|
||
|
last_tag_(0),
|
||
|
legitimate_message_end_(false),
|
||
|
aliasing_enabled_(false),
|
||
|
current_limit_(std::numeric_limits<int32_t>::max()),
|
||
|
buffer_size_after_limit_(0),
|
||
|
total_bytes_limit_(kDefaultTotalBytesLimit),
|
||
|
recursion_budget_(default_recursion_limit_),
|
||
|
recursion_limit_(default_recursion_limit_),
|
||
|
extension_pool_(nullptr),
|
||
|
extension_factory_(nullptr) {
|
||
|
// Eagerly Refresh() so buffer space is immediately available.
|
||
|
Refresh();
|
||
|
}
|
||
|
|
||
|
inline CodedInputStream::CodedInputStream(const uint8_t* buffer, int size)
|
||
|
: buffer_(buffer),
|
||
|
buffer_end_(buffer + size),
|
||
|
input_(nullptr),
|
||
|
total_bytes_read_(size),
|
||
|
overflow_bytes_(0),
|
||
|
last_tag_(0),
|
||
|
legitimate_message_end_(false),
|
||
|
aliasing_enabled_(false),
|
||
|
current_limit_(size),
|
||
|
buffer_size_after_limit_(0),
|
||
|
total_bytes_limit_(kDefaultTotalBytesLimit),
|
||
|
recursion_budget_(default_recursion_limit_),
|
||
|
recursion_limit_(default_recursion_limit_),
|
||
|
extension_pool_(nullptr),
|
||
|
extension_factory_(nullptr) {
|
||
|
// Note that setting current_limit_ == size is important to prevent some
|
||
|
// code paths from trying to access input_ and segfaulting.
|
||
|
}
|
||
|
|
||
|
inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; }
|
||
|
|
||
|
inline bool CodedInputStream::Skip(int count) {
|
||
|
if (count < 0) return false; // security: count is often user-supplied
|
||
|
|
||
|
const int original_buffer_size = BufferSize();
|
||
|
|
||
|
if (count <= original_buffer_size) {
|
||
|
// Just skipping within the current buffer. Easy.
|
||
|
Advance(count);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return SkipFallback(count, original_buffer_size);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteVarint32ToArray(uint32_t value,
|
||
|
uint8_t* target) {
|
||
|
return EpsCopyOutputStream::UnsafeVarint(value, target);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteVarint32ToArrayOutOfLine(
|
||
|
uint32_t value, uint8_t* target) {
|
||
|
target[0] = static_cast<uint8_t>(value);
|
||
|
if (value < 0x80) {
|
||
|
return target + 1;
|
||
|
} else {
|
||
|
return WriteVarint32ToArrayOutOfLineHelper(value, target);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteVarint64ToArray(uint64_t value,
|
||
|
uint8_t* target) {
|
||
|
return EpsCopyOutputStream::UnsafeVarint(value, target);
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteVarint32SignExtended(int32_t value) {
|
||
|
WriteVarint64(static_cast<uint64_t>(value));
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteVarint32SignExtendedToArray(
|
||
|
int32_t value, uint8_t* target) {
|
||
|
return WriteVarint64ToArray(static_cast<uint64_t>(value), target);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteLittleEndian32ToArray(uint32_t value,
|
||
|
uint8_t* target) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
memcpy(target, &value, sizeof(value));
|
||
|
#else
|
||
|
target[0] = static_cast<uint8_t>(value);
|
||
|
target[1] = static_cast<uint8_t>(value >> 8);
|
||
|
target[2] = static_cast<uint8_t>(value >> 16);
|
||
|
target[3] = static_cast<uint8_t>(value >> 24);
|
||
|
#endif
|
||
|
return target + sizeof(value);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteLittleEndian64ToArray(uint64_t value,
|
||
|
uint8_t* target) {
|
||
|
#if defined(PROTOBUF_LITTLE_ENDIAN)
|
||
|
memcpy(target, &value, sizeof(value));
|
||
|
#else
|
||
|
uint32_t part0 = static_cast<uint32_t>(value);
|
||
|
uint32_t part1 = static_cast<uint32_t>(value >> 32);
|
||
|
|
||
|
target[0] = static_cast<uint8_t>(part0);
|
||
|
target[1] = static_cast<uint8_t>(part0 >> 8);
|
||
|
target[2] = static_cast<uint8_t>(part0 >> 16);
