Implement CPU utils and FastTimer

CPU system utilities and FastTimer (inline)
This commit is contained in:
Kawe Mazidjatari 2022-03-21 23:13:03 +01:00
parent a49a5bb781
commit 4bb3be2a8e
12 changed files with 2324 additions and 3 deletions

View File

@ -5,15 +5,16 @@
#include <windows.h>
#include <WinSock2.h>
#include <comdef.h>
#include <tchar.h>
#include <stdio.h>
#include <Psapi.h>
#include <shlobj.h>
#include <objbase.h>
#include <intrin.h>
#include <emmintrin.h>
#include <cmath>
#include <vector>
#include <thread>
#include <vector>
#include <string>
#include <sstream>
#include <fstream>
@ -59,8 +60,9 @@
#include "core/assert.h"
#include "core/termutil.h"
#include "common/pseudodefs.h"
#include "tier0/basetypes.h"
#include "tier0/platform.h"
#include "common/pseudodefs.h"
#if !defined(SDKLAUNCHER) && !defined (NETCONSOLE)
namespace

564
r5dev/tier0/cpu.cpp Normal file
View File

@ -0,0 +1,564 @@
//=============================================================================//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "core/stdafx.h"
#include "tier0/cpu.h"
#include "tier0/cputopology.h"
#include "tier0/fasttimer.h"
/*******************************************************************************/
static CPUInformation s_cpuInformation;
static char s_CpuVendorID[13] = "unknown";
bool s_bCpuBrandInitialized = false;
bool s_bCpuVendorIdInitialized = false;
/*******************************************************************************/
struct CpuIdResult_t
{
unsigned long eax;
unsigned long ebx;
unsigned long ecx;
unsigned long edx;
void Reset(void)
{
eax = ebx = ecx = edx = 0;
}
};
struct IntelCacheDesc_t
{
uint8_t nDesc;
uint16_t nCacheSize;
};
/*******************************************************************************/
union CpuBrand_t
{
CpuIdResult_t cpuid[3];
char name[49];
};
CpuBrand_t s_CpuBrand;
/*******************************************************************************/
inline static IntelCacheDesc_t s_IntelL1DataCacheDesc[] = {
{ 0xA, 8 },
{ 0xC, 16 },
{ 0xD, 16 },
{ 0x2C, 32 },
{ 0x30, 32 },
{ 0x60, 16 },
{ 0x66, 8 },
{ 0x67, 16 },
{ 0x68, 32 }
};
inline static IntelCacheDesc_t s_IntelL2DataCacheDesc[] =
{
{ 0x21, 256 },
{ 0x39, 128 },
{ 0x3a, 192 },
{ 0x3b, 128 },
{ 0x3c, 256 },
{ 0x3D, 384 },
{ 0x3E, 512 },
{ 0x41, 128 },
{ 0x42, 256 },
{ 0x43, 512 },
{ 0x44, 1024 },
{ 0x45, 2048 },
{ 0x48, 3 * 1024 },
{ 0x4e, 6 * 1024 },
{ 0x78, 1024 },
{ 0x79, 128 },
{ 0x7a, 256 },
{ 0x7b, 512 },
{ 0x7c, 1024 },
{ 0x7d, 2048 },
{ 0x7f, 512 },
{ 0x82, 256 },
{ 0x83, 512 },
{ 0x84, 1024 },
{ 0x85, 2048 },
{ 0x86, 512 },
{ 0x87, 1024 }
};
inline static IntelCacheDesc_t s_IntelL3DataCacheDesc[] = {
{ 0x22, 512 },
{ 0x23, 1024 },
{ 0x25, 2 * 1024 },
{ 0x29, 4 * 1024 },
{ 0x46, 4 * 1024 },
{ 0x47, 8 * 1024 },
// { 49,
{ 0x4a, 6 * 1024 },
{ 0x4b, 8 * 1024 },
{ 0x4c, 12 * 1024 },
{ 0x4d, 16 * 1014 },
{ 0xD0, 512 },
{ 0xD1, 1024 },
{ 0xD2, 2048 },
{ 0xD6, 1024 },
{ 0xD7, 2048 },
{ 0xD8, 4096 },
{ 0xDC, 1536 },
{ 0xDD, 3 * 1024 },
{ 0xDE, 6 * 1024 },
{ 0xE2, 2048 },
{ 0xE3, 4096 },
{ 0xE4, 8 * 1024 },
{ 0xEA, 12 * 1024 },
{ 0xEB, 18 * 1024 },
{ 0xEC, 24 * 1024 }
};
/*******************************************************************************/
static bool cpuid(unsigned long function, CpuIdResult_t& out)
{
int pCPUInfo[4];
__cpuid(pCPUInfo, (int)function);
out.eax = pCPUInfo[0];
out.ebx = pCPUInfo[1];
out.ecx = pCPUInfo[2];
out.edx = pCPUInfo[3];
return true;
}
static bool cpuidex(unsigned long function, unsigned long subfunction, CpuIdResult_t& out)
{
int pCPUInfo[4];
__cpuidex(pCPUInfo, (int)function, (int)subfunction);
out.eax = pCPUInfo[0];
out.ebx = pCPUInfo[1];
out.ecx = pCPUInfo[2];
out.edx = pCPUInfo[3];
return false;
}
static CpuIdResult_t cpuid(unsigned long function)
{
CpuIdResult_t out;
if (!cpuid(function, out))
{
out.Reset();
}
return out;
}
static CpuIdResult_t cpuidex(unsigned long function, unsigned long subfunction)
{
CpuIdResult_t out;
if (!cpuidex(function, subfunction, out))
{
out.Reset();
}
return out;
}
/*******************************************************************************/
static bool CheckSSETechnology(void)
{
return (cpuid(1).edx & 0x2000000L) != 0;
}
static bool CheckSSE2Technology(void)
{
return (cpuid(1).edx & 0x04000000) != 0;
}
bool CheckSSE3Technology(void)
{
return (cpuid(1).ecx & 0x00000001) != 0; // bit 1 of ECX.
}
bool CheckSSSE3Technology(void)
{
// SSSE 3 is implemented by both Intel and AMD.
// Detection is done the same way for both vendors.
return (cpuid(1).ecx & (1 << 9)) != 0; // bit 9 of ECX.
}
bool CheckSSE41Technology(void)
{
// SSE 4.1 is implemented by both Intel and AMD.
// Detection is done the same way for both vendors.
return (cpuid(1).ecx & (1 << 19)) != 0; // bit 19 of ECX.
}
bool CheckSSE42Technology(void)
{
// SSE4.2 is an Intel-only feature.
const char* pchVendor = GetProcessorVendorId();
if (0 != _stricmp(pchVendor, "GenuineIntel"))
{
return false;
}
return (cpuid(1).ecx & (1 << 20)) != 0; // bit 20 of ECX.
}
bool CheckSSE4aTechnology(void)
{
// SSE 4a is an AMD-only feature.
const char* pchVendor = GetProcessorVendorId();
if (0 != _stricmp(pchVendor, "AuthenticAMD"))
{
return false;
}
return (cpuid(1).ecx & (1 << 6)) != 0; // bit 6 of ECX.
}
static bool Check3DNowTechnology(void)
{
if (cpuid(0x80000000).eax > 0x80000000L)
{
return (cpuid(0x80000001).eax & (1 << 31)) != 0;
}
return false;
}
static bool CheckCMOVTechnology(void)
{
return (cpuid(1).edx & (1 << 15)) != 0;
}
static bool CheckFCMOVTechnology(void)
{
return (cpuid(1).edx & (1 << 16)) != 0;
}
static bool CheckRDTSCTechnology(void)
{
return (cpuid(1).edx & 0x10) != 0;
}
// Return the Processor's vendor identification string, or "Generic_x86" if it doesn't exist on this CPU.
const char* GetProcessorVendorId(void)
{
if (s_bCpuVendorIdInitialized)
{
return s_CpuVendorID;
}
s_bCpuVendorIdInitialized = true;
CpuIdResult_t cpuid0 = cpuid(0);
memset(s_CpuVendorID, 0, sizeof(s_CpuVendorID));
if (!cpuid0.eax)
{
strcpy(s_CpuVendorID, ("Generic_x86"));
}
else
{
memcpy(s_CpuVendorID + 0, &(cpuid0.ebx), sizeof(cpuid0.ebx));
memcpy(s_CpuVendorID + 4, &(cpuid0.edx), sizeof(cpuid0.edx));
memcpy(s_CpuVendorID + 8, &(cpuid0.ecx), sizeof(cpuid0.ecx));
}
return s_CpuVendorID;
}
const char* GetProcessorBrand(void)
{
if (s_bCpuBrandInitialized)
{
return s_CpuBrand.name;
}
s_bCpuBrandInitialized = true;
memset(&s_CpuBrand, 0, sizeof(s_CpuBrand));
const char* pchVendor = GetProcessorVendorId();
if (0 == _stricmp(pchVendor, "GenuineIntel"))
{
// Intel brand string.
if (cpuid(0x80000000).eax >= 0x80000004)
{
s_CpuBrand.cpuid[0] = cpuid(0x80000002);
s_CpuBrand.cpuid[1] = cpuid(0x80000003);
s_CpuBrand.cpuid[2] = cpuid(0x80000004);
}
}
return s_CpuBrand.name;
}
/*******************************************************************************/
// Returns non-zero if Hyper-Threading Technology is supported on the processors and zero if not.
// If it's supported, it does not mean that it's been enabled. So we test another flag to see if it's enabled
// See Intel Processor Identification and the CPUID instruction Application Note 485.
// http://www.intel.com/Assets/PDF/appnote/241618.pdf
static bool HTSupported(void)
{
enum {
HT_BIT = 0x10000000,// EDX[28] - Bit 28 set indicates Hyper-Threading Technology is supported in hardware.
FAMILY_ID = 0x0f00, // EAX[11:8] - Bit 11 thru 8 contains family processor id.
EXT_FAMILY_ID = 0x0f00000, // EAX[23:20] - Bit 23 thru 20 contains extended family processor id.
FAMILY_ID_386 = 0x0300,
FAMILY_ID_486 = 0x0400, // EAX[8:12] - 486, 487 and overdrive.
FAMILY_ID_PENTIUM = 0x0500, // Pentium, Pentium OverDrive 60 - 200.
FAMILY_ID_PENTIUM_PRO = 0x0600, // P Pro, P II, P III, P M, Celeron M, Core Duo, Core Solo, Core2 Duo, Core2 Extreme, P D, Xeon model F,
