mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
770 lines
30 KiB
C
770 lines
30 KiB
C
|
// Protocol Buffers - Google's data interchange format
|
||
|
// Copyright 2014 Google Inc. All rights reserved.
|
||
|
// https://developers.google.com/protocol-buffers/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// from google3/util/gtl/map_util.h
|
||
|
// Author: Anton Carver
|
||
|
|
||
|
#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|
||
|
#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|
||
|
|
||
|
#include <stddef.h>
|
||
|
#include <iterator>
|
||
|
#include <string>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
#include <thirdparty/protobuf/stubs/common.h>
|
||
|
|
||
|
namespace google {
|
||
|
namespace protobuf {
|
||
|
namespace internal {
|
||
|
// Local implementation of RemoveConst to avoid including base/type_traits.h.
|
||
|
template <class T> struct RemoveConst { typedef T type; };
|
||
|
template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
|
||
|
} // namespace internal
|
||
|
|
||
|
//
|
||
|
// Find*()
|
||
|
//
|
||
|
|
||
|
// Returns a const reference to the value associated with the given key if it
|
||
|
// exists. Crashes otherwise.
|
||
|
//
|
||
|
// This is intended as a replacement for operator[] as an rvalue (for reading)
|
||
|
// when the key is guaranteed to exist.
|
||
|
//
|
||
|
// operator[] for lookup is discouraged for several reasons:
|
||
|
// * It has a side-effect of inserting missing keys
|
||
|
// * It is not thread-safe (even when it is not inserting, it can still
|
||
|
// choose to resize the underlying storage)
|
||
|
// * It invalidates iterators (when it chooses to resize)
|
||
|
// * It default constructs a value object even if it doesn't need to
|
||
|
//
|
||
|
// This version assumes the key is printable, and includes it in the fatal log
|
||
|
// message.
|
||
|
template <class Collection>
|
||
|
const typename Collection::value_type::second_type&
|
||
|
FindOrDie(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Same as above, but returns a non-const reference.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
FindOrDie(Collection& collection, // NOLINT
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::iterator it = collection.find(key);
|
||
|
GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Same as FindOrDie above, but doesn't log the key on failure.
|
||
|
template <class Collection>
|
||
|
const typename Collection::value_type::second_type&
|
||
|
FindOrDieNoPrint(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
GOOGLE_CHECK(it != collection.end()) << "Map key not found";
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Same as above, but returns a non-const reference.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
FindOrDieNoPrint(Collection& collection, // NOLINT
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::iterator it = collection.find(key);
|
||
|
GOOGLE_CHECK(it != collection.end()) << "Map key not found";
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Returns a const reference to the value associated with the given key if it
|
||
|
// exists, otherwise returns a const reference to the provided default value.
|
||
|
//
|
||
|
// WARNING: If a temporary object is passed as the default "value,"
|
||
|
// this function will return a reference to that temporary object,
|
||
|
// which will be destroyed at the end of the statement. A common
|
||
|
// example: if you have a map with string values, and you pass a char*
|
||
|
// as the default "value," either use the returned value immediately
|
||
|
// or store it in a string (not string&).
|
||
|
// Details: http://go/findwithdefault
|
||
|
template <class Collection>
|
||
|
const typename Collection::value_type::second_type&
|
||
|
FindWithDefault(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return value;
|
||
|
}
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Returns a pointer to the const value associated with the given key if it
|
||
|
// exists, or nullptr otherwise.
|
||
|
template <class Collection>
|
||
|
const typename Collection::value_type::second_type*
|
||
|
FindOrNull(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return 0;
|
||
|
}
|
||
|
return &it->second;
|
||
|
}
|
||
|
|
||
|
// Same as above but returns a pointer to the non-const value.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type*
|
||
|
FindOrNull(Collection& collection, // NOLINT
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return 0;
|
||
|
}
|
||
|
return &it->second;
|
||
|
}
|
||
|
|
||
|
// Returns the pointer value associated with the given key. If none is found,
|
||
|
// nullptr is returned. The function is designed to be used with a map of keys to
|
||
|
// pointers.
|
||
|
//
|
||
|
// This function does not distinguish between a missing key and a key mapped
|
||
|
// to nullptr.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type
|
||
|
FindPtrOrNull(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return typename Collection::value_type::second_type();
|
||
|
}
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Same as above, except takes non-const reference to collection.
