r5sdk/r5dev/thirdparty/ea/EABase/config/eacompilertraits.h

2604 lines
88 KiB
C
Raw Normal View History

/*-----------------------------------------------------------------------------
* config/eacompilertraits.h
*
* Copyright (c) Electronic Arts Inc. All rights reserved.
*-----------------------------------------------------------------------------
* Currently supported defines include:
* EA_PREPROCESSOR_JOIN
*
* EA_COMPILER_IS_ANSIC
* EA_COMPILER_IS_C99
* EA_COMPILER_IS_C11
* EA_COMPILER_HAS_C99_TYPES
* EA_COMPILER_IS_CPLUSPLUS
* EA_COMPILER_MANAGED_CPP
* EA_COMPILER_INTMAX_SIZE
* EA_OFFSETOF
* EA_SIZEOF_MEMBER
*
* EA_ALIGN_OF()
* EA_ALIGN_MAX_STATIC / EA_ALIGN_MAX_AUTOMATIC
* EA_ALIGN() / EA_PREFIX_ALIGN() / EA_POSTFIX_ALIGN()
* EA_ALIGNED()
* EA_PACKED()
*
* EA_LIKELY()
* EA_UNLIKELY()
* EA_INIT_PRIORITY()
* EA_MAY_ALIAS()
* EA_ASSUME()
* EA_ANALYSIS_ASSUME()
* EA_PURE
* EA_WEAK
* EA_UNUSED()
* EA_EMPTY()
*
* EA_WCHAR_T_NON_NATIVE
* EA_WCHAR_SIZE = <n bytes>
*
* EA_RESTRICT
* EA_DEPRECATED / EA_PREFIX_DEPRECATED / EA_POSTFIX_DEPRECATED
* EA_FORCE_INLINE / EA_PREFIX_FORCE_INLINE / EA_POSTFIX_FORCE_INLINE
* EA_NO_INLINE / EA_PREFIX_NO_INLINE / EA_POSTFIX_NO_INLINE
* EA_NO_VTABLE / EA_CLASS_NO_VTABLE / EA_STRUCT_NO_VTABLE
* EA_PASCAL
* EA_PASCAL_FUNC()
* EA_SSE = [0 | 1]
* EA_IMPORT
* EA_EXPORT
* EA_PRAGMA_ONCE_SUPPORTED
* EA_ONCE
* EA_OVERRIDE
* EA_INHERITANCE_FINAL
* EA_SEALED
* EA_ABSTRACT
* EA_CONSTEXPR / EA_CONSTEXPR_OR_CONST
* EA_CONSTEXPR_IF
* EA_EXTERN_TEMPLATE
* EA_NOEXCEPT
* EA_NORETURN
* EA_CARRIES_DEPENDENCY
* EA_NON_COPYABLE / struct EANonCopyable
* EA_OPTIMIZE_OFF / EA_OPTIMIZE_ON
* EA_SIGNED_RIGHT_SHIFT_IS_UNSIGNED
*
* EA_DISABLE_VC_WARNING / EA_RESTORE_VC_WARNING / EA_DISABLE_ALL_VC_WARNINGS / EA_RESTORE_ALL_VC_WARNINGS
* EA_DISABLE_GCC_WARNING / EA_RESTORE_GCC_WARNING
* EA_DISABLE_CLANG_WARNING / EA_RESTORE_CLANG_WARNING
* EA_DISABLE_SN_WARNING / EA_RESTORE_SN_WARNING / EA_DISABLE_ALL_SN_WARNINGS / EA_RESTORE_ALL_SN_WARNINGS
* EA_DISABLE_GHS_WARNING / EA_RESTORE_GHS_WARNING
* EA_DISABLE_EDG_WARNING / EA_RESTORE_EDG_WARNING
* EA_DISABLE_CW_WARNING / EA_RESTORE_CW_WARNING
*
* EA_DISABLE_DEFAULT_CTOR
* EA_DISABLE_COPY_CTOR
* EA_DISABLE_MOVE_CTOR
* EA_DISABLE_ASSIGNMENT_OPERATOR
* EA_DISABLE_MOVE_OPERATOR
*
* Todo:
* Find a way to reliably detect wchar_t size at preprocessor time and
* implement it below for EA_WCHAR_SIZE.
*
* Todo:
* Find out how to support EA_PASCAL and EA_PASCAL_FUNC for systems in
* which it hasn't yet been found out for.
*---------------------------------------------------------------------------*/
#ifndef INCLUDED_eacompilertraits_H
#define INCLUDED_eacompilertraits_H
#include <EABase/config/eaplatform.h>
#include <EABase/config/eacompiler.h>
// Metrowerks uses #defines in its core C header files to define
// the kind of information we need below (e.g. C99 compatibility)
// Determine if this compiler is ANSI C compliant and if it is C99 compliant.
#if defined(__STDC__)
#define EA_COMPILER_IS_ANSIC 1 // The compiler claims to be ANSI C
// Is the compiler a C99 compiler or equivalent?
// From ISO/IEC 9899:1999:
// 6.10.8 Predefined macro names
// __STDC_VERSION__ The integer constant 199901L. (150)
//
// 150) This macro was not specified in ISO/IEC 9899:1990 and was
// specified as 199409L in ISO/IEC 9899/AMD1:1995. The intention
// is that this will remain an integer constant of type long int
// that is increased with each revision of this International Standard.
//
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
#define EA_COMPILER_IS_C99 1
#endif
// Is the compiler a C11 compiler?
// From ISO/IEC 9899:2011:
// Page 176, 6.10.8.1 (Predefined macro names) :
// __STDC_VERSION__ The integer constant 201112L. (178)
//
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
#define EA_COMPILER_IS_C11 1
#endif
#endif
// Some compilers (e.g. GCC) define __USE_ISOC99 if they are not
// strictly C99 compilers (or are simply C++ compilers) but are set
// to use C99 functionality. Metrowerks defines _MSL_C99 as 1 in
// this case, but 0 otherwise.
#if (defined(__USE_ISOC99) || (defined(_MSL_C99) && (_MSL_C99 == 1))) && !defined(EA_COMPILER_IS_C99)
#define EA_COMPILER_IS_C99 1
#endif
// Metrowerks defines C99 types (e.g. intptr_t) instrinsically when in C99 mode (-lang C99 on the command line).
#if (defined(_MSL_C99) && (_MSL_C99 == 1))
#define EA_COMPILER_HAS_C99_TYPES 1
#endif
#if defined(__GNUC__)
#if (((__GNUC__ * 100) + __GNUC_MINOR__) >= 302) // Also, GCC defines _HAS_C9X.
#define EA_COMPILER_HAS_C99_TYPES 1 // The compiler is not necessarily a C99 compiler, but it defines C99 types.
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS 1
#endif
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS 1 // This tells the GCC compiler that we want it to use its native C99 types.
#endif
#endif
#endif
#if defined(_MSC_VER) && (_MSC_VER >= 1600)
#define EA_COMPILER_HAS_C99_TYPES 1
#endif
#ifdef __cplusplus
#define EA_COMPILER_IS_CPLUSPLUS 1
#endif
// ------------------------------------------------------------------------
// EA_PREPROCESSOR_JOIN
//
// This macro joins the two arguments together, even when one of
// the arguments is itself a macro (see 16.3.1 in C++98 standard).
// This is often used to create a unique name with __LINE__.
//
// For example, this declaration:
// char EA_PREPROCESSOR_JOIN(unique_, __LINE__);
// expands to this:
// char unique_73;
//
// Note that all versions of MSVC++ up to at least version 7.1
// fail to properly compile macros that use __LINE__ in them
// when the "program database for edit and continue" option
// is enabled. The result is that __LINE__ gets converted to
// something like __LINE__(Var+37).
//
#ifndef EA_PREPROCESSOR_JOIN
#define EA_PREPROCESSOR_JOIN(a, b) EA_PREPROCESSOR_JOIN1(a, b)
#define EA_PREPROCESSOR_JOIN1(a, b) EA_PREPROCESSOR_JOIN2(a, b)
#define EA_PREPROCESSOR_JOIN2(a, b) a##b
#endif
// ------------------------------------------------------------------------
// EA_STRINGIFY
//
// Example usage:
// printf("Line: %s", EA_STRINGIFY(__LINE__));
//
#ifndef EA_STRINGIFY
#define EA_STRINGIFY(x) EA_STRINGIFYIMPL(x)
#define EA_STRINGIFYIMPL(x) #x
#endif
// ------------------------------------------------------------------------
// EA_IDENTITY
//
#ifndef EA_IDENTITY
#define EA_IDENTITY(x) x
#endif
// ------------------------------------------------------------------------
// EA_COMPILER_MANAGED_CPP
// Defined if this is being compiled with Managed C++ extensions
#ifdef EA_COMPILER_MSVC
#if EA_COMPILER_VERSION >= 1300
#ifdef _MANAGED
#define EA_COMPILER_MANAGED_CPP 1
#endif
#endif
#endif
// ------------------------------------------------------------------------
// EA_COMPILER_INTMAX_SIZE
//
// This is related to the concept of intmax_t uintmax_t, but is available
// in preprocessor form as opposed to compile-time form. At compile-time
// you can use intmax_t and uintmax_t to use the actual types.
//
#if defined(__GNUC__) && defined(__x86_64__)
#define EA_COMPILER_INTMAX_SIZE 16 // intmax_t is __int128_t (GCC extension) and is 16 bytes.
#else
#define EA_COMPILER_INTMAX_SIZE 8 // intmax_t is int64_t and is 8 bytes.
#endif
// ------------------------------------------------------------------------
// EA_LPAREN / EA_RPAREN / EA_COMMA / EA_SEMI
//
// These are used for using special characters in macro-using expressions.
// Note that this macro intentionally uses (), as in some cases it can't
// work unless it does.
//
// Example usage:
// int x = SOME_MACRO(SomeTemplate<int EA_COMMA() int EACOMMA() char>);
//
#ifndef EA_LPAREN
#define EA_LPAREN() (
#endif
#ifndef EA_RPAREN
#define EA_RPAREN() )
#endif
#ifndef EA_COMMA
#define EA_COMMA() ,
#endif
#ifndef EA_SEMI
#define EA_SEMI() ;
#endif
// ------------------------------------------------------------------------
// EA_OFFSETOF
// Implements a portable version of the non-standard offsetof macro.
//
// The offsetof macro is guaranteed to only work with POD types. However, we wish to use
// it for non-POD types but where we know that offsetof will still work for the cases
// in which we use it. GCC unilaterally gives a warning when using offsetof with a non-POD,
// even if the given usage happens to work. So we make a workaround version of offsetof
// here for GCC which has the same effect but tricks the compiler into not issuing the warning.
// The 65536 does the compiler fooling; the reinterpret_cast prevents the possibility of
// an overloaded operator& for the class getting in the way.
//
// Example usage:
// struct A{ int x; int y; };
// size_t n = EA_OFFSETOF(A, y);
//
#if defined(__GNUC__) // We can't use GCC 4's __builtin_offsetof because it mistakenly complains about non-PODs that are really PODs.
#define EA_OFFSETOF(struct_, member_) ((size_t)(((uintptr_t)&reinterpret_cast<const volatile char&>((((struct_*)65536)->member_))) - 65536))
#else
#define EA_OFFSETOF(struct_, member_) offsetof(struct_, member_)
#endif
// ------------------------------------------------------------------------
// EA_SIZEOF_MEMBER
// Implements a portable way to determine the size of a member.
//
// The EA_SIZEOF_MEMBER simply returns the size of a member within a class or struct; member
// access rules still apply. We offer two approaches depending on the compiler's support for non-static member
// initializers although most C++11 compilers support this.