// also 45-nm : Intel Atom, Core i7, Xeon MP ; see Intel Processor Identification and the CPUID instruction pg 20,21.
FAMILY_ID_EXTENDED = 0x0F00 // P IV, Xeon, Celeron D, P D, .
};
// This works on both newer AMD and Intel CPUs.
CpuIdResult_t cpuid1 = cpuid(1);
// Previously, we detected P4 specifically; now, we detect GenuineIntel with HT enabled in general.
// if (((cpuid1.eax & FAMILY_ID) == FAMILY_ID_EXTENDED) || (cpuid1.eax & EXT_FAMILY_ID))
// Check to see if this is an Intel Processor with HT or CMT capability , and if HT/CMT is enabled.
// ddk: This codef is actually correct: see example code at http://software.intel.com/en-us/articles/multi-core-detect/
return (cpuid1.edx & HT_BIT) != 0 && // Genuine Intel Processor with Hyper-Threading Technology implemented.
((cpuid1.ebx >> 16) & 0xFF) > 1; // Hyper-Threading OR Core Multi-Processing has been enabled.
}
// Returns the number of logical processors per physical processors.
static uint8_t LogicalProcessorsPerPackage(void)
{
// EBX[23:16] indicate number of logical processors per package.
const unsigned NUM_LOGICAL_BITS = 0x00FF0000;
if (!HTSupported())
{
return 1;
}
return (uint8_t)((cpuid(1).ebx & NUM_LOGICAL_BITS) >> 16);
}
// Measure the processor clock speed by sampling the cycle count, waiting
// for some fraction of a second, then measuring the elapsed number of cycles.
static int64_t CalculateClockSpeed(void)
{
LARGE_INTEGER waitTime, startCount, curCount;
CCycleCount start, end;
// Take 1/32 of a second for the measurement.
QueryPerformanceFrequency(&waitTime);
int scale = 5;
waitTime.QuadPart >>= scale;
QueryPerformanceCounter(&startCount);
start.Sample();
do
{
QueryPerformanceCounter(&curCount);
} while (curCount.QuadPart - startCount.QuadPart < waitTime.QuadPart);
end.Sample();
return (end.GetLongCycles() - start.GetLongCycles()) << scale;
}
static void FindIntelCacheDesc(uint8_t nDesc, const IntelCacheDesc_t* pDesc, int nDescCount, uint32_t& nCache, uint32_t& nCacheDesc)
{
for (int i = 0; i < nDescCount; ++i)
{
if (pDesc->nDesc == nDesc)
{
nCache = pDesc->nCacheSize;
nCacheDesc = nDesc;
break;
}
}
}
// See "Output of the CPUID instruction" from Intel, page 26.
static void InterpretIntelCacheDescriptors(uint32_t nPackedDesc)
{
if (nPackedDesc & 0x80000000)
{
return; // This is a wrong descriptor.
}
for (int i = 0; i < 4; ++i)
{
FindIntelCacheDesc(nPackedDesc & 0xFF, s_IntelL1DataCacheDesc, ARRAYSIZE(s_IntelL1DataCacheDesc), s_cpuInformation.m_nL1CacheSizeKb, s_cpuInformation.m_nL1CacheDesc);
FindIntelCacheDesc(nPackedDesc & 0xFF, s_IntelL2DataCacheDesc, ARRAYSIZE(s_IntelL2DataCacheDesc), s_cpuInformation.m_nL2CacheSizeKb, s_cpuInformation.m_nL2CacheDesc);
FindIntelCacheDesc(nPackedDesc & 0xFF, s_IntelL3DataCacheDesc, ARRAYSIZE(s_IntelL3DataCacheDesc), s_cpuInformation.m_nL3CacheSizeKb, s_cpuInformation.m_nL3CacheDesc);
nPackedDesc >>= 8;
}
}
const CPUInformation& GetCPUInformation(void)
{
CPUInformation& pi = s_cpuInformation;
// Has the structure already been initialized and filled out?
if (pi.m_Size == sizeof(pi))
{
return pi;
}
// Redundant, but just in case the user somehow messes with the size.
memset(&pi, 0x0, sizeof(pi));
// Fill out the structure, and return it:
pi.m_Size = sizeof(pi);
// Grab the processor frequency:
pi.m_Speed = CalculateClockSpeed();
// Get the logical and physical processor counts:
pi.m_nLogicalProcessors = LogicalProcessorsPerPackage();
bool bAuthenticAMD = (0 == _stricmp(GetProcessorVendorId(), "AuthenticAMD"));
bool bGenuineIntel = !bAuthenticAMD && (0 == _stricmp(GetProcessorVendorId(), "GenuineIntel"));
SYSTEM_INFO si;
ZeroMemory(&si, sizeof(si));
GetSystemInfo(&si);
// Fixing: si.dwNumberOfProcessors is the number of logical processors according to experiments on i7, P4 and a DirectX sample (Aug'09).
// This is contrary to MSDN documentation on GetSystemInfo().
pi.m_nLogicalProcessors = si.dwNumberOfProcessors;
if (bAuthenticAMD)
{
// Quick fix for AMD Phenom: it reports 3 logical cores and 4 physical cores;
// No AMD CPUs by the end of 2009 have HT, so we'll override HT detection here.
pi.m_nPhysicalProcessors = pi.m_nLogicalProcessors;
}
else
{
CpuTopology topo;
pi.m_nPhysicalProcessors = topo.NumberOfSystemCores();
}
// Make sure I always report at least one, when running WinXP with the /ONECPU switch,
// it likes to report 0 processors for some reason.
if (pi.m_nPhysicalProcessors == 0 && pi.m_nLogicalProcessors == 0)
{
Assert(!"Missing CPU detection code for this processor.");
pi.m_nPhysicalProcessors = 1;
pi.m_nLogicalProcessors = 1;
}
CpuIdResult_t cpuid0 = cpuid(0);
if (cpuid0.eax >= 1)
{
CpuIdResult_t cpuid1 = cpuid(1);
uint32_t bFPU = cpuid1.edx & 1; // This should always be on on anything we support.
// Determine Processor Features:
pi.m_bRDTSC = (cpuid1.edx >> 4) & 1;
pi.m_bCMOV = (cpuid1.edx >> 15) & 1;
pi.m_bFCMOV = (pi.m_bCMOV && bFPU) ? 1 : 0;
pi.m_bMMX = (cpuid1.edx >> 23) & 1;
pi.m_bSSE = (cpuid1.edx >> 25) & 1;
pi.m_bSSE2 = (cpuid1.edx >> 26) & 1;
pi.m_bSSE3 = cpuid1.ecx & 1;
pi.m_bSSSE3 = (cpuid1.ecx >> 9) & 1;;
pi.m_bSSE4a = CheckSSE4aTechnology();
pi.m_bSSE41 = (cpuid1.ecx >> 19) & 1;
pi.m_bSSE42 = (cpuid1.ecx >> 20) & 1;
pi.m_b3DNow = Check3DNowTechnology();
pi.m_bAVX = (cpuid1.ecx >> 28) & 1;
pi.m_szProcessorID = (char*)GetProcessorVendorId();
pi.m_szProcessorBrand = (char*)GetProcessorBrand();
pi.m_bHT = (pi.m_nPhysicalProcessors < pi.m_nLogicalProcessors); //HTSupported();
pi.m_nModel = cpuid1.eax; // Full CPU model info.
pi.m_nFeatures[0] = cpuid1.edx; // x87+ features.
pi.m_nFeatures[1] = cpuid1.ecx; // sse3+ features.
pi.m_nFeatures[2] = cpuid1.ebx; // Some additional features.
if (bGenuineIntel)
{
if (cpuid0.eax >= 4)
{
// We have CPUID.4, use it to find all the cache parameters.
const uint32_t nCachesToQuery = 4; // Level 0 is not used.
uint32_t nCacheSizeKiB[nCachesToQuery];
for (uint32_t i = 0; i < nCachesToQuery; ++i)
{
nCacheSizeKiB[i] = 0;
}
for (unsigned long nSub = 0; nSub < 1024; ++nSub)
{
CpuIdResult_t cpuid4 = cpuidex(4, nSub);
uint32_t nCacheType = cpuid4.eax & 0x1F;
if (nCacheType == 0)
{
// No more caches.
break;
}
if (nCacheType & 1)
{
// This cache includes data cache: it's either data or unified. Instuction cache type is 2.
uint32_t nCacheLevel = (cpuid4.eax >> 5) & 7;
if (nCacheLevel < nCachesToQuery)
{
uint32_t nCacheWays = 1 + ((cpuid4.ebx >> 22) & 0x3F);
uint32_t nCachePartitions = 1 + ((cpuid4.ebx >> 12) & 0x3F);
uint32_t nCacheLineSize = 1 + (cpuid4.ebx & 0xFF);
uint32_t nCacheSets = 1 + cpuid4.ecx;
uint32_t nCacheSizeBytes = nCacheWays * nCachePartitions * nCacheLineSize * nCacheSets;
nCacheSizeKiB[nCacheLevel] = nCacheSizeBytes >> 10;
}
}
}
pi.m_nL1CacheSizeKb = nCacheSizeKiB[1];
pi.m_nL2CacheSizeKb = nCacheSizeKiB[2];
pi.m_nL3CacheSizeKb = nCacheSizeKiB[3];
}
else if (cpuid0.eax >= 2)
{
// Get the cache.
CpuIdResult_t cpuid2 = cpuid(2);
for (int i = (cpuid2.eax & 0xFF); i-- > 0; )
{
InterpretIntelCacheDescriptors(cpuid2.eax & ~0xFF);
InterpretIntelCacheDescriptors(cpuid2.ebx);
InterpretIntelCacheDescriptors(cpuid2.ecx);
InterpretIntelCacheDescriptors(cpuid2.edx);
cpuid2 = cpuid(2); // Read the next.
}
}
}
}
CpuIdResult_t cpuid0ex = cpuid(0x80000000);
if (bAuthenticAMD)
{
if (cpuid0ex.eax >= 0x80000005)
{
CpuIdResult_t cpuid5ex = cpuid(0x80000005);
pi.m_nL1CacheSizeKb = cpuid5ex.ecx >> 24;
pi.m_nL1CacheDesc = cpuid5ex.ecx & 0xFFFFFF;
}
if (cpuid0ex.eax >= 0x80000006)
{
CpuIdResult_t cpuid6ex = cpuid(0x80000006);
pi.m_nL2CacheSizeKb = cpuid6ex.ecx >> 16;
pi.m_nL2CacheDesc = cpuid6ex.ecx & 0xFFFF;
pi.m_nL3CacheSizeKb = (cpuid6ex.edx >> 18) * 512;
pi.m_nL3CacheDesc = cpuid6ex.edx & 0xFFFF;
}
}
else if (bGenuineIntel)
{
if (cpuid0ex.eax >= 0x80000006)
{
// Make sure we got the L2 cache info right.
pi.m_nL2CacheSizeKb = (cpuid(0x80000006).ecx >> 16);
}
}
return pi;
}