|
||
|
//
|
||
|
// This function is needed for containers that propagate constness to the
|
||
|
// pointee, such as boost::ptr_map.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type
|
||
|
FindPtrOrNull(Collection& collection, // NOLINT
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return typename Collection::value_type::second_type();
|
||
|
}
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Finds the pointer value associated with the given key in a map whose values
|
||
|
// are linked_ptrs. Returns nullptr if key is not found.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type::element_type*
|
||
|
FindLinkedPtrOrNull(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return 0;
|
||
|
}
|
||
|
// Since linked_ptr::get() is a const member returning a non const,
|
||
|
// we do not need a version of this function taking a non const collection.
|
||
|
return it->second.get();
|
||
|
}
|
||
|
|
||
|
// Same as above, but dies if the key is not found.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type::element_type&
|
||
|
FindLinkedPtrOrDie(const Collection& collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
GOOGLE_CHECK(it != collection.end()) << "key not found: " << key;
|
||
|
// Since linked_ptr::operator*() is a const member returning a non const,
|
||
|
// we do not need a version of this function taking a non const collection.
|
||
|
return *it->second;
|
||
|
}
|
||
|
|
||
|
// Finds the value associated with the given key and copies it to *value (if not
|
||
|
// nullptr). Returns false if the key was not found, true otherwise.
|
||
|
template <class Collection, class Key, class Value>
|
||
|
bool FindCopy(const Collection& collection,
|
||
|
const Key& key,
|
||
|
Value* const value) {
|
||
|
typename Collection::const_iterator it = collection.find(key);
|
||
|
if (it == collection.end()) {
|
||
|
return false;
|
||
|
}
|
||
|
if (value) {
|
||
|
*value = it->second;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Contains*()
|
||
|
//
|
||
|
|
||
|
// Returns true if and only if the given collection contains the given key.
|
||
|
template <class Collection, class Key>
|
||
|
bool ContainsKey(const Collection& collection, const Key& key) {
|
||
|
return collection.find(key) != collection.end();
|
||
|
}
|
||
|
|
||
|
// Returns true if and only if the given collection contains the given key-value
|
||
|
// pair.
|
||
|
template <class Collection, class Key, class Value>
|
||
|
bool ContainsKeyValuePair(const Collection& collection,
|
||
|
const Key& key,
|
||
|
const Value& value) {
|
||
|
typedef typename Collection::const_iterator const_iterator;
|
||
|
std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
|
||
|
for (const_iterator it = range.first; it != range.second; ++it) {
|
||
|
if (it->second == value) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Insert*()
|
||
|
//
|
||
|
|
||
|
// Inserts the given key-value pair into the collection. Returns true if and
|
||
|
// only if the key from the given pair didn't previously exist. Otherwise, the
|
||
|
// value in the map is replaced with the value from the given pair.
|
||
|
template <class Collection>
|
||
|
bool InsertOrUpdate(Collection* const collection,
|
||
|
const typename Collection::value_type& vt) {
|
||
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
||
|
if (!ret.second) {
|
||
|
// update
|
||
|
ret.first->second = vt.second;
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Same as above, except that the key and value are passed separately.
|
||
|
template <class Collection>
|
||
|
bool InsertOrUpdate(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value) {
|
||
|
return InsertOrUpdate(
|
||
|
collection, typename Collection::value_type(key, value));
|
||
|
}
|
||
|
|
||
|
// Inserts/updates all the key-value pairs from the range defined by the
|
||
|
// iterators "first" and "last" into the given collection.
|
||
|
template <class Collection, class InputIterator>
|
||
|
void InsertOrUpdateMany(Collection* const collection,
|
||
|
InputIterator first, InputIterator last) {
|
||
|
for (; first != last; ++first) {
|
||
|
InsertOrUpdate(collection, *first);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Change the value associated with a particular key in a map or hash_map
|
||
|
// of the form map<Key, Value*> which owns the objects pointed to by the
|
||
|
// value pointers. If there was an existing value for the key, it is deleted.
|
||
|
// True indicates an insert took place, false indicates an update + delete.
|
||
|
template <class Collection>
|
||
|
bool InsertAndDeleteExisting(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value) {
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, value));
|
||
|
if (!ret.second) {
|
||
|
delete ret.first->second;
|
||
|
ret.first->second = value;
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Inserts the given key and value into the given collection if and only if the
|
||
|
// given key did NOT already exist in the collection. If the key previously
|
||
|
// existed in the collection, the value is not changed. Returns true if the
|
||
|
// key-value pair was inserted; returns false if the key was already present.