//
// Example usage:
// struct A{ int x; int y; };
// size_t n = EA_SIZEOF_MEMBER(A, y);
//
#ifndef EA_COMPILER_NO_EXTENDED_SIZEOF
#define EA_SIZEOF_MEMBER(struct_, member_) (sizeof(struct_::member_))
#else
#define EA_SIZEOF_MEMBER(struct_, member_) (sizeof(((struct_*)0)->member_))
#endif
// ------------------------------------------------------------------------
// alignment expressions
//
// Here we define
// EA_ALIGN_OF(type) // Returns size_t.
// EA_ALIGN_MAX_STATIC // The max align value that the compiler will respect for EA_ALIGN for static data (global and static variables). Some compilers allow high values, some allow no more than 8. EA_ALIGN_MIN is assumed to be 1.
// EA_ALIGN_MAX_AUTOMATIC // The max align value for automatic variables (variables declared as local to a function).
// EA_ALIGN(n) // Used as a prefix. n is byte alignment, with being a power of two. Most of the time you can use this and avoid using EA_PREFIX_ALIGN/EA_POSTFIX_ALIGN.
// EA_ALIGNED(t, v, n) // Type, variable, alignment. Used to align an instance. You should need this only for unusual compilers.
// EA_PACKED // Specifies that the given structure be packed (and not have its members aligned).
//
// Also we define the following for rare cases that it's needed.
// EA_PREFIX_ALIGN(n) // n is byte alignment, with being a power of two. You should need this only for unusual compilers.
// EA_POSTFIX_ALIGN(n) // Valid values for n are 1, 2, 4, 8, etc. You should need this only for unusual compilers.
//
// Example usage:
// size_t x = EA_ALIGN_OF(int); Non-aligned equivalents. Meaning
// EA_PREFIX_ALIGN(8) int x = 5; int x = 5; Align x on 8 for compilers that require prefix attributes. Can just use EA_ALIGN instead.
// EA_ALIGN(8) int x; int x; Align x on 8 for compilers that allow prefix attributes.
// int x EA_POSTFIX_ALIGN(8); int x; Align x on 8 for compilers that require postfix attributes.
// int x EA_POSTFIX_ALIGN(8) = 5; int x = 5; Align x on 8 for compilers that require postfix attributes.
// int x EA_POSTFIX_ALIGN(8)(5); int x(5); Align x on 8 for compilers that require postfix attributes.
// struct EA_PREFIX_ALIGN(8) X { int x; } EA_POSTFIX_ALIGN(8); struct X { int x; }; Define X as a struct which is aligned on 8 when used.
// EA_ALIGNED(int, x, 8) = 5; int x = 5; Align x on 8.
// EA_ALIGNED(int, x, 16)(5); int x(5); Align x on 16.
// EA_ALIGNED(int, x[3], 16); int x[3]; Align x array on 16.
// EA_ALIGNED(int, x[3], 16) = { 1, 2, 3 }; int x[3] = { 1, 2, 3 }; Align x array on 16.
// int x[3] EA_PACKED; int x[3]; Pack the 3 ints of the x array. GCC doesn't seem to support packing of int arrays.
// struct EA_ALIGN(32) X { int x; int y; }; struct X { int x; }; Define A as a struct which is aligned on 32 when used.
// EA_ALIGN(32) struct X { int x; int y; } Z; struct X { int x; } Z; Define A as a struct, and align the instance Z on 32.
// struct X { int x EA_PACKED; int y EA_PACKED; }; struct X { int x; int y; }; Pack the x and y members of struct X.
// struct X { int x; int y; } EA_PACKED; struct X { int x; int y; }; Pack the members of struct X.
// typedef EA_ALIGNED(int, int16, 16); int16 n16; typedef int int16; int16 n16; Define int16 as an int which is aligned on 16.
// typedef EA_ALIGNED(X, X16, 16); X16 x16; typedef X X16; X16 x16; Define X16 as an X which is aligned on 16.
#if !defined(EA_ALIGN_MAX) // If the user hasn't globally set an alternative value...
#if defined(EA_PROCESSOR_ARM) // ARM compilers in general tend to limit automatic variables to 8 or less.
#define EA_ALIGN_MAX_STATIC 1048576
#define EA_ALIGN_MAX_AUTOMATIC 1 // Typically they support only built-in natural aligment types (both arm-eabi and apple-abi).
#elif defined(EA_PLATFORM_APPLE)
#define EA_ALIGN_MAX_STATIC 1048576
#define EA_ALIGN_MAX_AUTOMATIC 16
#else
#define EA_ALIGN_MAX_STATIC 1048576 // Arbitrarily high value. What is the actual max?
#define EA_ALIGN_MAX_AUTOMATIC 1048576
#endif
#endif
// EDG intends to be compatible with GCC but has a bug whereby it
// fails to support calling a constructor in an aligned declaration when
// using postfix alignment attributes. Prefix works for alignment, but does not align
// the size like postfix does. Prefix also fails on templates. So gcc style post fix
// is still used, but the user will need to use EA_POSTFIX_ALIGN before the constructor parameters.
#if defined(__GNUC__) && (__GNUC__ < 3)
#define EA_ALIGN_OF(type) ((size_t)__alignof__(type))
#define EA_ALIGN(n)
#define EA_PREFIX_ALIGN(n)
#define EA_POSTFIX_ALIGN(n) __attribute__((aligned(n)))
#define EA_ALIGNED(variable_type, variable, n) variable_type variable __attribute__((aligned(n)))
#define EA_PACKED __attribute__((packed))
// GCC 3.x+, IBM, and clang support prefix attributes.
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__xlC__) || defined(__clang__)
#define EA_ALIGN_OF(type) ((size_t)__alignof__(type))
#define EA_ALIGN(n) __attribute__((aligned(n)))
#define EA_PREFIX_ALIGN(n)
#define EA_POSTFIX_ALIGN(n) __attribute__((aligned(n)))
#define EA_ALIGNED(variable_type, variable, n) variable_type variable __attribute__((aligned(n)))
#define EA_PACKED __attribute__((packed))
// Metrowerks supports prefix attributes.
// Metrowerks does not support packed alignment attributes.
#elif defined(EA_COMPILER_INTEL) || defined(EA_PLATFORM_XBOX) || (defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1300))
#define EA_ALIGN_OF(type) ((size_t)__alignof(type))
#define EA_ALIGN(n) __declspec(align(n))
#define EA_PREFIX_ALIGN(n) EA_ALIGN(n)
#define EA_POSTFIX_ALIGN(n)
#define EA_ALIGNED(variable_type, variable, n) EA_ALIGN(n) variable_type variable
#define EA_PACKED // See EA_PRAGMA_PACK_VC for an alternative.
// Arm brand compiler
#elif defined(EA_COMPILER_ARM)
#define EA_ALIGN_OF(type) ((size_t)__ALIGNOF__(type))
#define EA_ALIGN(n) __align(n)
#define EA_PREFIX_ALIGN(n) __align(n)
#define EA_POSTFIX_ALIGN(n)
#define EA_ALIGNED(variable_type, variable, n) __align(n) variable_type variable
#define EA_PACKED __packed
#else // Unusual compilers
// There is nothing we can do about some of these. This is not as bad a problem as it seems.
// If the given platform/compiler doesn't support alignment specifications, then it's somewhat
// likely that alignment doesn't matter for that platform. Otherwise they would have defined
// functionality to manipulate alignment.
#define EA_ALIGN(n)
#define EA_PREFIX_ALIGN(n)
#define EA_POSTFIX_ALIGN(n)
#define EA_ALIGNED(variable_type, variable, n) variable_type variable
#define EA_PACKED
#ifdef __cplusplus
template <typename T> struct EAAlignOf1 { enum { s = sizeof (T), value = s ^ (s & (s - 1)) }; };
template <typename T> struct EAAlignOf2;
template <int size_diff> struct helper { template <typename T> struct Val { enum { value = size_diff }; }; };
template <> struct helper<0> { template <typename T> struct Val { enum { value = EAAlignOf2<T>::value }; }; };
template <typename T> struct EAAlignOf2 { struct Big { T x; char c; };
enum { diff = sizeof (Big) - sizeof (T), value = helper<diff>::template Val<Big>::value }; };
template <typename T> struct EAAlignof3 { enum { x = EAAlignOf2<T>::value, y = EAAlignOf1<T>::value, value = x < y ? x : y }; };
#define EA_ALIGN_OF(type) ((size_t)EAAlignof3<type>::value)
#else
// C implementation of EA_ALIGN_OF
// This implementation works for most cases, but doesn't directly work
// for types such as function pointer declarations. To work with those
// types you need to typedef the type and then use the typedef in EA_ALIGN_OF.
#define EA_ALIGN_OF(type) ((size_t)offsetof(struct { char c; type m; }, m))
#endif
#endif
// EA_PRAGMA_PACK_VC
//
// Wraps #pragma pack in a way that allows for cleaner code.
//
// Example usage:
// EA_PRAGMA_PACK_VC(push, 1)
// struct X{ char c; int i; };
// EA_PRAGMA_PACK_VC(pop)
//
#if !defined(EA_PRAGMA_PACK_VC)
#if defined(EA_COMPILER_MSVC)
#define EA_PRAGMA_PACK_VC(...) __pragma(pack(__VA_ARGS__))
#elif !defined(EA_COMPILER_NO_VARIADIC_MACROS)
#define EA_PRAGMA_PACK_VC(...)
#else
// No support. However, all compilers of significance to us support variadic macros.
#endif
#endif
// ------------------------------------------------------------------------
// EA_LIKELY / EA_UNLIKELY
//
// Defined as a macro which gives a hint to the compiler for branch
// prediction. GCC gives you the ability to manually give a hint to
// the compiler about the result of a comparison, though it's often
// best to compile shipping code with profiling feedback under both
// GCC (-fprofile-arcs) and VC++ (/LTCG:PGO, etc.). However, there
// are times when you feel very sure that a boolean expression will
// usually evaluate to either true or false and can help the compiler
// by using an explicity directive...
//
// Example usage:
// if(EA_LIKELY(a == 0)) // Tell the compiler that a will usually equal 0.
// { ... }
//
// Example usage:
// if(EA_UNLIKELY(a == 0)) // Tell the compiler that a will usually not equal 0.
// { ... }
//
#ifndef EA_LIKELY
#if (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__)
#if defined(__cplusplus)
#define EA_LIKELY(x) __builtin_expect(!!(x), true)
#define EA_UNLIKELY(x) __builtin_expect(!!(x), false)
#else
#define EA_LIKELY(x) __builtin_expect(!!(x), 1)
#define EA_UNLIKELY(x) __builtin_expect(!!(x), 0)
#endif
#else
#define EA_LIKELY(x) (x)
#define EA_UNLIKELY(x) (x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_HAS_INCLUDE_AVAILABLE
//
// Used to guard against the EA_HAS_INCLUDE() macro on compilers that do not
// support said feature.
//
// Example usage:
//
// #if EA_HAS_INCLUDE_AVAILABLE
// #if EA_HAS_INCLUDE("myinclude.h")
// #include "myinclude.h"
// #endif
// #endif
#if !defined(EA_HAS_INCLUDE_AVAILABLE)
#if defined(EA_COMPILER_CPP17_ENABLED) || defined(EA_COMPILER_CLANG) || defined(EA_COMPILER_GNUC)
#define EA_HAS_INCLUDE_AVAILABLE 1
#else
#define EA_HAS_INCLUDE_AVAILABLE 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_HAS_INCLUDE
//
// May be used in #if and #elif expressions to test for the existence
// of the header referenced in the operand. If possible it evaluates to a
// non-zero value and zero otherwise. The operand is the same form as the file
// in a #include directive.
//
// Example usage:
//
// #if EA_HAS_INCLUDE("myinclude.h")
// #include "myinclude.h"
// #endif
//
// #if EA_HAS_INCLUDE(<myinclude.h>)
// #include <myinclude.h>
// #endif
#if !defined(EA_HAS_INCLUDE)
#if defined(EA_COMPILER_CPP17_ENABLED)
#define EA_HAS_INCLUDE(x) __has_include(x)
#elif defined(EA_COMPILER_CLANG)
#define EA_HAS_INCLUDE(x) __has_include(x)
#elif defined(EA_COMPILER_GNUC)
#define EA_HAS_INCLUDE(x) __has_include(x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_INIT_PRIORITY_AVAILABLE
//
// This value is either not defined, or defined to 1.