21
r5dev/tier0/cpu.h Normal file
View File

@ -0,0 +1,21 @@
//=============================================================================//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef CPU_H
#define CPU_H
bool CheckSSE3Technology(void);
bool CheckSSSE3Technology(void);
bool CheckSSE41Technology(void);
bool CheckSSE42Technology(void);
bool CheckSSE4aTechnology(void);
const char* GetProcessorVendorId(void);
const char* GetProcessorBrand(void);
const CPUInformation& GetCPUInformation(void);
#endif // CPU_H

997
r5dev/tier0/cputopology.cpp Normal file
View File

@ -0,0 +1,997 @@
//-------------------------------------------------------------------------------------
// CpuTopology.cpp
//
// CpuToplogy class implementation.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//-------------------------------------------------------------------------------------
#include "core/stdafx.h"
#if defined(_WIN32) && !defined(_X360) && !defined(_PS3)
#include "tier0/cputopology.h"
//---------------------------------------------------------------------------------
// Name: ICpuToplogy
// Desc: Specifies the interface that each class that provides an implementation
// for extracting cpu topology must conform to. This is the Implementor
// class in the traditional Bridge Pattern.
//---------------------------------------------------------------------------------
class ICpuTopology
{
public:
virtual ~ICpuTopology()
{
}
virtual BOOL IsDefaultImpl() const = 0;
virtual DWORD NumberOfProcessCores() const = 0;
virtual DWORD NumberOfSystemCores() const = 0;
virtual DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const = 0;
};
namespace
{
///////////////////////////////////////////////////////////////////////////////////
// Local Class Definitions
///////////////////////////////////////////////////////////////////////////////////
//---------------------------------------------------------------------------------
// Name: DefaultImpl
// Desc: Provides a default implementation for the ICpuTopology interface when
// GetLogicalProcessorInformation and CPUID are not supported for whatever
// reason. This is a ConcreteImplementor class in the traditional Bridge
// Pattern.
//---------------------------------------------------------------------------------
class DefaultImpl : public ICpuTopology
{
public:
//-----------------------------------------------------------------------------
// DefaultImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const
{
return TRUE;
}
//-----------------------------------------------------------------------------
// DefaultImpl::NumberOfProcessCores
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const
{
return 1;
}
//-----------------------------------------------------------------------------
// DefaultImpl::IsNumberOfSystemCores
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const
{
return 1;
}
//-----------------------------------------------------------------------------
// DefaultImpl::CoreAffinityMask
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const
{
DWORD_PTR coreAffinity = 0;
if( 1 == coreIdx )
{
DWORD_PTR dwSystemAffinity;
GetProcessAffinityMask( GetCurrentProcess(), &coreAffinity, &dwSystemAffinity );
}
return coreAffinity;
}
};
//---------------------------------------------------------------------------------
// Name: GlpiImpl
// Desc: Provides the GetLogicalProcessorInformation implementation for the
// ICpuTopology interface. This is a ConcreteImplementor class in the
// traditional Bridge Pattern.
//---------------------------------------------------------------------------------
class GlpiImpl : public ICpuTopology
{
public:
//-----------------------------------------------------------------------------
// Name: GlpiImpl::GlpiImpl
// Desc: Initializes the internal structures/data with information retrieved
// from a call to GetLogicalProcessorInformation.
//-----------------------------------------------------------------------------
GlpiImpl() : m_pSlpi( NULL ),
m_nItems( 0 )
{
_ASSERT( IsSupported() );
GlpiFnPtr pGlpi = GetGlpiFn_();
_ASSERT( pGlpi );
DWORD cbBuffer = 0;
pGlpi( 0, &cbBuffer );
m_pSlpi = ( SYSTEM_LOGICAL_PROCESSOR_INFORMATION* )malloc( cbBuffer );
pGlpi( m_pSlpi, &cbBuffer );
m_nItems = cbBuffer / sizeof( SYSTEM_LOGICAL_PROCESSOR_INFORMATION );
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::~GlpiImpl
//-----------------------------------------------------------------------------
/*virtual*/ ~GlpiImpl()
{
free( m_pSlpi );
m_pSlpi = 0;
m_nItems = 0;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const
{
return FALSE;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::NumberOfProcessCores
// Desc: Gets the total number of physical processor cores available to the
// current process.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const
{
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
DWORD nCores = 0;
for( DWORD i = 0; i < m_nItems; ++i )
{
if( ( RelationProcessorCore == m_pSlpi[i].Relationship ) &&
( m_pSlpi[i].ProcessorMask & dwProcessAffinity ) )
{
++nCores;
}
}
return nCores;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::NumberOfSystemCores
// Desc: Gets the total number of physical processor cores enabled on the
// system.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const
{
DWORD nCores = 0;
for( DWORD i = 0; i < m_nItems; ++i )
{
if( RelationProcessorCore == m_pSlpi[i].Relationship )
++nCores;
}
return nCores;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to the requested processor
// core.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const
{
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
for( DWORD i = 0; i < m_nItems; ++i )
{
if( RelationProcessorCore == m_pSlpi[i].Relationship )
{
if( !coreIdx-- )
{
return m_pSlpi[i].ProcessorMask & dwProcessAffinity;
}
}
}
return 0;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::IsSupported
//-----------------------------------------------------------------------------
static BOOL IsSupported()
{
return NULL != GetGlpiFn_();
}
private:
// GetLogicalProcessorInformation function pointer
typedef BOOL( WINAPI* GlpiFnPtr )(
SYSTEM_LOGICAL_PROCESSOR_INFORMATION*,
PDWORD
);
//-----------------------------------------------------------------------------
// Name: GlpiImpl::VerifyGlpiFn_
// Desc: Gets a pointer to the GetLogicalProcessorInformation function only if
// it is supported on the current platform.
// GetLogicalProcessorInformation is supported on Windows Server 2003 and
// XP64, however there is a bug with the implementation. Therefore, only
// GetLogicalProcessorInformation on Windows Vista is supported in this
// sample.
//-----------------------------------------------------------------------------
static GlpiFnPtr VerifyGlpiFn_()
{
// VerifyVersionInfo function pointer
typedef BOOL ( WINAPI* VviFnPtr )( LPOSVERSIONINFOEX,
DWORD,
DWORDLONG );
HMODULE hMod = GetModuleHandle( TEXT( "kernel32" ) );
#ifdef _UNICODE
VviFnPtr pVvi = (VviFnPtr) GetProcAddress( hMod, "VerifyVersionInfoW" );
#else
VviFnPtr pVvi = ( VviFnPtr )GetProcAddress( hMod, "VerifyVersionInfoA" );
#endif
GlpiFnPtr pGlpi = NULL;
if( pVvi )
{
// VerSetConditionMask function pointer
typedef ULONGLONG ( WINAPI* VscmFnPtr )( ULONGLONG,
DWORD,
BYTE );
VscmFnPtr pVscm = ( VscmFnPtr )GetProcAddress( hMod, "VerSetConditionMask" );