|
||
|
template <class Collection>
|
||
|
bool InsertIfNotPresent(Collection* const collection,
|
||
|
const typename Collection::value_type& vt) {
|
||
|
return collection->insert(vt).second;
|
||
|
}
|
||
|
|
||
|
// Same as above except the key and value are passed separately.
|
||
|
template <class Collection>
|
||
|
bool InsertIfNotPresent(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value) {
|
||
|
return InsertIfNotPresent(
|
||
|
collection, typename Collection::value_type(key, value));
|
||
|
}
|
||
|
|
||
|
// Same as above except dies if the key already exists in the collection.
|
||
|
template <class Collection>
|
||
|
void InsertOrDie(Collection* const collection,
|
||
|
const typename Collection::value_type& value) {
|
||
|
GOOGLE_CHECK(InsertIfNotPresent(collection, value))
|
||
|
<< "duplicate value: " << value;
|
||
|
}
|
||
|
|
||
|
// Same as above except doesn't log the value on error.
|
||
|
template <class Collection>
|
||
|
void InsertOrDieNoPrint(Collection* const collection,
|
||
|
const typename Collection::value_type& value) {
|
||
|
GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
|
||
|
}
|
||
|
|
||
|
// Inserts the key-value pair into the collection. Dies if key was already
|
||
|
// present.
|
||
|
template <class Collection>
|
||
|
void InsertOrDie(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& data) {
|
||
|
GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
|
||
|
<< "duplicate key: " << key;
|
||
|
}
|
||
|
|
||
|
// Same as above except doesn't log the key on error.
|
||
|
template <class Collection>
|
||
|
void InsertOrDieNoPrint(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& data) {
|
||
|
GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
|
||
|
}
|
||
|
|
||
|
// Inserts a new key and default-initialized value. Dies if the key was already
|
||
|
// present. Returns a reference to the value. Example usage:
|
||
|
//
|
||
|
// map<int, SomeProto> m;
|
||
|
// SomeProto& proto = InsertKeyOrDie(&m, 3);
|
||
|
// proto.set_field("foo");
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type& InsertKeyOrDie(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typedef typename Collection::value_type value_type;
|
||
|
std::pair<typename Collection::iterator, bool> res =
|
||
|
collection->insert(value_type(key, typename value_type::second_type()));
|
||
|
GOOGLE_CHECK(res.second) << "duplicate key: " << key;
|
||
|
return res.first->second;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Lookup*()
|
||
|
//
|
||
|
|
||
|
// Looks up a given key and value pair in a collection and inserts the key-value
|
||
|
// pair if it's not already present. Returns a reference to the value associated
|
||
|
// with the key.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsert(Collection* const collection,
|
||
|
const typename Collection::value_type& vt) {
|
||
|
return collection->insert(vt).first->second;
|
||
|
}
|
||
|
|
||
|
// Same as above except the key-value are passed separately.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsert(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value) {
|
||
|
return LookupOrInsert(
|
||
|
collection, typename Collection::value_type(key, value));
|
||
|
}
|
||
|
|
||
|
// Counts the number of equivalent elements in the given "sequence", and stores
|
||
|
// the results in "count_map" with element as the key and count as the value.
|
||
|
//
|
||
|
// Example:
|
||
|
// vector<string> v = {"a", "b", "c", "a", "b"};
|
||
|
// map<string, int> m;
|
||
|
// AddTokenCounts(v, 1, &m);
|
||
|
// assert(m["a"] == 2);
|
||
|
// assert(m["b"] == 2);
|
||
|
// assert(m["c"] == 1);
|
||
|
template <typename Sequence, typename Collection>
|
||
|
void AddTokenCounts(
|
||
|
const Sequence& sequence,
|
||
|
const typename Collection::value_type::second_type& increment,
|
||
|
Collection* const count_map) {
|
||
|
for (typename Sequence::const_iterator it = sequence.begin();
|
||
|
it != sequence.end(); ++it) {
|
||
|
typename Collection::value_type::second_type& value =
|
||
|
LookupOrInsert(count_map, *it,
|
||
|
typename Collection::value_type::second_type());
|
||
|
value += increment;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Returns a reference to the value associated with key. If not found, a value
|
||
|
// is default constructed on the heap and added to the map.