// Defines if the GCC attribute init_priority is supported by the compiler.
//
#if !defined(EA_INIT_PRIORITY_AVAILABLE)
#if defined(__GNUC__) && !defined(__EDG__) // EDG typically #defines __GNUC__ but doesn't implement init_priority.
#define EA_INIT_PRIORITY_AVAILABLE 1
#elif defined(__clang__)
#define EA_INIT_PRIORITY_AVAILABLE 1 // Clang implements init_priority
#endif
#endif
// ------------------------------------------------------------------------
// EA_INIT_PRIORITY
//
// This is simply a wrapper for the GCC init_priority attribute that allows
// multiplatform code to be easier to read. This attribute doesn't apply
// to VC++ because VC++ uses file-level pragmas to control init ordering.
//
// Example usage:
// SomeClass gSomeClass EA_INIT_PRIORITY(2000);
//
#if !defined(EA_INIT_PRIORITY)
#if defined(EA_INIT_PRIORITY_AVAILABLE)
#define EA_INIT_PRIORITY(x) __attribute__ ((init_priority (x)))
#else
#define EA_INIT_PRIORITY(x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_INIT_SEG_AVAILABLE
//
//
#if !defined(EA_INIT_SEG_AVAILABLE)
#if defined(_MSC_VER)
#define EA_INIT_SEG_AVAILABLE 1
#endif
#endif
// ------------------------------------------------------------------------
// EA_INIT_SEG
//
// Specifies a keyword or code section that affects the order in which startup code is executed.
//
// https://docs.microsoft.com/en-us/cpp/preprocessor/init-seg?view=vs-2019
//
// Example:
// EA_INIT_SEG(compiler) MyType gMyTypeGlobal;
// EA_INIT_SEG("my_section") MyOtherType gMyOtherTypeGlobal;
//
#if !defined(EA_INIT_SEG)
#if defined(EA_INIT_SEG_AVAILABLE)
#define EA_INIT_SEG(x) \
__pragma(warning(push)) __pragma(warning(disable : 4074)) __pragma(warning(disable : 4075)) __pragma(init_seg(x)) \
__pragma(warning(pop))
#else
#define EA_INIT_SEG(x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_MAY_ALIAS_AVAILABLE
//
// Defined as 0, 1, or 2.
// Defines if the GCC attribute may_alias is supported by the compiler.
// Consists of a value 0 (unsupported, shouldn't be used), 1 (some support),
// or 2 (full proper support).
//
#ifndef EA_MAY_ALIAS_AVAILABLE
#if defined(__GNUC__) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 303)
#if !defined(__EDG__) // define it as 1 while defining GCC's support as 2.
#define EA_MAY_ALIAS_AVAILABLE 2
#else
#define EA_MAY_ALIAS_AVAILABLE 0
#endif
#else
#define EA_MAY_ALIAS_AVAILABLE 0
#endif
#endif
// EA_MAY_ALIAS
//
// Defined as a macro that wraps the GCC may_alias attribute. This attribute
// has no significance for VC++ because VC++ doesn't support the concept of
// strict aliasing. Users should avoid writing code that breaks strict
// aliasing rules; EA_MAY_ALIAS is for cases with no alternative.
//
// Example usage:
// void* EA_MAY_ALIAS gPtr = NULL;
//
// Example usage:
// typedef void* EA_MAY_ALIAS pvoid_may_alias;
// pvoid_may_alias gPtr = NULL;
//
#if EA_MAY_ALIAS_AVAILABLE
#define EA_MAY_ALIAS __attribute__((__may_alias__))
#else
#define EA_MAY_ALIAS
#endif
// ------------------------------------------------------------------------
// EA_ASSUME
//
// This acts the same as the VC++ __assume directive and is implemented
// simply as a wrapper around it to allow portable usage of it and to take
// advantage of it if and when it appears in other compilers.
//
// Example usage:
// void Function(int a) {
// switch(a) {
// case 1:
// DoSomething(1);
// break;
// case 2:
// DoSomething(-1);
// break;
// default:
// EA_ASSUME(0); // This tells the optimizer that the default cannot be reached.
// }
// }
//
#ifndef EA_ASSUME
#if defined(_MSC_VER) && (_MSC_VER >= 1300) // If VC7.0 and later
#define EA_ASSUME(x) __assume(x)
#else
#define EA_ASSUME(x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_ANALYSIS_ASSUME
//
// This acts the same as the VC++ __analysis_assume directive and is implemented
// simply as a wrapper around it to allow portable usage of it and to take
// advantage of it if and when it appears in other compilers.
//
// Example usage:
// char Function(char* p) {
// EA_ANALYSIS_ASSUME(p != NULL);
// return *p;
// }
//
#ifndef EA_ANALYSIS_ASSUME
#if defined(_MSC_VER) && (_MSC_VER >= 1300) // If VC7.0 and later
#define EA_ANALYSIS_ASSUME(x) __analysis_assume(!!(x)) // !! because that allows for convertible-to-bool in addition to bool.
#else
#define EA_ANALYSIS_ASSUME(x)
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_VC_WARNING / EA_RESTORE_VC_WARNING
//
// Disable and re-enable warning(s) within code.
// This is simply a wrapper for VC++ #pragma warning(disable: nnnn) for the
// purpose of making code easier to read due to avoiding nested compiler ifdefs
// directly in code.
//
// Example usage:
// EA_DISABLE_VC_WARNING(4127 3244)
// <code>
// EA_RESTORE_VC_WARNING()
//
#ifndef EA_DISABLE_VC_WARNING
#if defined(_MSC_VER)
#define EA_DISABLE_VC_WARNING(w) \
__pragma(warning(push)) \
__pragma(warning(disable:w))
#else
#define EA_DISABLE_VC_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_VC_WARNING
#if defined(_MSC_VER)
#define EA_RESTORE_VC_WARNING() \
__pragma(warning(pop))
#else
#define EA_RESTORE_VC_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_ENABLE_VC_WARNING_AS_ERROR / EA_DISABLE_VC_WARNING_AS_ERROR
//
// Disable and re-enable treating a warning as error within code.
// This is simply a wrapper for VC++ #pragma warning(error: nnnn) for the
// purpose of making code easier to read due to avoiding nested compiler ifdefs
// directly in code.
//
// Example usage:
// EA_ENABLE_VC_WARNING_AS_ERROR(4996)
// <code>
// EA_DISABLE_VC_WARNING_AS_ERROR()
//
#ifndef EA_ENABLE_VC_WARNING_AS_ERROR
#if defined(_MSC_VER)
#define EA_ENABLE_VC_WARNING_AS_ERROR(w) \
__pragma(warning(push)) \
__pragma(warning(error:w))
#else
#define EA_ENABLE_VC_WARNING_AS_ERROR(w)
#endif
#endif
#ifndef EA_DISABLE_VC_WARNING_AS_ERROR
#if defined(_MSC_VER)
#define EA_DISABLE_VC_WARNING_AS_ERROR() \
__pragma(warning(pop))
#else
#define EA_DISABLE_VC_WARNING_AS_ERROR()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_GCC_WARNING / EA_RESTORE_GCC_WARNING
//
// Example usage:
// // Only one warning can be ignored per statement, due to how GCC works.
// EA_DISABLE_GCC_WARNING(-Wuninitialized)
// EA_DISABLE_GCC_WARNING(-Wunused)
// <code>
// EA_RESTORE_GCC_WARNING()
// EA_RESTORE_GCC_WARNING()
//
#ifndef EA_DISABLE_GCC_WARNING
#if defined(EA_COMPILER_GNUC)
#define EAGCCWHELP0(x) #x
#define EAGCCWHELP1(x) EAGCCWHELP0(GCC diagnostic ignored x)
#define EAGCCWHELP2(x) EAGCCWHELP1(#x)
#endif
#if defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4006) // Can't test directly for __GNUC__ because some compilers lie.
#define EA_DISABLE_GCC_WARNING(w) \
_Pragma("GCC diagnostic push") \
_Pragma(EAGCCWHELP2(w))
#elif defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4004)
#define EA_DISABLE_GCC_WARNING(w) \
_Pragma(EAGCCWHELP2(w))
#else
#define EA_DISABLE_GCC_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_GCC_WARNING
#if defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4006)
#define EA_RESTORE_GCC_WARNING() \
_Pragma("GCC diagnostic pop")
#else
#define EA_RESTORE_GCC_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_GCC_WARNINGS / EA_RESTORE_ALL_GCC_WARNINGS
//
// This isn't possible except via using _Pragma("GCC system_header"), though
// that has some limitations in how it works. Another means is to manually
// disable individual warnings within a GCC diagnostic push statement.
// GCC doesn't have as many warnings as VC++ and EDG and so this may be feasible.
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// EA_ENABLE_GCC_WARNING_AS_ERROR / EA_DISABLE_GCC_WARNING_AS_ERROR
//
// Example usage:
// // Only one warning can be treated as an error per statement, due to how GCC works.
// EA_ENABLE_GCC_WARNING_AS_ERROR(-Wuninitialized)
// EA_ENABLE_GCC_WARNING_AS_ERROR(-Wunused)
// <code>
// EA_DISABLE_GCC_WARNING_AS_ERROR()
// EA_DISABLE_GCC_WARNING_AS_ERROR()
//
#ifndef EA_ENABLE_GCC_WARNING_AS_ERROR
#if defined(EA_COMPILER_GNUC)
#define EAGCCWERRORHELP0(x) #x
#define EAGCCWERRORHELP1(x) EAGCCWERRORHELP0(GCC diagnostic error x)
#define EAGCCWERRORHELP2(x) EAGCCWERRORHELP1(#x)
#endif
#if defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4006) // Can't test directly for __GNUC__ because some compilers lie.
#define EA_ENABLE_GCC_WARNING_AS_ERROR(w) \
_Pragma("GCC diagnostic push") \
_Pragma(EAGCCWERRORHELP2(w))
#elif defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4004)
#define EA_DISABLE_GCC_WARNING(w) \
_Pragma(EAGCCWERRORHELP2(w))
#else
#define EA_DISABLE_GCC_WARNING(w)
#endif
#endif
#ifndef EA_DISABLE_GCC_WARNING_AS_ERROR
#if defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION >= 4006)
#define EA_DISABLE_GCC_WARNING_AS_ERROR() \
_Pragma("GCC diagnostic pop")
#else
#define EA_DISABLE_GCC_WARNING_AS_ERROR()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_CLANG_WARNING / EA_RESTORE_CLANG_WARNING
//
// Example usage:
// // Only one warning can be ignored per statement, due to how clang works.
// EA_DISABLE_CLANG_WARNING(-Wuninitialized)
// EA_DISABLE_CLANG_WARNING(-Wunused)
// <code>
// EA_RESTORE_CLANG_WARNING()
// EA_RESTORE_CLANG_WARNING()
//
#ifndef EA_DISABLE_CLANG_WARNING
#if defined(EA_COMPILER_CLANG) || defined(EA_COMPILER_CLANG_CL)
#define EACLANGWHELP0(x) #x
#define EACLANGWHELP1(x) EACLANGWHELP0(clang diagnostic ignored x)
#define EACLANGWHELP2(x) EACLANGWHELP1(#x)
#define EA_DISABLE_CLANG_WARNING(w) \
_Pragma("clang diagnostic push") \
_Pragma(EACLANGWHELP2(-Wunknown-warning-option))\
_Pragma(EACLANGWHELP2(w))
#else
#define EA_DISABLE_CLANG_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_CLANG_WARNING
#if defined(EA_COMPILER_CLANG) || defined(EA_COMPILER_CLANG_CL)
#define EA_RESTORE_CLANG_WARNING() \
_Pragma("clang diagnostic pop")
#else
#define EA_RESTORE_CLANG_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_CLANG_WARNINGS / EA_RESTORE_ALL_CLANG_WARNINGS
//
// The situation for clang is the same as for GCC. See above.