_ASSERT( pVscm );
// Check for Windows Vista
OSVERSIONINFOEX osvi = { sizeof( OSVERSIONINFOEX ) };
osvi.dwMajorVersion = 6;
osvi.dwMinorVersion = 0;
osvi.wServicePackMajor = 0;
osvi.wServicePackMinor = 0;
ULONGLONG dwlMask = 0;
dwlMask = pVscm( dwlMask, VER_MAJORVERSION, VER_GREATER_EQUAL );
dwlMask = pVscm( dwlMask, VER_MINORVERSION, VER_GREATER_EQUAL );
dwlMask = pVscm( dwlMask, VER_SERVICEPACKMAJOR, VER_GREATER_EQUAL );
dwlMask = pVscm( dwlMask, VER_SERVICEPACKMINOR, VER_GREATER_EQUAL );
if( pVvi( &osvi, VER_MAJORVERSION
| VER_MINORVERSION
| VER_SERVICEPACKMAJOR
| VER_SERVICEPACKMINOR,
dwlMask ) )
{
pGlpi = ( GlpiFnPtr )GetProcAddress( hMod, "GetLogicalProcessorInformation" );
_ASSERT( pGlpi );
}
}
return pGlpi;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::GetGlpiFn_
// Desc: Gets a cached pointer to the GetLogicalProcessorInformation function.
//-----------------------------------------------------------------------------
static GlpiFnPtr GetGlpiFn_()
{
static GlpiFnPtr pGlpi = VerifyGlpiFn_();
return pGlpi;
}
// Private Members
SYSTEM_LOGICAL_PROCESSOR_INFORMATION* m_pSlpi;
DWORD m_nItems;
};
//---------------------------------------------------------------------------------
// Name: ApicExtractor
// Desc: A utility class that provides an interface for decoding a processor
// APIC ID. An APIC ID is an 8-bit identifier given to each logical
// processor on system boot and can be retrieved by the CPUID instruction.
// Each APIC ID is composed of a PACKAGE_ID, CORE_ID and SMT_ID that describe
// the relationship of a logical processor within the processor topology of
// the system.
//---------------------------------------------------------------------------------
class ApicExtractor
{
public:
//-----------------------------------------------------------------------------
// Name: ApicExtractor::ApicExtractor
//-----------------------------------------------------------------------------
ApicExtractor( DWORD nLogProcsPerPkg = 1, DWORD nCoresPerPkg = 1 )
{
SetPackageTopology( nLogProcsPerPkg, nCoresPerPkg );
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::SmtId
//-----------------------------------------------------------------------------
BYTE SmtId( BYTE apicId ) const
{
return apicId & m_smtIdMask.mask;
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::CoreId
//-----------------------------------------------------------------------------
BYTE CoreId( BYTE apicId ) const
{
return ( apicId & m_coreIdMask.mask ) >> m_smtIdMask.width;
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::PackageId
//-----------------------------------------------------------------------------
BYTE PackageId( BYTE apicId ) const
{
return ( apicId & m_pkgIdMask.mask ) >>
( m_smtIdMask.width + m_coreIdMask.width );
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::PackageCoreId
//-----------------------------------------------------------------------------
BYTE PackageCoreId( BYTE apicId ) const
{
return ( apicId & ( m_pkgIdMask.mask | m_coreIdMask.mask ) ) >>
m_smtIdMask.width;
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::GetLogProcsPerPkg
//-----------------------------------------------------------------------------
DWORD GetLogProcsPerPkg() const
{
return m_nLogProcsPerPkg;
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::GetCoresPerPkg
//-----------------------------------------------------------------------------
DWORD GetCoresPerPkg() const
{
return m_nCoresPerPkg;
}
//-----------------------------------------------------------------------------
// Name: ApicExtractor::SetPackageTopology
// Desc: You should call SetPackageTopology with the number of logical
// processors per package and number of cores per package before calling
// the sub id accessors (SmtId(), CoreId(), PackageId(), PackageCoreId())
// as this information is required to effectively decode an APIC ID into
// its sub parts.
//-----------------------------------------------------------------------------
void SetPackageTopology( DWORD nLogProcsPerPkg, DWORD nCoresPerPkg )
{
m_nLogProcsPerPkg = ( BYTE )nLogProcsPerPkg;
m_nCoresPerPkg = ( BYTE )nCoresPerPkg;
// fix for Phenom x3 and similar CPUs - it reports 3 logical processors per package, and 4 cores per package
// so one core is probably just disabled for yield, but it causes a bug in GetMaskWidth that propagates
if( m_nCoresPerPkg > m_nLogProcsPerPkg )
{
m_nCoresPerPkg = m_nLogProcsPerPkg;
}
m_smtIdMask.width = GetMaskWidth_( m_nLogProcsPerPkg / m_nCoresPerPkg );
m_coreIdMask.width = GetMaskWidth_( m_nCoresPerPkg );
m_pkgIdMask.width = 8 - ( m_smtIdMask.width + m_coreIdMask.width );
m_pkgIdMask.mask = ( BYTE )( 0xFF << ( m_smtIdMask.width + m_coreIdMask.width ) );
m_coreIdMask.mask = ( BYTE )( ( 0xFF << m_smtIdMask.width ) ^ m_pkgIdMask.mask );
m_smtIdMask.mask = ( BYTE )~( 0xFF << m_smtIdMask.width );
}
private:
//-----------------------------------------------------------------------------
// Name: ApicExtractor::GetMaskWidth_
// Desc: Gets the width of a sub id bit field in an APIC ID. The width of a
// sub id (CORE_ID, SMT_ID) is only wide enough to support the maximum
// number of ids that needs to be represented in the topology.
//-----------------------------------------------------------------------------
static BYTE GetMaskWidth_( BYTE maxIds )
{
--maxIds;
// find index of msb
BYTE msbIdx = 8;
BYTE msbMask = 0x80;
while( msbMask && !( msbMask & maxIds ) )
{
--msbIdx;
msbMask >>= 1;
}
return msbIdx;
}
struct IdMask
{
BYTE width;
BYTE mask;
};
// Private Members
BYTE m_nLogProcsPerPkg;
BYTE m_nCoresPerPkg;
IdMask m_smtIdMask;
IdMask m_coreIdMask;
IdMask m_pkgIdMask;
};
//---------------------------------------------------------------------------------
// Name: Cpuid
// Desc: A utility class that wraps the functionality of the CPUID instruction.
// Call the Call() method with the desired CPUID function, and use the
// register accessors to retrieve the register values.
//---------------------------------------------------------------------------------
class Cpuid
{
public:
// FnSet values are used to indicate a CPUID function set.
enum FnSet
{
Std = 0x00000000,
Ext = 0x80000000
};
//-----------------------------------------------------------------------------
// Name: Cpuid::Cpuid
//-----------------------------------------------------------------------------
Cpuid() : m_eax( 0 ),
m_ebx( 0 ),
m_ecx( 0 ),
m_edx( 0 )
{
}
// Register accessors
DWORD Eax() const
{
return m_eax;
}
DWORD Ebx() const
{
return m_ebx;
}
DWORD Ecx() const
{
return m_ecx;
}
DWORD Edx() const
{
return m_edx;
}
//-----------------------------------------------------------------------------
// Name: Cpuid::Call
// Desc: Calls the CPUID instruction with the specified function. Returns TRUE
// if the CPUID function was supported, FALSE if it wasn't.
//-----------------------------------------------------------------------------
BOOL Call( FnSet fnSet, DWORD fn )
{
if( IsFnSupported( fnSet, fn ) )
{
UncheckedCall_( fnSet, fn );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Name: Cpuid::IsVendor
// Desc: Compares a string with the vendor string encoded in the CPUID
// instruction.
//-----------------------------------------------------------------------------
static BOOL IsVendor( const char* strVendor )
{
// Cache the vendor string