|
||
|
//
|
||
|
// This function is useful for containers of the form map<Key, Value*>, where
|
||
|
// inserting a new key, value pair involves constructing a new heap-allocated
|
||
|
// Value, and storing a pointer to that in the collection.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsertNew(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typedef typename std::iterator_traits<
|
||
|
typename Collection::value_type::second_type>::value_type Element;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(
|
||
|
key,
|
||
|
static_cast<typename Collection::value_type::second_type>(nullptr)));
|
||
|
if (ret.second) {
|
||
|
ret.first->second = new Element();
|
||
|
}
|
||
|
return ret.first->second;
|
||
|
}
|
||
|
|
||
|
// Same as above but constructs the value using the single-argument constructor
|
||
|
// and the given "arg".
|
||
|
template <class Collection, class Arg>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsertNew(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const Arg& arg) {
|
||
|
typedef typename std::iterator_traits<
|
||
|
typename Collection::value_type::second_type>::value_type Element;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(
|
||
|
key,
|
||
|
static_cast<typename Collection::value_type::second_type>(nullptr)));
|
||
|
if (ret.second) {
|
||
|
ret.first->second = new Element(arg);
|
||
|
}
|
||
|
return ret.first->second;
|
||
|
}
|
||
|
|
||
|
// Lookup of linked/shared pointers is used in two scenarios:
|
||
|
//
|
||
|
// Use LookupOrInsertNewLinkedPtr if the container owns the elements.
|
||
|
// In this case it is fine working with the raw pointer as long as it is
|
||
|
// guaranteed that no other thread can delete/update an accessed element.
|
||
|
// A mutex will need to lock the container operation as well as the use
|
||
|
// of the returned elements. Finding an element may be performed using
|
||
|
// FindLinkedPtr*().
|
||
|
//
|
||
|
// Use LookupOrInsertNewSharedPtr if the container does not own the elements
|
||
|
// for their whole lifetime. This is typically the case when a reader allows
|
||
|
// parallel updates to the container. In this case a Mutex only needs to lock
|
||
|
// container operations, but all element operations must be performed on the
|
||
|
// shared pointer. Finding an element must be performed using FindPtr*() and
|
||
|
// cannot be done with FindLinkedPtr*() even though it compiles.
|
||
|
|
||
|
// Lookup a key in a map or hash_map whose values are linked_ptrs. If it is
|
||
|
// missing, set collection[key].reset(new Value::element_type) and return that.
|
||
|
// Value::element_type must be default constructable.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type::element_type*
|
||
|
LookupOrInsertNewLinkedPtr(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typedef typename Collection::value_type::second_type Value;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, Value()));
|
||
|
if (ret.second) {
|
||
|
ret.first->second.reset(new typename Value::element_type);
|
||
|
}
|
||
|
return ret.first->second.get();
|
||
|
}
|
||
|
|
||
|
// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
|
||
|
// a single-parameter constructor. Note: the constructor argument is computed
|
||
|
// even if it will not be used, so only values cheap to compute should be passed
|
||
|
// here. On the other hand it does not matter how expensive the construction of
|
||
|
// the actual stored value is, as that only occurs if necessary.
|
||
|
template <class Collection, class Arg>
|
||
|
typename Collection::value_type::second_type::element_type*
|
||
|
LookupOrInsertNewLinkedPtr(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const Arg& arg) {
|
||
|
typedef typename Collection::value_type::second_type Value;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, Value()));
|
||
|
if (ret.second) {
|
||
|
ret.first->second.reset(new typename Value::element_type(arg));
|
||
|
}
|
||
|
return ret.first->second.get();
|
||
|
}
|
||
|
|
||
|
// Lookup a key in a map or hash_map whose values are shared_ptrs. If it is
|
||
|
// missing, set collection[key].reset(new Value::element_type). Unlike
|
||
|
// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
|
||
|
// the raw pointer. Value::element_type must be default constructable.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsertNewSharedPtr(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typedef typename Collection::value_type::second_type SharedPtr;
|
||
|
typedef typename Collection::value_type::second_type::element_type Element;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, SharedPtr()));
|
||
|
if (ret.second) {
|
||
|
ret.first->second.reset(new Element());
|
||
|
}
|
||
|
return ret.first->second;
|
||
|
}
|
||
|
|
||
|
// A variant of LookupOrInsertNewSharedPtr where the value is constructed using
|
||
|
// a single-parameter constructor. Note: the constructor argument is computed
|
||
|
// even if it will not be used, so only values cheap to compute should be passed
|
||
|
// here. On the other hand it does not matter how expensive the construction of
|
||
|
// the actual stored value is, as that only occurs if necessary.