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// EA_ENABLE_CLANG_WARNING_AS_ERROR / EA_DISABLE_CLANG_WARNING_AS_ERROR
//
// Example usage:
// // Only one warning can be treated as an error per statement, due to how clang works.
// EA_ENABLE_CLANG_WARNING_AS_ERROR(-Wuninitialized)
// EA_ENABLE_CLANG_WARNING_AS_ERROR(-Wunused)
// <code>
// EA_DISABLE_CLANG_WARNING_AS_ERROR()
// EA_DISABLE_CLANG_WARNING_AS_ERROR()
//
#ifndef EA_ENABLE_CLANG_WARNING_AS_ERROR
#if defined(EA_COMPILER_CLANG) || defined(EA_COMPILER_CLANG_CL)
#define EACLANGWERRORHELP0(x) #x
#define EACLANGWERRORHELP1(x) EACLANGWERRORHELP0(clang diagnostic error x)
#define EACLANGWERRORHELP2(x) EACLANGWERRORHELP1(#x)
#define EA_ENABLE_CLANG_WARNING_AS_ERROR(w) \
_Pragma("clang diagnostic push") \
_Pragma(EACLANGWERRORHELP2(w))
#else
#define EA_DISABLE_CLANG_WARNING(w)
#endif
#endif
#ifndef EA_DISABLE_CLANG_WARNING_AS_ERROR
#if defined(EA_COMPILER_CLANG) || defined(EA_COMPILER_CLANG_CL)
#define EA_DISABLE_CLANG_WARNING_AS_ERROR() \
_Pragma("clang diagnostic pop")
#else
#define EA_DISABLE_CLANG_WARNING_AS_ERROR()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_SN_WARNING / EA_RESTORE_SN_WARNING
//
// Note that we define this macro specifically for the SN compiler instead of
// having a generic one for EDG-based compilers. The reason for this is that
// while SN is indeed based on EDG, SN has different warning value mappings
// and thus warning 1234 for SN is not the same as 1234 for all other EDG compilers.
//
// Example usage:
// // Currently we are limited to one warning per line.
// EA_DISABLE_SN_WARNING(1787)
// EA_DISABLE_SN_WARNING(552)
// <code>
// EA_RESTORE_SN_WARNING()
// EA_RESTORE_SN_WARNING()
//
#ifndef EA_DISABLE_SN_WARNING
#if defined(EA_COMPILER_SN)
#define EASNWHELP0(x) #x
#define EASNWHELP1(x) EASNWHELP0(diag_suppress x)
#define EA_DISABLE_SN_WARNING(w) \
_Pragma("control %push diag") \
_Pragma(EASNWHELP1(w))
#else
#define EA_DISABLE_SN_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_SN_WARNING
#if defined(EA_COMPILER_SN)
#define EA_RESTORE_SN_WARNING() \
_Pragma("control %pop diag")
#else
#define EA_RESTORE_SN_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_SN_WARNINGS / EA_RESTORE_ALL_SN_WARNINGS
//
// Example usage:
// EA_DISABLE_ALL_SN_WARNINGS()
// <code>
// EA_RESTORE_ALL_SN_WARNINGS()
//
#ifndef EA_DISABLE_ALL_SN_WARNINGS
#if defined(EA_COMPILER_SN)
#define EA_DISABLE_ALL_SN_WARNINGS() \
_Pragma("control %push diag") \
_Pragma("control diag=0")
#else
#define EA_DISABLE_ALL_SN_WARNINGS()
#endif
#endif
#ifndef EA_RESTORE_ALL_SN_WARNINGS
#if defined(EA_COMPILER_SN)
#define EA_RESTORE_ALL_SN_WARNINGS() \
_Pragma("control %pop diag")
#else
#define EA_RESTORE_ALL_SN_WARNINGS()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_GHS_WARNING / EA_RESTORE_GHS_WARNING
//
// Disable warnings from the Green Hills compiler.
//
// Example usage:
// EA_DISABLE_GHS_WARNING(193)
// EA_DISABLE_GHS_WARNING(236, 5323)
// <code>
// EA_RESTORE_GHS_WARNING()
// EA_RESTORE_GHS_WARNING()
//
#ifndef EA_DISABLE_GHS_WARNING
#if defined(EA_COMPILER_GREEN_HILLS)
#define EAGHSHELP0(x) #x
#define EAGHSHELP1(x) EAGHSHELP0(ghs nowarning x)
#define EA_DISABLE_GHS_WARNING(w) \
_Pragma(EAGHSHELP1(w))
#else
#define EA_DISABLE_GHS_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_GHS_WARNING
#if defined(EA_COMPILER_GREEN_HILLS)
#define EA_RESTORE_GHS_WARNING() \
_Pragma("ghs endnowarning")
#else
#define EA_RESTORE_GHS_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_GHS_WARNINGS / EA_RESTORE_ALL_GHS_WARNINGS
//
// #ifndef EA_DISABLE_ALL_GHS_WARNINGS
// #if defined(EA_COMPILER_GREEN_HILLS)
// #define EA_DISABLE_ALL_GHS_WARNINGS(w) \_
// _Pragma("_________")
// #else
// #define EA_DISABLE_ALL_GHS_WARNINGS(w)
// #endif
// #endif
//
// #ifndef EA_RESTORE_ALL_GHS_WARNINGS
// #if defined(EA_COMPILER_GREEN_HILLS)
// #define EA_RESTORE_ALL_GHS_WARNINGS() \_
// _Pragma("_________")
// #else
// #define EA_RESTORE_ALL_GHS_WARNINGS()
// #endif
// #endif
// ------------------------------------------------------------------------
// EA_DISABLE_EDG_WARNING / EA_RESTORE_EDG_WARNING
//
// Example usage:
// // Currently we are limited to one warning per line.
// EA_DISABLE_EDG_WARNING(193)
// EA_DISABLE_EDG_WARNING(236)
// <code>
// EA_RESTORE_EDG_WARNING()
// EA_RESTORE_EDG_WARNING()
//
#ifndef EA_DISABLE_EDG_WARNING
// EDG-based compilers are inconsistent in how the implement warning pragmas.
#if defined(EA_COMPILER_EDG) && !defined(EA_COMPILER_INTEL) && !defined(EA_COMPILER_RVCT)
#define EAEDGWHELP0(x) #x
#define EAEDGWHELP1(x) EAEDGWHELP0(diag_suppress x)
#define EA_DISABLE_EDG_WARNING(w) \
_Pragma("control %push diag") \
_Pragma(EAEDGWHELP1(w))
#else
#define EA_DISABLE_EDG_WARNING(w)
#endif
#endif
#ifndef EA_RESTORE_EDG_WARNING
#if defined(EA_COMPILER_EDG) && !defined(EA_COMPILER_INTEL) && !defined(EA_COMPILER_RVCT)
#define EA_RESTORE_EDG_WARNING() \
_Pragma("control %pop diag")
#else
#define EA_RESTORE_EDG_WARNING()
#endif
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_EDG_WARNINGS / EA_RESTORE_ALL_EDG_WARNINGS
//
//#ifndef EA_DISABLE_ALL_EDG_WARNINGS
// #if defined(EA_COMPILER_EDG) && !defined(EA_COMPILER_SN)
// #define EA_DISABLE_ALL_EDG_WARNINGS(w) \_
// _Pragma("_________")
// #else
// #define EA_DISABLE_ALL_EDG_WARNINGS(w)
// #endif
//#endif
//
//#ifndef EA_RESTORE_ALL_EDG_WARNINGS
// #if defined(EA_COMPILER_EDG) && !defined(EA_COMPILER_SN)
// #define EA_RESTORE_ALL_EDG_WARNINGS() \_
// _Pragma("_________")
// #else
// #define EA_RESTORE_ALL_EDG_WARNINGS()
// #endif
//#endif
// ------------------------------------------------------------------------
// EA_DISABLE_CW_WARNING / EA_RESTORE_CW_WARNING
//
// Note that this macro can only control warnings via numbers and not by
// names. The reason for this is that the compiler's syntax for such
// warnings is not the same as for numbers.
//
// Example usage:
// // Currently we are limited to one warning per line and must also specify the warning in the restore macro.
// EA_DISABLE_CW_WARNING(10317)
// EA_DISABLE_CW_WARNING(10324)
// <code>
// EA_RESTORE_CW_WARNING(10317)
// EA_RESTORE_CW_WARNING(10324)
//
#ifndef EA_DISABLE_CW_WARNING
#define EA_DISABLE_CW_WARNING(w)
#endif
#ifndef EA_RESTORE_CW_WARNING
#define EA_RESTORE_CW_WARNING(w)
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_ALL_CW_WARNINGS / EA_RESTORE_ALL_CW_WARNINGS
//
#ifndef EA_DISABLE_ALL_CW_WARNINGS
#define EA_DISABLE_ALL_CW_WARNINGS()
#endif
#ifndef EA_RESTORE_ALL_CW_WARNINGS
#define EA_RESTORE_ALL_CW_WARNINGS()
#endif
// ------------------------------------------------------------------------
// EA_PURE
//
// This acts the same as the GCC __attribute__ ((pure)) directive and is
// implemented simply as a wrapper around it to allow portable usage of
// it and to take advantage of it if and when it appears in other compilers.
//
// A "pure" function is one that has no effects except its return value and
// its return value is a function of only the function's parameters or
// non-volatile global variables. Any parameter or global variable access
// must be read-only. Loop optimization and subexpression elimination can be
// applied to such functions. A common example is strlen(): Given identical
// inputs, the function's return value (its only effect) is invariant across
// multiple invocations and thus can be pulled out of a loop and called but once.
//
// Example usage:
// EA_PURE void Function();
//
#ifndef EA_PURE
#if defined(EA_COMPILER_GNUC)
#define EA_PURE __attribute__((pure))
#elif defined(EA_COMPILER_ARM) // Arm brand compiler for ARM CPU
#define EA_PURE __pure
#else
#define EA_PURE
#endif
#endif
// ------------------------------------------------------------------------
// EA_WEAK
// EA_WEAK_SUPPORTED -- defined as 0 or 1.
//
// GCC
// The weak attribute causes the declaration to be emitted as a weak
// symbol rather than a global. This is primarily useful in defining
// library functions which can be overridden in user code, though it
// can also be used with non-function declarations.
//
// VC++
// At link time, if multiple definitions of a COMDAT are seen, the linker
// picks one and discards the rest. If the linker option /OPT:REF
// is selected, then COMDAT elimination will occur to remove all the
// unreferenced data items in the linker output.
//
// Example usage:
// EA_WEAK void Function();
//
#ifndef EA_WEAK
#if defined(_MSC_VER) && (_MSC_VER >= 1300) // If VC7.0 and later
#define EA_WEAK __declspec(selectany)
#define EA_WEAK_SUPPORTED 1
#elif defined(_MSC_VER) || (defined(__GNUC__) && defined(__CYGWIN__))
#define EA_WEAK
#define EA_WEAK_SUPPORTED 0
#elif defined(EA_COMPILER_ARM) // Arm brand compiler for ARM CPU
#define EA_WEAK __weak
#define EA_WEAK_SUPPORTED 1
#else // GCC and IBM compilers, others.
#define EA_WEAK __attribute__((weak))
#define EA_WEAK_SUPPORTED 1
#endif
#endif
// ------------------------------------------------------------------------
// EA_UNUSED
//
// Makes compiler warnings about unused variables go away.
//
// Example usage:
// void Function(int x)
// {
// int y;
// EA_UNUSED(x);
// EA_UNUSED(y);
// }
//
#ifndef EA_UNUSED
// The EDG solution below is pretty weak and needs to be augmented or replaced.