static const Cpuid cpu( Std );
return cpu.Ebx() == *reinterpret_cast<const DWORD*>( strVendor )
&& cpu.Ecx() == *reinterpret_cast<const DWORD*>( strVendor + 8 )
&& cpu.Edx() == *reinterpret_cast<const DWORD*>( strVendor + 4 );
}
//-----------------------------------------------------------------------------
// Name: Cpuid::IsFnSupported
// Desc: Checks to see if a CPUID function is supported. Different processors
// support different functions. This method is automatically called from
// the Call() method, so you don't need to call it beforehand.
//-----------------------------------------------------------------------------
static BOOL IsFnSupported( FnSet fnSet, DWORD fn )
{
// Cache the maximum supported standard function
static const DWORD MaxStdFn = Cpuid( Std ).Eax();
// Cache the maximum supported extended function
static const DWORD MaxExtFn = Cpuid( Ext ).Eax();
bool ret = false;
switch( fnSet )
{
case Std:
ret = ( fn <= MaxStdFn );
break;
case Ext:
ret = ( fn <= MaxExtFn );
break;
default:
_ASSERT( 0 ); // should never get here
break;
}
return ret;
}
private:
//-----------------------------------------------------------------------------
// Name: Cpuid::Cpuid
// Desc: This constructor is private and is only used to set a Cpuid object to
// initial values retrieved from CPUID functions 0x00000000 and
// 0x80000000. Good for caching values from the CPUID instruction that
// are not variable, like the encoded vendor string and the maximum
// supported CPUID function values.
//-----------------------------------------------------------------------------
explicit Cpuid( FnSet fnSet )
{
UncheckedCall_( fnSet, 0 );
}
//-----------------------------------------------------------------------------
// Name: Cpuid::UncheckedCall_
// Desc: Calls the CPUID instruction without checking for CPUID function
// support.
//-----------------------------------------------------------------------------
void UncheckedCall_( FnSet fnSet, DWORD fn )
{
#ifdef _WIN64
int out[4];
__cpuidex( out, fnSet | fn, 0 );
m_eax = out[0];
m_ebx = out[1];
m_ecx = out[2];
m_edx = out[3];
#else
__asm
{
mov ecx, 0
mov eax, fn
or eax, fnSet
cpuid
mov edi, this
mov [edi].m_eax, eax
mov [edi].m_ebx, ebx
mov [edi].m_ecx, ecx
mov [edi].m_edx, edx
}
#endif
}
// Private Members
DWORD m_eax;
DWORD m_ebx;
DWORD m_ecx;
DWORD m_edx;
};
//---------------------------------------------------------------------------------
// Name: CpuidImpl
// Desc: Provides the CPUID instruction implementation for the ICpuTopology
// interface. This is a ConcreteImplementor class in the traditional Bridge
// Pattern.
//---------------------------------------------------------------------------------
class CpuidImpl : public ICpuTopology
{
public:
// CpuidFnMasks are used when extracting bit-encoded information retrieved from
// the CPUID instruction
enum CpuidFnMasks
{
HTT = 0x10000000, // Fn0000_0001 EDX[28]
LogicalProcessorCount = 0x00FF0000, // Fn0000_0001 EBX[23:16]
ApicId = 0xFF000000, // Fn0000_0001 EBX[31:24]
NC_Intel = 0xFC000000, // Fn0000_0004 EAX[31:26]
NC_Amd = 0x000000FF, // Fn8000_0008 ECX[7:0]
CmpLegacy_Amd = 0x00000002, // Fn8000_0001 ECX[1]
ApicIdCoreIdSize_Amd = 0x0000F000 // Fn8000_0008 ECX[15:12]
};
enum
{
MaxLogicalProcessors = sizeof( DWORD_PTR ) * 8
};
//-----------------------------------------------------------------------------
// Name: CpuidImpl::CpuidImpl
// Desc: Initializes internal structures/data with information retrieved from
// calling the CPUID instruction.
//-----------------------------------------------------------------------------
CpuidImpl() : m_nItems( 0 )
{
_ASSERT( IsSupported() );
DWORD nLogProcsPerPkg = 1;
DWORD nCoresPerPkg = 1;
Cpuid cpu;
// Determine if hardware threading is enabled.
cpu.Call( Cpuid::Std, 1 );
if( cpu.Edx() & HTT )
{
// Determine the total number of logical processors per package.
nLogProcsPerPkg = ( cpu.Ebx() & LogicalProcessorCount ) >> 16;
// Determine the total number of cores per package. This info
// is extracted differently dependending on the cpu vendor.
if( Cpuid::IsVendor( GenuineIntel ) )
{
if( cpu.Call( Cpuid::Std, 4 ) )
{
nCoresPerPkg = ( ( cpu.Eax() & NC_Intel ) >> 26 ) + 1;
}
}
else
{
_ASSERT( Cpuid::IsVendor( AuthenticAMD ) );
if( cpu.Call( Cpuid::Ext, 8 ) )
{
// AMD reports the msb width of the CORE_ID bit field of the APIC ID
// in ApicIdCoreIdSize_Amd. The maximum value represented by the msb
// width is the theoretical number of cores the processor can support
// and not the actual number of current cores, which is how the msb width
// of the CORE_ID bit field has been traditionally determined. If the
// ApicIdCoreIdSize_Amd value is zero, then you use the traditional method
// to determine the CORE_ID msb width.
DWORD msbWidth = cpu.Ecx() & ApicIdCoreIdSize_Amd;
if( msbWidth )
{
// Set nCoresPerPkg to the maximum theortical number of cores
// the processor package can support (2 ^ width) so the APIC
// extractor object can be configured to extract the proper
// values from an APIC.
nCoresPerPkg = 1 << ( msbWidth >> 12 );
}
else
{
// Set nCoresPerPkg to the actual number of cores being reported
// by the CPUID instruction.
nCoresPerPkg = ( cpu.Ecx() & NC_Amd ) + 1;
}
}
}
}
// Configure the APIC extractor object with the information it needs to
// be able to decode the APIC.
m_apicExtractor.SetPackageTopology( nLogProcsPerPkg, nCoresPerPkg );
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
HANDLE hProcess = GetCurrentProcess();
HANDLE hThread = GetCurrentThread();
GetProcessAffinityMask( hProcess, &dwProcessAffinity, &dwSystemAffinity );
if( 1 == dwSystemAffinity )
{
// Since we only have 1 logical processor present on the system, we
// can explicitly set a single APIC ID to zero.
_ASSERT( 1 == nLogProcsPerPkg );
m_apicIds[m_nItems++] = 0;
}
else
{
// Set the process affinity to the system affinity if they are not
// equal so that all logical processors can be accounted for.
if( dwProcessAffinity != dwSystemAffinity )
{
SetProcessAffinityMask( hProcess, dwSystemAffinity );
}
// Call cpuid on each active logical processor in the system affinity.
DWORD_PTR dwPrevThreadAffinity = 0;
for( DWORD_PTR dwThreadAffinity = 1;
dwThreadAffinity && dwThreadAffinity <= dwSystemAffinity;
dwThreadAffinity <<= 1 )
{
if( dwSystemAffinity & dwThreadAffinity )
{
if( 0 == dwPrevThreadAffinity )
{
// Save the previous thread affinity so we can return
// the executing thread affinity back to this state.
_ASSERT( 0 == m_nItems );
dwPrevThreadAffinity = SetThreadAffinityMask( hThread,
dwThreadAffinity );
}
else
{
_ASSERT( m_nItems > 0 );
SetThreadAffinityMask( hThread, dwThreadAffinity );
}
// Allow the thread to switch to masked logical processor.
Sleep( 0 );
// Store the APIC ID
cpu.Call( Cpuid::Std, 1 );
m_apicIds[m_nItems++] = ( BYTE )( ( cpu.Ebx() & ApicId ) >> 24 );
}
}
// Restore the previous process and thread affinity state.
SetProcessAffinityMask( hProcess, dwProcessAffinity );
SetThreadAffinityMask( hThread, dwPrevThreadAffinity );
Sleep( 0 );
}
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const
{
return FALSE;
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::NumberOfProcessCores
// Desc: Gets the number of processor cores available to the current process.
// The total accounts for cores that may have been masked out by process