|
||
|
template <class Collection, class Arg>
|
||
|
typename Collection::value_type::second_type&
|
||
|
LookupOrInsertNewSharedPtr(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const Arg& arg) {
|
||
|
typedef typename Collection::value_type::second_type SharedPtr;
|
||
|
typedef typename Collection::value_type::second_type::element_type Element;
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, SharedPtr()));
|
||
|
if (ret.second) {
|
||
|
ret.first->second.reset(new Element(arg));
|
||
|
}
|
||
|
return ret.first->second;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Misc Utility Functions
|
||
|
//
|
||
|
|
||
|
// Updates the value associated with the given key. If the key was not already
|
||
|
// present, then the key-value pair are inserted and "previous" is unchanged. If
|
||
|
// the key was already present, the value is updated and "*previous" will
|
||
|
// contain a copy of the old value.
|
||
|
//
|
||
|
// InsertOrReturnExisting has complementary behavior that returns the
|
||
|
// address of an already existing value, rather than updating it.
|
||
|
template <class Collection>
|
||
|
bool UpdateReturnCopy(Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& value,
|
||
|
typename Collection::value_type::second_type* previous) {
|
||
|
std::pair<typename Collection::iterator, bool> ret =
|
||
|
collection->insert(typename Collection::value_type(key, value));
|
||
|
if (!ret.second) {
|
||
|
// update
|
||
|
if (previous) {
|
||
|
*previous = ret.first->second;
|
||
|
}
|
||
|
ret.first->second = value;
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Same as above except that the key and value are passed as a pair.
|
||
|
template <class Collection>
|
||
|
bool UpdateReturnCopy(Collection* const collection,
|
||
|
const typename Collection::value_type& vt,
|
||
|
typename Collection::value_type::second_type* previous) {
|
||
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
||
|
if (!ret.second) {
|
||
|
// update
|
||
|
if (previous) {
|
||
|
*previous = ret.first->second;
|
||
|
}
|
||
|
ret.first->second = vt.second;
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Tries to insert the given key-value pair into the collection. Returns nullptr if
|
||
|
// the insert succeeds. Otherwise, returns a pointer to the existing value.
|
||
|
//
|
||
|
// This complements UpdateReturnCopy in that it allows to update only after
|
||
|
// verifying the old value and still insert quickly without having to look up
|
||
|
// twice. Unlike UpdateReturnCopy this also does not come with the issue of an
|
||
|
// undefined previous* in case new data was inserted.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type* InsertOrReturnExisting(
|
||
|
Collection* const collection, const typename Collection::value_type& vt) {
|
||
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
||
|
if (ret.second) {
|
||
|
return nullptr; // Inserted, no existing previous value.
|
||
|
} else {
|
||
|
return &ret.first->second; // Return address of already existing value.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Same as above, except for explicit key and data.
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type* InsertOrReturnExisting(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key,
|
||
|
const typename Collection::value_type::second_type& data) {
|
||
|
return InsertOrReturnExisting(collection,
|
||
|
typename Collection::value_type(key, data));
|
||
|
}
|
||
|
|
||
|
// Erases the collection item identified by the given key, and returns the value
|
||
|
// associated with that key. It is assumed that the value (i.e., the
|
||
|
// mapped_type) is a pointer. Returns nullptr if the key was not found in the
|
||
|
// collection.
|
||
|
//
|
||
|
// Examples:
|
||
|
// map<string, MyType*> my_map;
|
||
|
//
|
||
|
// One line cleanup:
|
||
|
// delete EraseKeyReturnValuePtr(&my_map, "abc");
|
||
|
//
|
||
|
// Use returned value:
|
||
|
// std::unique_ptr<MyType> value_ptr(
|
||
|
// EraseKeyReturnValuePtr(&my_map, "abc"));
|
||
|
// if (value_ptr.get())
|
||
|
// value_ptr->DoSomething();
|
||
|
//
|
||
|
template <class Collection>
|
||
|
typename Collection::value_type::second_type EraseKeyReturnValuePtr(
|
||
|
Collection* const collection,
|
||
|
const typename Collection::value_type::first_type& key) {
|
||
|
typename Collection::iterator it = collection->find(key);
|
||
|
if (it == collection->end()) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
typename Collection::value_type::second_type v = it->second;
|
||
|
collection->erase(it);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
// Inserts all the keys from map_container into key_container, which must
|
||
|
// support insert(MapContainer::key_type).