// It can't handle the C language, is limited to places where template declarations
// can be used, and requires the type x to be usable as a functions reference argument.
#if defined(__cplusplus) && defined(__EDG__)
template <typename T>
inline void EABaseUnused(T const volatile & x) { (void)x; }
#define EA_UNUSED(x) EABaseUnused(x)
#else
#define EA_UNUSED(x) (void)x
#endif
#endif
// ------------------------------------------------------------------------
// EA_EMPTY
//
// Allows for a null statement, usually for the purpose of avoiding compiler warnings.
//
// Example usage:
// #ifdef EA_DEBUG
// #define MyDebugPrintf(x, y) printf(x, y)
// #else
// #define MyDebugPrintf(x, y) EA_EMPTY
// #endif
//
#ifndef EA_EMPTY
#define EA_EMPTY (void)0
#endif
// ------------------------------------------------------------------------
// EA_CURRENT_FUNCTION
//
// Provides a consistent way to get the current function name as a macro
// like the __FILE__ and __LINE__ macros work. The C99 standard specifies
// that __func__ be provided by the compiler, but most compilers don't yet
// follow that convention. However, many compilers have an alternative.
//
// We also define EA_CURRENT_FUNCTION_SUPPORTED for when it is not possible
// to have EA_CURRENT_FUNCTION work as expected.
//
// Defined inside a function because otherwise the macro might not be
// defined and code below might not compile. This happens with some
// compilers.
//
#ifndef EA_CURRENT_FUNCTION
#if defined __GNUC__ || (defined __ICC && __ICC >= 600)
#define EA_CURRENT_FUNCTION __PRETTY_FUNCTION__
#elif defined(__FUNCSIG__)
#define EA_CURRENT_FUNCTION __FUNCSIG__
#elif (defined __INTEL_COMPILER && __INTEL_COMPILER >= 600) || (defined __IBMCPP__ && __IBMCPP__ >= 500) || (defined __CWCC__ && __CWCC__ >= 0x4200)
#define EA_CURRENT_FUNCTION __FUNCTION__
#elif defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901
#define EA_CURRENT_FUNCTION __func__
#else
#define EA_CURRENT_FUNCTION "(unknown function)"
#endif
#endif
// ------------------------------------------------------------------------
// wchar_t
// Here we define:
// EA_WCHAR_T_NON_NATIVE
// EA_WCHAR_SIZE = <sizeof(wchar_t)>
//
#ifndef EA_WCHAR_T_NON_NATIVE
// Compilers that always implement wchar_t as native include:
// COMEAU, new SN, and other EDG-based compilers.
// GCC
// Borland
// SunPro
// IBM Visual Age
#if defined(EA_COMPILER_INTEL)
#if (EA_COMPILER_VERSION < 700)
#define EA_WCHAR_T_NON_NATIVE 1
#else
#if (!defined(_WCHAR_T_DEFINED) && !defined(_WCHAR_T))
#define EA_WCHAR_T_NON_NATIVE 1
#endif
#endif
#elif defined(EA_COMPILER_MSVC) || (defined(EA_COMPILER_CLANG) && defined(EA_PLATFORM_WINDOWS))
#ifndef _NATIVE_WCHAR_T_DEFINED
#define EA_WCHAR_T_NON_NATIVE 1
#endif
#elif defined(__EDG_VERSION__) && (!defined(_WCHAR_T) && (__EDG_VERSION__ < 400)) // EDG prior to v4 uses _WCHAR_T to indicate if wchar_t is native. v4+ may define something else, but we're not currently aware of it.
#define EA_WCHAR_T_NON_NATIVE 1
#endif
#endif
#ifndef EA_WCHAR_SIZE // If the user hasn't specified that it is a given size...
#if defined(__WCHAR_MAX__) // GCC defines this for most platforms.
#if (__WCHAR_MAX__ == 2147483647) || (__WCHAR_MAX__ == 4294967295)
#define EA_WCHAR_SIZE 4
#elif (__WCHAR_MAX__ == 32767) || (__WCHAR_MAX__ == 65535)
#define EA_WCHAR_SIZE 2
#elif (__WCHAR_MAX__ == 127) || (__WCHAR_MAX__ == 255)
#define EA_WCHAR_SIZE 1
#else
#define EA_WCHAR_SIZE 4
#endif
#elif defined(WCHAR_MAX) // The SN and Arm compilers define this.
#if (WCHAR_MAX == 2147483647) || (WCHAR_MAX == 4294967295)
#define EA_WCHAR_SIZE 4
#elif (WCHAR_MAX == 32767) || (WCHAR_MAX == 65535)
#define EA_WCHAR_SIZE 2
#elif (WCHAR_MAX == 127) || (WCHAR_MAX == 255)
#define EA_WCHAR_SIZE 1
#else
#define EA_WCHAR_SIZE 4
#endif
#elif defined(__WCHAR_BIT) // Green Hills (and other versions of EDG?) uses this.
#if (__WCHAR_BIT == 16)
#define EA_WCHAR_SIZE 2
#elif (__WCHAR_BIT == 32)
#define EA_WCHAR_SIZE 4
#elif (__WCHAR_BIT == 8)
#define EA_WCHAR_SIZE 1
#else
#define EA_WCHAR_SIZE 4
#endif
#elif defined(_WCMAX) // The SN and Arm compilers define this.
#if (_WCMAX == 2147483647) || (_WCMAX == 4294967295)
#define EA_WCHAR_SIZE 4
#elif (_WCMAX == 32767) || (_WCMAX == 65535)
#define EA_WCHAR_SIZE 2
#elif (_WCMAX == 127) || (_WCMAX == 255)
#define EA_WCHAR_SIZE 1
#else
#define EA_WCHAR_SIZE 4
#endif
#elif defined(EA_PLATFORM_UNIX)
// It is standard on Unix to have wchar_t be int32_t or uint32_t.
// All versions of GNUC default to a 32 bit wchar_t, but EA has used
// the -fshort-wchar GCC command line option to force it to 16 bit.
// If you know that the compiler is set to use a wchar_t of other than
// the default, you need to manually define EA_WCHAR_SIZE for the build.
#define EA_WCHAR_SIZE 4
#else
// It is standard on Windows to have wchar_t be uint16_t. GCC
// defines wchar_t as int by default. Electronic Arts has
// standardized on wchar_t being an unsigned 16 bit value on all
// console platforms. Given that there is currently no known way to
// tell at preprocessor time what the size of wchar_t is, we declare
// it to be 2, as this is the Electronic Arts standard. If you have
// EA_WCHAR_SIZE != sizeof(wchar_t), then your code might not be
// broken, but it also won't work with wchar libraries and data from
// other parts of EA. Under GCC, you can force wchar_t to two bytes
// with the -fshort-wchar compiler argument.
#define EA_WCHAR_SIZE 2
#endif
#endif
// ------------------------------------------------------------------------
// EA_RESTRICT
//
// The C99 standard defines a new keyword, restrict, which allows for the
// improvement of code generation regarding memory usage. Compilers can
// generate significantly faster code when you are able to use restrict.
//
// Example usage:
// void DoSomething(char* EA_RESTRICT p1, char* EA_RESTRICT p2);
//
#ifndef EA_RESTRICT
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1400) // If VC8 (VS2005) or later...
#define EA_RESTRICT __restrict
#elif defined(EA_COMPILER_CLANG)
#define EA_RESTRICT __restrict
#elif defined(EA_COMPILER_GNUC) // Includes GCC and other compilers emulating GCC.
#define EA_RESTRICT __restrict // GCC defines 'restrict' (as opposed to __restrict) in C99 mode only.
#elif defined(EA_COMPILER_ARM)
#define EA_RESTRICT __restrict
#elif defined(EA_COMPILER_IS_C99)
#define EA_RESTRICT restrict
#else
// If the compiler didn't support restricted pointers, defining EA_RESTRICT
// away would result in compiling and running fine but you just wouldn't
// the same level of optimization. On the other hand, all the major compilers
// support restricted pointers.
#define EA_RESTRICT
#endif
#endif
// ------------------------------------------------------------------------
// EA_DEPRECATED // Used as a prefix.
// EA_PREFIX_DEPRECATED // You should need this only for unusual compilers.
// EA_POSTFIX_DEPRECATED // You should need this only for unusual compilers.
// EA_DEPRECATED_MESSAGE // Used as a prefix and provides a deprecation message.
//
// Example usage:
// EA_DEPRECATED void Function();
// EA_DEPRECATED_MESSAGE("Use 1.0v API instead") void Function();
//
// or for maximum portability:
// EA_PREFIX_DEPRECATED void Function() EA_POSTFIX_DEPRECATED;
//
#ifndef EA_DEPRECATED
#if defined(EA_COMPILER_CPP14_ENABLED)
#define EA_DEPRECATED [[deprecated]]
#elif defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION > 1300) // If VC7 (VS2003) or later...
#define EA_DEPRECATED __declspec(deprecated)
#elif defined(EA_COMPILER_MSVC)
#define EA_DEPRECATED
#else
#define EA_DEPRECATED __attribute__((deprecated))
#endif
#endif
#ifndef EA_PREFIX_DEPRECATED
#if defined(EA_COMPILER_CPP14_ENABLED)
#define EA_PREFIX_DEPRECATED [[deprecated]]
#define EA_POSTFIX_DEPRECATED
#elif defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION > 1300) // If VC7 (VS2003) or later...
#define EA_PREFIX_DEPRECATED __declspec(deprecated)
#define EA_POSTFIX_DEPRECATED
#elif defined(EA_COMPILER_MSVC)
#define EA_PREFIX_DEPRECATED
#define EA_POSTFIX_DEPRECATED
#else
#define EA_PREFIX_DEPRECATED
#define EA_POSTFIX_DEPRECATED __attribute__((deprecated))
#endif
#endif
#ifndef EA_DEPRECATED_MESSAGE
#if defined(EA_COMPILER_CPP14_ENABLED)
#define EA_DEPRECATED_MESSAGE(msg) [[deprecated(#msg)]]
#else
// Compiler does not support depreaction messages, explicitly drop the msg but still mark the function as deprecated
#define EA_DEPRECATED_MESSAGE(msg) EA_DEPRECATED
#endif
#endif
// ------------------------------------------------------------------------
// EA_FORCE_INLINE // Used as a prefix.
// EA_PREFIX_FORCE_INLINE // You should need this only for unusual compilers.
// EA_POSTFIX_FORCE_INLINE // You should need this only for unusual compilers.
//
// Example usage:
// EA_FORCE_INLINE void Foo(); // Implementation elsewhere.
// EA_PREFIX_FORCE_INLINE void Foo() EA_POSTFIX_FORCE_INLINE; // Implementation elsewhere.
//
// Note that when the prefix version of this function is used, it replaces
// the regular C++ 'inline' statement. Thus you should not use both the
// C++ inline statement and this macro with the same function declaration.
//
// To force inline usage under GCC 3.1+, you use this:
// inline void Foo() __attribute__((always_inline));
// or
// inline __attribute__((always_inline)) void Foo();
//
// The CodeWarrior compiler doesn't have the concept of forcing inlining per function.
//
#ifndef EA_FORCE_INLINE
#if defined(EA_COMPILER_MSVC)
#define EA_FORCE_INLINE __forceinline
#elif defined(EA_COMPILER_GNUC) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 301) || defined(EA_COMPILER_CLANG)
#if defined(__cplusplus)
#define EA_FORCE_INLINE inline __attribute__((always_inline))
#else
#define EA_FORCE_INLINE __inline__ __attribute__((always_inline))
#endif
#else
#if defined(__cplusplus)
#define EA_FORCE_INLINE inline
#else
#define EA_FORCE_INLINE __inline
#endif
#endif
#endif
#if defined(EA_COMPILER_GNUC) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 301) || defined(EA_COMPILER_CLANG)
#define EA_PREFIX_FORCE_INLINE inline
#define EA_POSTFIX_FORCE_INLINE __attribute__((always_inline))
#else
#define EA_PREFIX_FORCE_INLINE inline
#define EA_POSTFIX_FORCE_INLINE
#endif
// ------------------------------------------------------------------------
// EA_FORCE_INLINE_LAMBDA
//
// EA_FORCE_INLINE_LAMBDA is used to force inline a call to a lambda when possible.