// affinity.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const
{
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 };
DWORD nPkgCoreIds = 0;
for( DWORD i = 0; i < m_nItems; ++i )
{
if( dwProcessAffinity & ( ( DWORD_PTR )1 << i ) )
{
AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds );
}
}
return nPkgCoreIds;
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::NumberOfSystemCores
// Desc: Gets the number of processor cores on the system.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const
{
BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 };
DWORD nPkgCoreIds = 0;
for( DWORD i = 0; i < m_nItems; ++i )
{
AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds );
}
return nPkgCoreIds;
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to a specific processor core.
// coreIdx must be less than the total number of processor cores
// recognized by the operating system (NumberOfSystemCores()).
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const
{
BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 };
DWORD nPkgCoreIds = 0;
for( DWORD i = 0; i < m_nItems; ++i )
{
AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds );
}
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
DWORD_PTR coreAffinity = 0;
if( coreIdx < nPkgCoreIds )
{
for( DWORD i = 0; i < m_nItems; ++i )
{
if( m_apicExtractor.PackageCoreId( m_apicIds[i] ) == pkgCoreIds[coreIdx] )
{
coreAffinity |= ( dwProcessAffinity & ( ( DWORD_PTR )1 << i ) );
}
}
}
return coreAffinity;
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::IsSupported
// Desc: Indicates if a CpuidImpl object is supported on this platform.
// Support is only granted on Intel and AMD platforms where the current
// calling process has security rights to query process affinity and
// change it if the process and system affinity differ. CpuidImpl is
// also not supported if thread affinity cannot be set on systems with
// more than 1 logical processor.
//-----------------------------------------------------------------------------
static BOOL IsSupported()
{
BOOL bSupported = Cpuid::IsVendor( GenuineIntel )
|| Cpuid::IsVendor( AuthenticAMD );
if( bSupported )
{
DWORD_PTR dwProcessAffinity, dwSystemAffinity;
HANDLE hProcess = GetCurrentProcess();
// Query process affinity mask
bSupported = GetProcessAffinityMask( hProcess, &dwProcessAffinity, &dwSystemAffinity );
if( bSupported )
{
if( dwProcessAffinity != dwSystemAffinity )
{
// The process and system affinities differ. Attempt to set
// the process affinity to the system affinity.
bSupported = SetProcessAffinityMask( hProcess, dwSystemAffinity );
if( bSupported )
{
// Restore previous process affinity
bSupported = SetProcessAffinityMask( hProcess, dwProcessAffinity );
}
}
if( bSupported && ( dwSystemAffinity > 1 ) )
{
// Attempt to set the thread affinity
HANDLE hThread = GetCurrentThread();
DWORD_PTR dwThreadAffinity = SetThreadAffinityMask( hThread, dwProcessAffinity );
if( dwThreadAffinity )
{
// Restore the previous thread affinity
bSupported = 0 != SetThreadAffinityMask( hThread, dwThreadAffinity );
}
else
{
bSupported = FALSE;
}
}
}
}
return bSupported;
}
private:
//-----------------------------------------------------------------------------
// Name: CpuidImpl::AddUniquePkgCoreId_
// Desc: Adds the package/core id extracted from the APIC ID at m_apicIds[idx]
// in the if the package/core id is unique to the pkgCoreIds array.
// nPkgCore is an in/out parm that will reflect the total number of items
// in pkgCoreIds array. It will be incrememted if a unique package/core
// id is found and added.
//-----------------------------------------------------------------------------
void AddUniquePkgCoreId_( DWORD idx, BYTE* pkgCoreIds, DWORD& nPkgCoreIds ) const
{
_ASSERT( idx < m_nItems );
_ASSERT( NULL != pkgCoreIds );
DWORD j;
for( j = 0; j < nPkgCoreIds; ++j )
{
if( pkgCoreIds[j] == m_apicExtractor.PackageCoreId( m_apicIds[idx] ) )
break;
}
if( j == nPkgCoreIds )
{
pkgCoreIds[j] = m_apicExtractor.PackageCoreId( m_apicIds[idx] );
++nPkgCoreIds;
}
}
// Private Members
BYTE m_apicIds[MaxLogicalProcessors];
BYTE m_nItems;
ApicExtractor m_apicExtractor;
// Supported Vendor Strings
static const char GenuineIntel[];
static const char AuthenticAMD[];
};
// Static initialization of vendor strings
const char CpuidImpl::GenuineIntel[] = "GenuineIntel";
const char CpuidImpl::AuthenticAMD[] = "AuthenticAMD";
} // unnamed-namespace
//-------------------------------------------------------------------------------------
// Name: CpuTopology::CpuTopology
// Desc: Initializes this object with the appropriately supported cpu topology
// implementation object.
//-------------------------------------------------------------------------------------
CpuTopology::CpuTopology( BOOL bForceCpuid ) : m_pImpl( NULL )
{
ForceCpuid( bForceCpuid );
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::~CpuTopology
//-------------------------------------------------------------------------------------
CpuTopology::~CpuTopology()
{
Destroy_();
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::NumberOfProcessCores
// Desc: Gets the total number of physical processor cores available to the current
// process.
//-------------------------------------------------------------------------------------
DWORD CpuTopology::NumberOfProcessCores() const
{
return m_pImpl->NumberOfProcessCores();
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::NumberOfSystemCores
// Desc: Gets the total number of physical processor cores enabled on the system.
//-------------------------------------------------------------------------------------
DWORD CpuTopology::NumberOfSystemCores() const
{
return m_pImpl->NumberOfSystemCores();
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to the requested processor core.
//-------------------------------------------------------------------------------------
DWORD_PTR CpuTopology::CoreAffinityMask( DWORD coreIdx ) const
{
return m_pImpl->CoreAffinityMask( coreIdx );
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::IsDefaultImpl
// Desc: Returns TRUE if m_pImpl is a DefaultImpl object, FALSE if not. Used to
// indicate whether or not the prescribed methods (CPUID or
// GetLogicalProcessorInformation) are supported on the system.
//-------------------------------------------------------------------------------------
BOOL CpuTopology::IsDefaultImpl() const
{
return m_pImpl->IsDefaultImpl();
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::ForceCpuid
// Desc: Constructs a cpu topology object. If bForce is FALSE, then a GlpiImpl object
// is first attempted, then CpuidImpl, then finally DefaultImpl. If bForce is
// TRUE, then GlpiImpl is never attempted.
//-------------------------------------------------------------------------------------
void CpuTopology::ForceCpuid( BOOL bForce )
{
Destroy_();
if( !bForce && GlpiImpl::IsSupported() )
{
m_pImpl = new GlpiImpl();
}
else if( CpuidImpl::IsSupported() )
{
m_pImpl = new CpuidImpl();
}
else
{
m_pImpl = new DefaultImpl();
}
}
//-------------------------------------------------------------------------------------
// Name: CpuTopology::Destroy_
//-------------------------------------------------------------------------------------
void CpuTopology::Destroy_()
{
delete m_pImpl;
m_pImpl = NULL;
}
#endif