|
||
|
//
|
||
|
// Note: any initial contents of the key_container are not cleared.
|
||
|
template <class MapContainer, class KeyContainer>
|
||
|
void InsertKeysFromMap(const MapContainer& map_container,
|
||
|
KeyContainer* key_container) {
|
||
|
GOOGLE_CHECK(key_container != nullptr);
|
||
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
||
|
it != map_container.end(); ++it) {
|
||
|
key_container->insert(it->first);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Appends all the keys from map_container into key_container, which must
|
||
|
// support push_back(MapContainer::key_type).
|
||
|
//
|
||
|
// Note: any initial contents of the key_container are not cleared.
|
||
|
template <class MapContainer, class KeyContainer>
|
||
|
void AppendKeysFromMap(const MapContainer& map_container,
|
||
|
KeyContainer* key_container) {
|
||
|
GOOGLE_CHECK(key_container != nullptr);
|
||
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
||
|
it != map_container.end(); ++it) {
|
||
|
key_container->push_back(it->first);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A more specialized overload of AppendKeysFromMap to optimize reallocations
|
||
|
// for the common case in which we're appending keys to a vector and hence can
|
||
|
// (and sometimes should) call reserve() first.
|
||
|
//
|
||
|
// (It would be possible to play SFINAE games to call reserve() for any
|
||
|
// container that supports it, but this seems to get us 99% of what we need
|
||
|
// without the complexity of a SFINAE-based solution.)
|
||
|
template <class MapContainer, class KeyType>
|
||
|
void AppendKeysFromMap(const MapContainer& map_container,
|
||
|
std::vector<KeyType>* key_container) {
|
||
|
GOOGLE_CHECK(key_container != nullptr);
|
||
|
// We now have the opportunity to call reserve(). Calling reserve() every
|
||
|
// time is a bad idea for some use cases: libstdc++'s implementation of
|
||
|
// vector<>::reserve() resizes the vector's backing store to exactly the
|
||
|
// given size (unless it's already at least that big). Because of this,
|
||
|
// the use case that involves appending a lot of small maps (total size
|
||
|
// N) one by one to a vector would be O(N^2). But never calling reserve()
|
||
|
// loses the opportunity to improve the use case of adding from a large
|
||
|
// map to an empty vector (this improves performance by up to 33%). A
|
||
|
// number of heuristics are possible; see the discussion in
|
||
|
// cl/34081696. Here we use the simplest one.
|
||
|
if (key_container->empty()) {
|
||
|
key_container->reserve(map_container.size());
|
||
|
}
|
||
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
||
|
it != map_container.end(); ++it) {
|
||
|
key_container->push_back(it->first);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Inserts all the values from map_container into value_container, which must
|
||
|
// support push_back(MapContainer::mapped_type).
|
||
|
//
|
||
|
// Note: any initial contents of the value_container are not cleared.
|
||
|
template <class MapContainer, class ValueContainer>
|
||
|
void AppendValuesFromMap(const MapContainer& map_container,
|
||
|
ValueContainer* value_container) {
|
||
|
GOOGLE_CHECK(value_container != nullptr);
|
||
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
||
|
it != map_container.end(); ++it) {
|
||
|
value_container->push_back(it->second);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A more specialized overload of AppendValuesFromMap to optimize reallocations
|
||
|
// for the common case in which we're appending values to a vector and hence
|
||
|
// can (and sometimes should) call reserve() first.
|
||
|
//
|
||
|
// (It would be possible to play SFINAE games to call reserve() for any
|
||
|
// container that supports it, but this seems to get us 99% of what we need
|
||
|
// without the complexity of a SFINAE-based solution.)
|
||
|
template <class MapContainer, class ValueType>
|
||
|
void AppendValuesFromMap(const MapContainer& map_container,
|
||
|
std::vector<ValueType>* value_container) {
|
||
|
GOOGLE_CHECK(value_container != nullptr);
|
||
|
// See AppendKeysFromMap for why this is done.
|
||
|
if (value_container->empty()) {
|
||
|
value_container->reserve(map_container.size());
|
||
|
}
|
||
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
||
|
it != map_container.end(); ++it) {
|
||
|
value_container->push_back(it->second);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace protobuf
|
||
|
} // namespace google
|
||
|
|
||
|
#endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|