// Force inlining a lambda can be useful to reduce overhead in situations where a lambda may
// may only be called once, or inlining allows the compiler to apply other optimizations that wouldn't
// otherwise be possible.
//
// The ability to force inline a lambda is currently only available on a subset of compilers.
//
// Example usage:
//
// auto lambdaFunction = []() EA_FORCE_INLINE_LAMBDA
// {
// };
//
#ifndef EA_FORCE_INLINE_LAMBDA
#if defined(EA_COMPILER_GNUC) || defined(EA_COMPILER_CLANG)
#define EA_FORCE_INLINE_LAMBDA __attribute__((always_inline))
#else
#define EA_FORCE_INLINE_LAMBDA
#endif
#endif
// ------------------------------------------------------------------------
// EA_NO_INLINE // Used as a prefix.
// EA_PREFIX_NO_INLINE // You should need this only for unusual compilers.
// EA_POSTFIX_NO_INLINE // You should need this only for unusual compilers.
//
// Example usage:
// EA_NO_INLINE void Foo(); // Implementation elsewhere.
// EA_PREFIX_NO_INLINE void Foo() EA_POSTFIX_NO_INLINE; // Implementation elsewhere.
//
// That this declaration is incompatbile with C++ 'inline' and any
// variant of EA_FORCE_INLINE.
//
// To disable inline usage under VC++ priof to VS2005, you need to use this:
// #pragma inline_depth(0) // Disable inlining.
// void Foo() { ... }
// #pragma inline_depth() // Restore to default.
//
// Since there is no easy way to disable inlining on a function-by-function
// basis in VC++ prior to VS2005, the best strategy is to write platform-specific
// #ifdefs in the code or to disable inlining for a given module and enable
// functions individually with EA_FORCE_INLINE.
//
#ifndef EA_NO_INLINE
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1400) // If VC8 (VS2005) or later...
#define EA_NO_INLINE __declspec(noinline)
#elif defined(EA_COMPILER_MSVC)
#define EA_NO_INLINE
#else
#define EA_NO_INLINE __attribute__((noinline))
#endif
#endif
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1400) // If VC8 (VS2005) or later...
#define EA_PREFIX_NO_INLINE __declspec(noinline)
#define EA_POSTFIX_NO_INLINE
#elif defined(EA_COMPILER_MSVC)
#define EA_PREFIX_NO_INLINE
#define EA_POSTFIX_NO_INLINE
#else
#define EA_PREFIX_NO_INLINE
#define EA_POSTFIX_NO_INLINE __attribute__((noinline))
#endif
// ------------------------------------------------------------------------
// EA_NO_VTABLE
//
// Example usage:
// class EA_NO_VTABLE X {
// virtual void InterfaceFunction();
// };
//
// EA_CLASS_NO_VTABLE(X) {
// virtual void InterfaceFunction();
// };
//
#ifdef EA_COMPILER_MSVC
#define EA_NO_VTABLE __declspec(novtable)
#define EA_CLASS_NO_VTABLE(x) class __declspec(novtable) x
#define EA_STRUCT_NO_VTABLE(x) struct __declspec(novtable) x
#else
#define EA_NO_VTABLE
#define EA_CLASS_NO_VTABLE(x) class x
#define EA_STRUCT_NO_VTABLE(x) struct x
#endif
// ------------------------------------------------------------------------
// EA_PASCAL
//
// Also known on PC platforms as stdcall.
// This convention causes the compiler to assume that the called function
// will pop off the stack space used to pass arguments, unless it takes a
// variable number of arguments.
//
// Example usage:
// this:
// void DoNothing(int x);
// void DoNothing(int x){}
// would be written as this:
// void EA_PASCAL_FUNC(DoNothing(int x));
// void EA_PASCAL_FUNC(DoNothing(int x)){}
//
#ifndef EA_PASCAL
#if defined(EA_COMPILER_MSVC)
#define EA_PASCAL __stdcall
#elif defined(EA_COMPILER_GNUC) && defined(EA_PROCESSOR_X86)
#define EA_PASCAL __attribute__((stdcall))
#else
// Some compilers simply don't support pascal calling convention.
// As a result, there isn't an issue here, since the specification of
// pascal calling convention is for the purpose of disambiguating the
// calling convention that is applied.
#define EA_PASCAL
#endif
#endif
#ifndef EA_PASCAL_FUNC
#if defined(EA_COMPILER_MSVC)
#define EA_PASCAL_FUNC(funcname_and_paramlist) __stdcall funcname_and_paramlist
#elif defined(EA_COMPILER_GNUC) && defined(EA_PROCESSOR_X86)
#define EA_PASCAL_FUNC(funcname_and_paramlist) __attribute__((stdcall)) funcname_and_paramlist
#else
#define EA_PASCAL_FUNC(funcname_and_paramlist) funcname_and_paramlist
#endif
#endif
// ------------------------------------------------------------------------
// EA_SSE
// Visual C Processor Packs define _MSC_FULL_VER and are needed for SSE
// Intel C also has SSE support.
// EA_SSE is used to select FPU or SSE versions in hw_select.inl
//
// EA_SSE defines the level of SSE support:
// 0 indicates no SSE support
// 1 indicates SSE1 is supported
// 2 indicates SSE2 is supported
// 3 indicates SSE3 (or greater) is supported
//
// Note: SSE support beyond SSE3 can't be properly represented as a single
// version number. Instead users should use specific SSE defines (e.g.
// EA_SSE4_2) to detect what specific support is available. EA_SSE being
// equal to 3 really only indicates that SSE3 or greater is supported.
#ifndef EA_SSE
#if defined(EA_COMPILER_GNUC) || defined(EA_COMPILER_CLANG)
#if defined(__SSE3__)
#define EA_SSE 3
#elif defined(__SSE2__)
#define EA_SSE 2
#elif defined(__SSE__) && __SSE__
#define EA_SSE 1
#else
#define EA_SSE 0
#endif
#elif (defined(EA_SSE3) && EA_SSE3) || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_SSE 3
#elif defined(EA_SSE2) && EA_SSE2
#define EA_SSE 2
#elif defined(EA_PROCESSOR_X86) && defined(_MSC_FULL_VER) && !defined(__NOSSE__) && defined(_M_IX86_FP)
#define EA_SSE _M_IX86_FP
#elif defined(EA_PROCESSOR_X86) && defined(EA_COMPILER_INTEL) && !defined(__NOSSE__)
#define EA_SSE 1
#elif defined(EA_PROCESSOR_X86_64)
// All x64 processors support SSE2 or higher
#define EA_SSE 2
#else
#define EA_SSE 0
#endif
#endif
// ------------------------------------------------------------------------
// We define separate defines for SSE support beyond SSE1. These defines
// are particularly useful for detecting SSE4.x features since there isn't
// a single concept of SSE4.
//
// The following SSE defines are always defined. 0 indicates the
// feature/level of SSE is not supported, and 1 indicates support is
// available.
#ifndef EA_SSE2
#if EA_SSE >= 2
#define EA_SSE2 1
#else
#define EA_SSE2 0
#endif
#endif
#ifndef EA_SSE3
#if EA_SSE >= 3
#define EA_SSE3 1
#else
#define EA_SSE3 0
#endif
#endif
#ifndef EA_SSSE3
#if defined __SSSE3__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_SSSE3 1
#else
#define EA_SSSE3 0
#endif
#endif
#ifndef EA_SSE4_1
#if defined __SSE4_1__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_SSE4_1 1
#else
#define EA_SSE4_1 0
#endif
#endif
#ifndef EA_SSE4_2
#if defined __SSE4_2__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_SSE4_2 1
#else
#define EA_SSE4_2 0
#endif
#endif
#ifndef EA_SSE4A
#if defined __SSE4A__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_SSE4A 1
#else
#define EA_SSE4A 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_AVX
// EA_AVX may be used to determine if Advanced Vector Extensions are available for the target architecture
//
// EA_AVX defines the level of AVX support:
// 0 indicates no AVX support
// 1 indicates AVX1 is supported
// 2 indicates AVX2 is supported
#ifndef EA_AVX
#if defined __AVX2__
#define EA_AVX 2
#elif defined __AVX__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_AVX 1
#else
#define EA_AVX 0
#endif
#endif
#ifndef EA_AVX2
#if EA_AVX >= 2
#define EA_AVX2 1
#else
#define EA_AVX2 0
#endif
#endif
// EA_FP16C may be used to determine the existence of float <-> half conversion operations on an x86 CPU.
// (For example to determine if _mm_cvtph_ps or _mm_cvtps_ph could be used.)
#ifndef EA_FP16C
#if defined __F16C__ || defined EA_PLATFORM_XBOXONE || defined EA_PLATFORM_XBSX
#define EA_FP16C 1
#else
#define EA_FP16C 0
#endif
#endif
// EA_FP128 may be used to determine if __float128 is a supported type for use. This type is enabled by a GCC extension (_GLIBCXX_USE_FLOAT128)
// but has support by some implementations of clang (__FLOAT128__)
// PS4 does not support __float128 as of SDK 5.500 https://ps4.siedev.net/resources/documents/SDK/5.500/CPU_Compiler_ABI-Overview/0003.html
#ifndef EA_FP128
#if (defined __FLOAT128__ || defined _GLIBCXX_USE_FLOAT128) && !defined(EA_PLATFORM_SONY)
#define EA_FP128 1
#else
#define EA_FP128 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_ABM
// EA_ABM may be used to determine if Advanced Bit Manipulation sets are available for the target architecture (POPCNT, LZCNT)
//
#ifndef EA_ABM
#if defined(__ABM__) || defined(EA_PLATFORM_XBOXONE) || defined(EA_PLATFORM_SONY) || defined(EA_PLATFORM_XBSX)
#define EA_ABM 1
#else
#define EA_ABM 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_NEON
// EA_NEON may be used to determine if NEON is supported.
#ifndef EA_NEON
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#define EA_NEON 1
#else
#define EA_NEON 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_BMI
// EA_BMI may be used to determine if Bit Manipulation Instruction sets are available for the target architecture
//
// EA_BMI defines the level of BMI support:
// 0 indicates no BMI support
// 1 indicates BMI1 is supported
// 2 indicates BMI2 is supported
#ifndef EA_BMI
#if defined(__BMI2__)
#define EA_BMI 2
#elif defined(__BMI__) || defined(EA_PLATFORM_XBOXONE) || defined(EA_PLATFORM_XBSX)
#define EA_BMI 1
#else
#define EA_BMI 0
#endif
#endif
#ifndef EA_BMI2
#if EA_BMI >= 2
#define EA_BMI2 1
#else
#define EA_BMI2 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_FMA3
// EA_FMA3 may be used to determine if Fused Multiply Add operations are available for the target architecture
// __FMA__ is defined only by GCC, Clang, and ICC; MSVC only defines __AVX__ and __AVX2__
// FMA3 was introduced alongside AVX2 on Intel Haswell
// All AMD processors support FMA3 if AVX2 is also supported
//
// EA_FMA3 defines the level of FMA3 support:
// 0 indicates no FMA3 support
// 1 indicates FMA3 is supported
#ifndef EA_FMA3
#if defined(__FMA__) || EA_AVX2 >= 1
#define EA_FMA3 1
#else
#define EA_FMA3 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_TBM
// EA_TBM may be used to determine if Trailing Bit Manipulation instructions are available for the target architecture
#ifndef EA_TBM
#if defined(__TBM__)
#define EA_TBM 1
#else
#define EA_TBM 0
#endif
#endif
// ------------------------------------------------------------------------
// EA_IMPORT
// import declaration specification
// specifies that the declared symbol is imported from another dynamic library.