|
||
|
target[3] = static_cast<uint8_t>(part0 >> 24);
|
||
|
target[4] = static_cast<uint8_t>(part1);
|
||
|
target[5] = static_cast<uint8_t>(part1 >> 8);
|
||
|
target[6] = static_cast<uint8_t>(part1 >> 16);
|
||
|
target[7] = static_cast<uint8_t>(part1 >> 24);
|
||
|
#endif
|
||
|
return target + sizeof(value);
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteVarint32(uint32_t value) {
|
||
|
cur_ = impl_.EnsureSpace(cur_);
|
||
|
SetCur(WriteVarint32ToArray(value, Cur()));
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteVarint64(uint64_t value) {
|
||
|
cur_ = impl_.EnsureSpace(cur_);
|
||
|
SetCur(WriteVarint64ToArray(value, Cur()));
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteTag(uint32_t value) {
|
||
|
WriteVarint32(value);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteTagToArray(uint32_t value,
|
||
|
uint8_t* target) {
|
||
|
return WriteVarint32ToArray(value, target);
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize32(uint32_t value) {
|
||
|
// This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
|
||
|
// Use an explicit multiplication to implement the divide of
|
||
|
// a number in the 1..31 range.
|
||
|
// Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
|
||
|
// undefined.
|
||
|
uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
|
||
|
return static_cast<size_t>((log2value * 9 + 73) / 64);
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize32PlusOne(uint32_t value) {
|
||
|
// Same as above, but one more.
|
||
|
uint32_t log2value = Bits::Log2FloorNonZero(value | 0x1);
|
||
|
return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize64(uint64_t value) {
|
||
|
// This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
|
||
|
// Use an explicit multiplication to implement the divide of
|
||
|
// a number in the 1..63 range.
|
||
|
// Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
|
||
|
// undefined.
|
||
|
uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
|
||
|
return static_cast<size_t>((log2value * 9 + 73) / 64);
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize64PlusOne(uint64_t value) {
|
||
|
// Same as above, but one more.
|
||
|
uint32_t log2value = Bits::Log2FloorNonZero64(value | 0x1);
|
||
|
return static_cast<size_t>((log2value * 9 + 73 + 64) / 64);
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize32SignExtended(int32_t value) {
|
||
|
return VarintSize64(static_cast<uint64_t>(int64_t{value}));
|
||
|
}
|
||
|
|
||
|
inline size_t CodedOutputStream::VarintSize32SignExtendedPlusOne(
|
||
|
int32_t value) {
|
||
|
return VarintSize64PlusOne(static_cast<uint64_t>(int64_t{value}));
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteString(const std::string& str) {
|
||
|
WriteRaw(str.data(), static_cast<int>(str.size()));
|
||
|
}
|
||
|
|
||
|
inline void CodedOutputStream::WriteRawMaybeAliased(const void* data,
|
||
|
int size) {
|
||
|
cur_ = impl_.WriteRawMaybeAliased(data, size, cur_);
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteRawToArray(const void* data, int size,
|
||
|
uint8_t* target) {
|
||
|
memcpy(target, data, size);
|
||
|
return target + size;
|
||
|
}
|
||
|
|
||
|
inline uint8_t* CodedOutputStream::WriteStringToArray(const std::string& str,
|
||
|
uint8_t* target) {
|
||
|
return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
|
||
|
}
|
||
|
|
||
|
} // namespace io
|
||
|
} // namespace protobuf
|
||
|
} // namespace google
|
||
|
|
||
|
#if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
|
||
|
#pragma runtime_checks("c", restore)
|
||
|
#endif // _MSC_VER && !defined(__INTEL_COMPILER)
|
||
|
|
||
|
#include <thirdparty/protobuf/port_undef.inc>
|
||
|
|
||
|
#endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
|