38
r5dev/tier0/cputopology.h Normal file
View File

@ -0,0 +1,38 @@
//-------------------------------------------------------------------------------------
// CpuTopology.h
//
// CpuToplogy class declaration.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//-------------------------------------------------------------------------------------
#pragma once
#ifndef CPU_TOPOLOGY_H
#define CPU_TOPOLOGY_H
class ICpuTopology;
//---------------------------------------------------------------------------------
// Name: CpuToplogy
// Desc: This class constructs a supported cpu topology implementation object on
// initialization and forwards calls to it. This is the Abstraction class
// in the traditional Bridge Pattern.
//---------------------------------------------------------------------------------
class CpuTopology
{
public:
CpuTopology( BOOL bForceCpuid = FALSE );
~CpuTopology();
BOOL IsDefaultImpl() const;
DWORD NumberOfProcessCores() const;
DWORD NumberOfSystemCores() const;
DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const;
void ForceCpuid( BOOL bForce );
private:
void Destroy_();
ICpuTopology* m_pImpl;
};
#endif // CPU_TOPOLOGY_H

18
r5dev/tier0/fasttimer.cpp Normal file
View File

@ -0,0 +1,18 @@
//=============================================================================//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "core/stdafx.h"
#include "tier0/fasttimer.h"
uint64 g_ClockSpeed; // Clocks/sec
unsigned long g_dwClockSpeed;
double g_ClockSpeedMicrosecondsMultiplier;
double g_ClockSpeedMillisecondsMultiplier;
double g_ClockSpeedSecondsMultiplier;
// Constructor init the clock speed.
CClockSpeedInit g_ClockSpeedInit;