#ifndef EA_IMPORT
#if defined(EA_COMPILER_MSVC)
#define EA_IMPORT __declspec(dllimport)
#else
#define EA_IMPORT
#endif
#endif
// ------------------------------------------------------------------------
// EA_EXPORT
// export declaration specification
// specifies that the declared symbol is exported from the current dynamic library.
// this is not the same as the C++ export keyword. The C++ export keyword has been
// removed from the language as of C++11.
#ifndef EA_EXPORT
#if defined(EA_COMPILER_MSVC)
#define EA_EXPORT __declspec(dllexport)
#else
#define EA_EXPORT
#endif
#endif
// ------------------------------------------------------------------------
// EA_PRAGMA_ONCE_SUPPORTED
//
// This is a wrapper for the #pragma once preprocessor directive.
// It allows for some compilers (in particular VC++) to implement signifcantly
// faster include file preprocessing. #pragma once can be used to replace
// header include guards or to augment them. However, #pragma once isn't
// necessarily supported by all compilers and isn't guaranteed to be so in
// the future, so using #pragma once to replace traditional include guards
// is not strictly portable. Note that a direct #define for #pragma once is
// impossible with VC++, due to limitations, but can be done with other
// compilers/preprocessors via _Pragma("once").
//
// Example usage (which includes traditional header guards for portability):
// #ifndef SOMEPACKAGE_SOMEHEADER_H
// #define SOMEPACKAGE_SOMEHEADER_H
//
// #if defined(EA_PRAGMA_ONCE_SUPPORTED)
// #pragma once
// #endif
//
// <user code>
//
// #endif
//
#if defined(_MSC_VER) || defined(__GNUC__) || defined(__EDG__) || defined(__APPLE__)
#define EA_PRAGMA_ONCE_SUPPORTED 1
#endif
// ------------------------------------------------------------------------
// EA_ONCE
//
// Example usage (which includes traditional header guards for portability):
// #ifndef SOMEPACKAGE_SOMEHEADER_H
// #define SOMEPACKAGE_SOMEHEADER_H
//
// EA_ONCE()
//
// <user code>
//
// #endif
//
#if defined(EA_PRAGMA_ONCE_SUPPORTED)
#if defined(_MSC_VER)
#define EA_ONCE() __pragma(once)
#else
#define EA_ONCE() // _Pragma("once") It turns out that _Pragma("once") isn't supported by many compilers.
#endif
#endif
// ------------------------------------------------------------------------
// EA_OVERRIDE
//
// C++11 override
// See http://msdn.microsoft.com/en-us/library/jj678987.aspx for more information.
// You can use EA_FINAL_OVERRIDE to combine usage of EA_OVERRIDE and EA_INHERITANCE_FINAL in a single statement.
//
// Example usage:
// struct B { virtual void f(int); };
// struct D : B { void f(int) EA_OVERRIDE; };
//
#ifndef EA_OVERRIDE
#if defined(EA_COMPILER_NO_OVERRIDE)
#define EA_OVERRIDE
#else
#define EA_OVERRIDE override
#endif
#endif
// ------------------------------------------------------------------------
// EA_INHERITANCE_FINAL
//
// Portably wraps the C++11 final specifier.
// See http://msdn.microsoft.com/en-us/library/jj678985.aspx for more information.
// You can use EA_FINAL_OVERRIDE to combine usage of EA_OVERRIDE and EA_INHERITANCE_FINAL in a single statement.
// This is not called EA_FINAL because that term is used within EA to denote debug/release/final builds.
//
// Example usage:
// struct B { virtual void f() EA_INHERITANCE_FINAL; };
//
#ifndef EA_INHERITANCE_FINAL
#if defined(EA_COMPILER_NO_INHERITANCE_FINAL)
#define EA_INHERITANCE_FINAL
#elif (defined(_MSC_VER) && (EA_COMPILER_VERSION < 1700)) // Pre-VS2012
#define EA_INHERITANCE_FINAL sealed
#else
#define EA_INHERITANCE_FINAL final
#endif
#endif
// ------------------------------------------------------------------------
// EA_FINAL_OVERRIDE
//
// Portably wraps the C++11 override final specifiers combined.
//
// Example usage:
// struct A { virtual void f(); };
// struct B : public A { virtual void f() EA_FINAL_OVERRIDE; };
//
#ifndef EA_FINAL_OVERRIDE
#define EA_FINAL_OVERRIDE EA_OVERRIDE EA_INHERITANCE_FINAL
#endif
// ------------------------------------------------------------------------
// EA_SEALED
//
// This is deprecated, as the C++11 Standard has final (EA_INHERITANCE_FINAL) instead.
// See http://msdn.microsoft.com/en-us/library/0w2w91tf.aspx for more information.
// Example usage:
// struct B { virtual void f() EA_SEALED; };
//
#ifndef EA_SEALED
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1400) // VS2005 (VC8) and later
#define EA_SEALED sealed
#else
#define EA_SEALED
#endif
#endif
// ------------------------------------------------------------------------
// EA_ABSTRACT
//
// This is a Microsoft language extension.
// See http://msdn.microsoft.com/en-us/library/b0z6b513.aspx for more information.
// Example usage:
// struct X EA_ABSTRACT { virtual void f(){} };
//
#ifndef EA_ABSTRACT
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1400) // VS2005 (VC8) and later
#define EA_ABSTRACT abstract
#else
#define EA_ABSTRACT
#endif
#endif
// ------------------------------------------------------------------------
// EA_CONSTEXPR
// EA_CONSTEXPR_OR_CONST
//
// Portable wrapper for C++11's 'constexpr' support.
//
// See http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html for more information.
// Example usage:
// EA_CONSTEXPR int GetValue() { return 37; }
// EA_CONSTEXPR_OR_CONST double gValue = std::sin(kTwoPi);
//
#if !defined(EA_CONSTEXPR)
#if defined(EA_COMPILER_NO_CONSTEXPR)
#define EA_CONSTEXPR
#else
#define EA_CONSTEXPR constexpr
#endif
#endif
#if !defined(EA_CONSTEXPR_OR_CONST)
#if defined(EA_COMPILER_NO_CONSTEXPR)
#define EA_CONSTEXPR_OR_CONST const
#else
#define EA_CONSTEXPR_OR_CONST constexpr
#endif
#endif
// ------------------------------------------------------------------------
// EA_CONSTEXPR_IF
//
// Portable wrapper for C++17's 'constexpr if' support.
//
// https://en.cppreference.com/w/cpp/language/if
//
// Example usage:
//
// EA_CONSTEXPR_IF(eastl::is_copy_constructible_v<T>)
// { ... }
//
#if !defined(EA_CONSTEXPR_IF)
#if defined(EA_COMPILER_NO_CONSTEXPR_IF)
#define EA_CONSTEXPR_IF(predicate) if ((predicate))
#else
#define EA_CONSTEXPR_IF(predicate) if constexpr ((predicate))
#endif
#endif
// ------------------------------------------------------------------------
// EA_EXTERN_TEMPLATE
//
// Portable wrapper for C++11's 'extern template' support.
//
// Example usage:
// EA_EXTERN_TEMPLATE(class basic_string<char>);
//
#if !defined(EA_EXTERN_TEMPLATE)
#if defined(EA_COMPILER_NO_EXTERN_TEMPLATE)
#define EA_EXTERN_TEMPLATE(declaration)
#else
#define EA_EXTERN_TEMPLATE(declaration) extern template declaration
#endif
#endif
// ------------------------------------------------------------------------
// EA_NOEXCEPT
// EA_NOEXCEPT_IF(predicate)
// EA_NOEXCEPT_EXPR(expression)
//
// Portable wrapper for C++11 noexcept
// http://en.cppreference.com/w/cpp/language/noexcept
// http://en.cppreference.com/w/cpp/language/noexcept_spec
//
// Example usage:
// EA_NOEXCEPT
// EA_NOEXCEPT_IF(predicate)
// EA_NOEXCEPT_EXPR(expression)
//
// This function never throws an exception.
// void DoNothing() EA_NOEXCEPT
// { }
//
// This function throws an exception of T::T() throws an exception.
// template <class T>
// void DoNothing() EA_NOEXCEPT_IF(EA_NOEXCEPT_EXPR(T()))
// { T t; }
//
#if !defined(EA_NOEXCEPT)
#if defined(EA_COMPILER_NO_NOEXCEPT)
#define EA_NOEXCEPT
#define EA_NOEXCEPT_IF(predicate)
#define EA_NOEXCEPT_EXPR(expression) false
#else
#define EA_NOEXCEPT noexcept
#define EA_NOEXCEPT_IF(predicate) noexcept((predicate))
#define EA_NOEXCEPT_EXPR(expression) noexcept((expression))
#endif
#endif
// ------------------------------------------------------------------------
// EA_NORETURN
//
// Wraps the C++11 noreturn attribute. See EA_COMPILER_NO_NORETURN
// http://en.cppreference.com/w/cpp/language/attributes
// http://msdn.microsoft.com/en-us/library/k6ktzx3s%28v=vs.80%29.aspx
// http://blog.aaronballman.com/2011/09/understanding-attributes/
//
// Example usage:
// EA_NORETURN void SomeFunction()
// { throw "error"; }
//
#if !defined(EA_NORETURN)
#if defined(EA_COMPILER_MSVC) && (EA_COMPILER_VERSION >= 1300) // VS2003 (VC7) and later
#define EA_NORETURN __declspec(noreturn)
#elif defined(EA_COMPILER_NO_NORETURN)
#define EA_NORETURN
#else
#define EA_NORETURN [[noreturn]]
#endif
#endif
// ------------------------------------------------------------------------
// EA_CARRIES_DEPENDENCY
//
// Wraps the C++11 carries_dependency attribute
// http://en.cppreference.com/w/cpp/language/attributes
// http://blog.aaronballman.com/2011/09/understanding-attributes/
//
// Example usage:
// EA_CARRIES_DEPENDENCY int* SomeFunction()
// { return &mX; }
//
//
#if !defined(EA_CARRIES_DEPENDENCY)
#if defined(EA_COMPILER_NO_CARRIES_DEPENDENCY)
#define EA_CARRIES_DEPENDENCY
#else
#define EA_CARRIES_DEPENDENCY [[carries_dependency]]
#endif
#endif
// ------------------------------------------------------------------------
// EA_FALLTHROUGH
//
// [[fallthrough] is a C++17 standard attribute that appears in switch
// statements to indicate that the fallthrough from the previous case in the
// switch statement is intentially and not a bug.
//
// http://en.cppreference.com/w/cpp/language/attributes
//
// Example usage:
// void f(int n)
// {
// switch(n)
// {
// case 1:
// DoCase1();
// // Compiler may generate a warning for fallthrough behaviour
//
// case 2:
// DoCase2();
//
// EA_FALLTHROUGH;
// case 3:
// DoCase3();
// }
// }
//
#if !defined(EA_FALLTHROUGH)
#if defined(EA_COMPILER_NO_FALLTHROUGH)
#define EA_FALLTHROUGH
#else
#define EA_FALLTHROUGH [[fallthrough]]
#endif
#endif
// ------------------------------------------------------------------------
// EA_NODISCARD
//
// [[nodiscard]] is a C++17 standard attribute that can be applied to a
// function declaration, enum, or class declaration. If a any of the list
// previously are returned from a function (without the user explicitly
// casting to void) the addition of the [[nodiscard]] attribute encourages
// the compiler to generate a warning about the user discarding the return
// value. This is a useful practice to encourage client code to check API
// error codes.
//
// http://en.cppreference.com/w/cpp/language/attributes
//
// Example usage:
//
// EA_NODISCARD int baz() { return 42; }
//
// void foo()
// {
// baz(); // warning: ignoring return value of function declared with 'nodiscard' attribute
// }
//
#if !defined(EA_NODISCARD)
#if defined(EA_COMPILER_NO_NODISCARD)
#define EA_NODISCARD
#else
#define EA_NODISCARD [[nodiscard]]
#endif
#endif
// ------------------------------------------------------------------------
// EA_MAYBE_UNUSED
//
// [[maybe_unused]] is a C++17 standard attribute that suppresses warnings
// on unused entities that are declared as maybe_unused.
//
// http://en.cppreference.com/w/cpp/language/attributes
//
// Example usage:
// void foo(EA_MAYBE_UNUSED int i)
// {
// assert(i == 42); // warning suppressed when asserts disabled.
// }
//
#if !defined(EA_MAYBE_UNUSED)
#if defined(EA_COMPILER_NO_MAYBE_UNUSED)
#define EA_MAYBE_UNUSED
#else
#define EA_MAYBE_UNUSED [[maybe_unused]]
#endif
#endif
// ------------------------------------------------------------------------
// EA_NO_UBSAN
//
// The LLVM/Clang undefined behaviour sanitizer will not analyse a function tagged with the following attribute.
//
// https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#disabling-instrumentation-with-attribute-no-sanitize-undefined
//
// Example usage:
// EA_NO_UBSAN int SomeFunction() { ... }
//
#ifndef EA_NO_UBSAN
#if defined(EA_COMPILER_CLANG)
#define EA_NO_UBSAN __attribute__((no_sanitize("undefined")))
#else
#define EA_NO_UBSAN
#endif
#endif
// ------------------------------------------------------------------------
// EA_NO_ASAN
//
// The LLVM/Clang address sanitizer will not analyse a function tagged with the following attribute.
//
// https://clang.llvm.org/docs/AddressSanitizer.html#disabling-instrumentation-with-attribute-no-sanitize-address
//
// Example usage:
// EA_NO_ASAN int SomeFunction() { ... }
//
#ifndef EA_NO_ASAN
#if defined(EA_COMPILER_CLANG)
#define EA_NO_ASAN __attribute__((no_sanitize("address")))
#else
#define EA_NO_ASAN
#endif
#endif
// ------------------------------------------------------------------------
// EA_ASAN_ENABLED
//
// Defined as 0 or 1. It's value depends on the compile environment.
// Specifies whether the code is being built with Clang's Address Sanitizer.
//
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define EA_ASAN_ENABLED 1
#else
#define EA_ASAN_ENABLED 0
#endif
#else
#define EA_ASAN_ENABLED 0
#endif
// ------------------------------------------------------------------------
// EA_NON_COPYABLE
//
// This macro defines as a class as not being copy-constructable
// or assignable. This is useful for preventing class instances
// from being passed to functions by value, is useful for preventing
// compiler warnings by some compilers about the inability to
// auto-generate a copy constructor and assignment, and is useful
// for simply declaring in the interface that copy semantics are
// not supported by the class. Your class needs to have at least a
// default constructor when using this macro.
//
// Beware that this class works by declaring a private: section of
// the class in the case of compilers that don't support C++11 deleted
// functions.
//
// Note: With some pre-C++11 compilers (e.g. Green Hills), you may need
// to manually define an instances of the hidden functions, even
// though they are not used.
//
// Example usage:
// class Widget {
// Widget();
// . . .
// EA_NON_COPYABLE(Widget)
// };
//
#if !defined(EA_NON_COPYABLE)
#if defined(EA_COMPILER_NO_DELETED_FUNCTIONS)
#define EA_NON_COPYABLE(EAClass_) \
private: \
EA_DISABLE_VC_WARNING(4822); /* local class member function does not have a body */ \
EAClass_(const EAClass_&); \
void operator=(const EAClass_&); \
EA_RESTORE_VC_WARNING();
#else
#define EA_NON_COPYABLE(EAClass_) \
EA_DISABLE_VC_WARNING(4822); /* local class member function does not have a body */ \
EAClass_(const EAClass_&) = delete; \
void operator=(const EAClass_&) = delete; \
EA_RESTORE_VC_WARNING();
#endif
#endif
// ------------------------------------------------------------------------
// EA_FUNCTION_DELETE
//
// Semi-portable way of specifying a deleted function which allows for
// cleaner code in class declarations.
//
// Example usage:
//
// class Example
// {
// private: // For portability with pre-C++11 compilers, make the function private.
// void foo() EA_FUNCTION_DELETE;
// };
//
// Note: EA_FUNCTION_DELETE'd functions should be private to prevent the
// functions from being called even when the compiler does not support
// deleted functions. Some compilers (e.g. Green Hills) that don't support
// C++11 deleted functions can require that you define the function,
// which you can do in the associated source file for the class.
//
#if defined(EA_COMPILER_NO_DELETED_FUNCTIONS)
#define EA_FUNCTION_DELETE
#else
#define EA_FUNCTION_DELETE = delete
#endif
// ------------------------------------------------------------------------
// EA_DISABLE_DEFAULT_CTOR
//
// Disables the compiler generated default constructor. This macro is
// provided to improve portability and clarify intent of code.
//
// Example usage:
//
// class Example
// {
// private:
// EA_DISABLE_DEFAULT_CTOR(Example);
// };
//
#define EA_DISABLE_DEFAULT_CTOR(ClassName) ClassName() EA_FUNCTION_DELETE
// ------------------------------------------------------------------------
// EA_DISABLE_COPY_CTOR
//
// Disables the compiler generated copy constructor. This macro is
// provided to improve portability and clarify intent of code.
//
// Example usage:
//
// class Example
// {
// private:
// EA_DISABLE_COPY_CTOR(Example);
// };
//
#define EA_DISABLE_COPY_CTOR(ClassName) ClassName(const ClassName &) EA_FUNCTION_DELETE
// ------------------------------------------------------------------------
// EA_DISABLE_MOVE_CTOR
//
// Disables the compiler generated move constructor. This macro is
// provided to improve portability and clarify intent of code.
//
// Example usage:
//
// class Example
// {
// private:
// EA_DISABLE_MOVE_CTOR(Example);
// };
//
#define EA_DISABLE_MOVE_CTOR(ClassName) ClassName(ClassName&&) EA_FUNCTION_DELETE
// ------------------------------------------------------------------------
// EA_DISABLE_ASSIGNMENT_OPERATOR
//
// Disables the compiler generated assignment operator. This macro is
// provided to improve portability and clarify intent of code.
//
// Example usage:
//
// class Example
// {
// private:
// EA_DISABLE_ASSIGNMENT_OPERATOR(Example);
// };
//
#define EA_DISABLE_ASSIGNMENT_OPERATOR(ClassName) ClassName & operator=(const ClassName &) EA_FUNCTION_DELETE
// ------------------------------------------------------------------------
// EA_DISABLE_MOVE_OPERATOR
//
// Disables the compiler generated move operator. This macro is
// provided to improve portability and clarify intent of code.
//
// Example usage:
//
// class Example
// {
// private:
// EA_DISABLE_MOVE_OPERATOR(Example);
// };
//
#define EA_DISABLE_MOVE_OPERATOR(ClassName) ClassName & operator=(ClassName&&) EA_FUNCTION_DELETE
// ------------------------------------------------------------------------
// EANonCopyable
//
// Declares a class as not supporting copy construction or assignment.
// May be more reliable with some situations that EA_NON_COPYABLE alone,
// though it may result in more code generation.
//
// Note that VC++ will generate warning C4625 and C4626 if you use EANonCopyable
// and you are compiling with /W4 and /Wall. There is no resolution but
// to redelare EA_NON_COPYABLE in your subclass or disable the warnings with
// code like this:
// EA_DISABLE_VC_WARNING(4625 4626)
// ...
// EA_RESTORE_VC_WARNING()
//
// Example usage:
// struct Widget : EANonCopyable {
// . . .
// };
//
#ifdef __cplusplus
struct EANonCopyable
{
#if defined(EA_COMPILER_NO_DEFAULTED_FUNCTIONS) || defined(__EDG__)
// EDG doesn't appear to behave properly for the case of defaulted constructors;
// it generates a mistaken warning about missing default constructors.
EANonCopyable() {} // Putting {} here has the downside that it allows a class to create itself,
~EANonCopyable() {} // but avoids linker errors that can occur with some compilers (e.g. Green Hills).
#else
EANonCopyable() = default;
~EANonCopyable() = default;
#endif
EA_NON_COPYABLE(EANonCopyable)
};
#endif
// ------------------------------------------------------------------------
// EA_OPTIMIZE_OFF / EA_OPTIMIZE_ON
//
// Implements portable inline optimization enabling/disabling.
// Usage of these macros must be in order OFF then ON. This is
// because the OFF macro pushes a set of settings and the ON
// macro pops them. The nesting of OFF/ON sets (e.g. OFF, OFF, ON, ON)
// is not guaranteed to work on all platforms.
//
// This is often used to allow debugging of some code that's
// otherwise compiled with undebuggable optimizations. It's also
// useful for working around compiler code generation problems
// that occur in optimized builds.
//
// Some compilers (e.g. VC++) don't allow doing this within a function and
// so the usage must be outside a function, as with the example below.
// GCC on x86 appears to have some problem with argument passing when
// using EA_OPTIMIZE_OFF in optimized builds.
//
// Example usage:
// // Disable optimizations for SomeFunction.
// EA_OPTIMIZE_OFF()
// void SomeFunction()
// {
// ...
// }
// EA_OPTIMIZE_ON()
//
#if !defined(EA_OPTIMIZE_OFF)
#if defined(EA_COMPILER_MSVC)
#define EA_OPTIMIZE_OFF() __pragma(optimize("", off))
#elif defined(__ghs)
#define EA_OPTIMIZE_OFF() _Pragma("ghs ZO")
#elif defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION > 4004) && (defined(__i386__) || defined(__x86_64__)) // GCC 4.4+ - Seems to work only on x86/Linux so far. However, GCC 4.4 itself appears broken and screws up parameter passing conventions.
#define EA_OPTIMIZE_OFF() \
_Pragma("GCC push_options") \
_Pragma("GCC optimize 0")
#elif defined(EA_COMPILER_CLANG) && (!defined(EA_PLATFORM_ANDROID) || (EA_COMPILER_VERSION >= 380))
#define EA_OPTIMIZE_OFF() \
EA_DISABLE_CLANG_WARNING(-Wunknown-pragmas) \
_Pragma("clang optimize off") \
EA_RESTORE_CLANG_WARNING()
#else
#define EA_OPTIMIZE_OFF()
#endif
#endif
#if !defined(EA_OPTIMIZE_ON)
#if defined(EA_COMPILER_MSVC)
#define EA_OPTIMIZE_ON() __pragma(optimize("", on))
#elif defined(__ghs)
#define EA_OPTIMIZE_ON() _Pragma("ghs revertoptions")
#elif defined(EA_COMPILER_GNUC) && (EA_COMPILER_VERSION > 4004) && (defined(__i386__) || defined(__x86_64__)) // GCC 4.4+ - Seems to work only on x86/Linux so far. However, GCC 4.4 itself appears broken and screws up parameter passing conventions.
#define EA_OPTIMIZE_ON() _Pragma("GCC pop_options")
#elif defined(EA_COMPILER_CLANG) && (!defined(EA_PLATFORM_ANDROID) || (EA_COMPILER_VERSION >= 380))
#define EA_OPTIMIZE_ON() \
EA_DISABLE_CLANG_WARNING(-Wunknown-pragmas) \
_Pragma("clang optimize on") \
EA_RESTORE_CLANG_WARNING()
#else
#define EA_OPTIMIZE_ON()
#endif
#endif
// ------------------------------------------------------------------------
// EA_SIGNED_RIGHT_SHIFT_IS_UNSIGNED
//
// Defined if right shifts of signed integers (i.e. arithmetic shifts) fail
// to propogate the high bit downward, and thus preserve sign. Most hardware
// and their corresponding compilers do this.
//
// <No current platform fails to propogate sign bits on right signed shifts>
#endif // Header include guard