549
r5dev/tier0/fasttimer.h Normal file
View File

@ -0,0 +1,549 @@
//===========================================================================//
//
// Purpose:
//
// $NoKeywords: $
//===========================================================================//
#ifndef FASTTIMER_H
#define FASTTIMER_H
#include "tier0/platform.h"
#include "tier0/cpu.h"
/*****************************************************************************/
extern uint64_t g_ClockSpeed;
extern unsigned long g_dwClockSpeed;
extern double g_ClockSpeedMicrosecondsMultiplier;
extern double g_ClockSpeedMillisecondsMultiplier;
extern double g_ClockSpeedSecondsMultiplier;
// -------------------------------------------------------------------------- //
// CCycleCount
// -------------------------------------------------------------------------- //
class CCycleCount
{
friend class CFastTimer;
public:
CCycleCount(void);
CCycleCount(uint64_t cycles);
void Sample(void); // Sample the clock. This takes about 34 clocks to execute (or 26,000 calls per millisecond on a P900).
void Init(void); // Set to zero.
void Init(float initTimeMsec);
void Init(double initTimeMsec) { Init((float)initTimeMsec); }
void Init(uint64_t cycles);
bool IsLessThan(CCycleCount const& other) const; // Compare two counts.
// Convert to other time representations. These functions are slow, so it's preferable to call them during display rather than inside a timing block.
unsigned long GetCycles(void) const;
uint64_t GetLongCycles(void) const;
unsigned long GetMicroseconds(void) const;
uint64_t GetUlMicroseconds(void) const;
double GetMicrosecondsF(void) const;
void SetMicroseconds(unsigned long nMicroseconds);
unsigned long GetMilliseconds(void) const;
double GetMillisecondsF(void) const;
double GetSeconds(void) const;
CCycleCount& operator+=(CCycleCount const& other);
// dest = rSrc1 + rSrc2
static void Add(CCycleCount const& rSrc1, CCycleCount const& rSrc2, CCycleCount& dest); // Add two samples together.
// dest = rSrc1 - rSrc2
static void Sub(CCycleCount const& rSrc1, CCycleCount const& rSrc2, CCycleCount& dest); // Add two samples together.
static uint64_t GetTimestamp(void);
private:
uint64_t m_Int64{};
};
// -------------------------------------------------------------------------- //
// CClockSpeedInit
// -------------------------------------------------------------------------- //
class CClockSpeedInit
{
public:
CClockSpeedInit(void)
{
Init();
}
static void Init(void)
{
const CPUInformation& pi = GetCPUInformation();
g_ClockSpeed = pi.m_Speed;
g_dwClockSpeed = (unsigned long)g_ClockSpeed;
g_ClockSpeedMicrosecondsMultiplier = 1000000.0 / (double)g_ClockSpeed;
g_ClockSpeedMillisecondsMultiplier = 1000.0 / (double)g_ClockSpeed;
g_ClockSpeedSecondsMultiplier = 1.0f / (double)g_ClockSpeed;
}
};
// -------------------------------------------------------------------------- //
// CFastTimer
// These functions are fast to call and should be called from your sampling code.
// -------------------------------------------------------------------------- //
class CFastTimer
{
public:
void Start(void);
void End(void);
const CCycleCount& GetDuration(void) const; // Get the elapsed time between Start and End calls.
CCycleCount GetDurationInProgress(void) const; // Call without ending. Not that cheap.
// Return number of cycles per second on this processor.
static inline unsigned long GetClockSpeed(void);
private:
CCycleCount m_Duration;
#ifdef DEBUG_FASTTIMER
bool m_bRunning; // Are we currently running?
#endif
};
// -------------------------------------------------------------------------- //
// CTimeScope
// This is a helper class that times whatever block of code it's in.
// -------------------------------------------------------------------------- //
class CTimeScope
{
public:
CTimeScope(CFastTimer* pTimer);
~CTimeScope(void);
private:
CFastTimer* m_pTimer;
};
inline CTimeScope::CTimeScope(CFastTimer* pTotal)
{
m_pTimer = pTotal;
m_pTimer->Start();
}
inline CTimeScope::~CTimeScope(void)
{
m_pTimer->End();
}
// This is a helper class that times whatever block of code it's in and adds the total (int microseconds) to a global counter.
class CTimeAdder
{
public:
CTimeAdder(CCycleCount* pTotal);
~CTimeAdder(void);
void End();
private:
CCycleCount* m_pTotal;
CFastTimer m_Timer;
};
inline CTimeAdder::CTimeAdder(CCycleCount* pTotal)
{
m_pTotal = pTotal;
m_Timer.Start();
}
inline CTimeAdder::~CTimeAdder(void)
{
End();
}
inline void CTimeAdder::End(void)
{
if (m_pTotal)
{
m_Timer.End();
*m_pTotal += m_Timer.GetDuration();
m_pTotal = 0;
}
}
// -------------------------------------------------------------------------- //
// Simple tool to support timing a block of code, and reporting the results on
// program exit or at each iteration
//
// Macros used because dbg.h uses this header, thus Msg() is unavailable
// -------------------------------------------------------------------------- //
#define PROFILE_SCOPE(name) \
class C##name##ACC : public CAverageCycleCounter \
{ \
public: \
~C##name##ACC() \
{ \
Msg("%-48s: %6.3f avg (%8.1f total, %7.3f peak, %5d iters)\n", \
#name, \
GetAverageMilliseconds(), \
GetTotalMilliseconds(), \
GetPeakMilliseconds(), \
GetIters() ); \
} \
}; \
static C##name##ACC name##_ACC; \
CAverageTimeMarker name##_ATM( &name##_ACC )
#define TIME_SCOPE(name) \
class CTimeScopeMsg_##name \
{ \
public: \
CTimeScopeMsg_##name() { m_Timer.Start(); } \
~CTimeScopeMsg_##name() \
{ \
m_Timer.End(); \
Msg( #name "time: %.4fms\n", m_Timer.GetDuration().GetMillisecondsF() ); \
} \
private: \
CFastTimer m_Timer; \
} name##_TSM;
// -------------------------------------------------------------------------- //
// CAverageCycleCounter
// -------------------------------------------------------------------------- //
class CAverageCycleCounter
{
public:
CAverageCycleCounter(void);
void Init(void);
void MarkIter(const CCycleCount& duration);
unsigned GetIters(void) const;
double GetAverageMilliseconds(void) const;
double GetTotalMilliseconds(void) const;
double GetPeakMilliseconds(void) const;
private:
unsigned m_nIters {};
CCycleCount m_Total {};
CCycleCount m_Peak {};
bool m_fReport{};
const char* m_pszName{};
};
// -------------------------------------------------------------------------- //
// CAverageTimeMarker
// -------------------------------------------------------------------------- //
class CAverageTimeMarker
{
public:
CAverageTimeMarker(CAverageCycleCounter* pCounter);
~CAverageTimeMarker(void);
private:
CAverageCycleCounter* m_pCounter;
CFastTimer m_Timer;
};
// -------------------------------------------------------------------------- //
// CCycleCount inlines.
// -------------------------------------------------------------------------- //
inline CCycleCount::CCycleCount(void)
{
Init((uint64_t)0);
}
inline CCycleCount::CCycleCount(uint64_t cycles)
{
Init(cycles);
}
inline void CCycleCount::Init(void)
{
Init((uint64_t)0);
}
inline void CCycleCount::Init(float initTimeMsec)
{
if (g_ClockSpeedMillisecondsMultiplier > 0)
Init((uint64_t)(initTimeMsec / g_ClockSpeedMillisecondsMultiplier));
else
Init((uint64_t)0);
}
inline void CCycleCount::Init(uint64_t cycles)
{
m_Int64 = cycles;
}
inline void CCycleCount::Sample(void)
{
m_Int64 = Plat_Rdtsc();
}
inline CCycleCount& CCycleCount::operator+=(CCycleCount const& other)
{
m_Int64 += other.m_Int64;
return *this;
}
inline void CCycleCount::Add(CCycleCount const& rSrc1, CCycleCount const& rSrc2, CCycleCount& dest)
{
dest.m_Int64 = rSrc1.m_Int64 + rSrc2.m_Int64;
}
inline void CCycleCount::Sub(CCycleCount const& rSrc1, CCycleCount const& rSrc2, CCycleCount& dest)
{
dest.m_Int64 = rSrc1.m_Int64 - rSrc2.m_Int64;
}
inline uint64_t CCycleCount::GetTimestamp(void)
{
CCycleCount c;
c.Sample();
return c.GetLongCycles();
}
inline bool CCycleCount::IsLessThan(CCycleCount const& other) const
{
return m_Int64 < other.m_Int64;
}
inline unsigned long CCycleCount::GetCycles(void) const
{
return (unsigned long)m_Int64;
}
inline uint64_t CCycleCount::GetLongCycles(void) const
{
return m_Int64;
}
inline unsigned long CCycleCount::GetMicroseconds(void) const
{
return (unsigned long)((m_Int64 * 1000000) / g_ClockSpeed);
}
inline uint64_t CCycleCount::GetUlMicroseconds(void) const
{
return ((m_Int64 * 1000000) / g_ClockSpeed);
}
inline double CCycleCount::GetMicrosecondsF(void) const
{
return (double)(m_Int64 * g_ClockSpeedMicrosecondsMultiplier);
}
inline void CCycleCount::SetMicroseconds(unsigned long nMicroseconds)
{
m_Int64 = ((uint64_t)nMicroseconds * g_ClockSpeed) / 1000000;
}
inline unsigned long CCycleCount::GetMilliseconds(void) const
{
return (unsigned long)((m_Int64 * 1000) / g_ClockSpeed);
}
inline double CCycleCount::GetMillisecondsF(void) const
{
return (double)(m_Int64 * g_ClockSpeedMillisecondsMultiplier);
}
inline double CCycleCount::GetSeconds(void) const
{
return (double)(m_Int64 * g_ClockSpeedSecondsMultiplier);
}
// -------------------------------------------------------------------------- //
// CFastTimer inlines.
// -------------------------------------------------------------------------- //
inline void CFastTimer::Start(void)
{
m_Duration.Sample();
#ifdef DEBUG_FASTTIMER
m_bRunning = true;
#endif
}
inline void CFastTimer::End(void)
{
CCycleCount cnt;
cnt.Sample();
m_Duration.m_Int64 = cnt.m_Int64 - m_Duration.m_Int64;
#ifdef DEBUG_FASTTIMER
m_bRunning = false;
#endif
}
inline CCycleCount CFastTimer::GetDurationInProgress(void) const
{
CCycleCount cnt;
cnt.Sample();
CCycleCount result;
result.m_Int64 = cnt.m_Int64 - m_Duration.m_Int64;
return result;
}
inline unsigned long CFastTimer::GetClockSpeed(void)
{
return g_dwClockSpeed;
}
inline CCycleCount const& CFastTimer::GetDuration(void) const
{
#ifdef DEBUG_FASTTIMER
assert(!m_bRunning);
#endif
return m_Duration;
}
// -------------------------------------------------------------------------- //
// CAverageCycleCounter inlines
// -------------------------------------------------------------------------- //
inline CAverageCycleCounter::CAverageCycleCounter(void)
: m_nIters(0)
{
}
inline void CAverageCycleCounter::Init(void)
{
m_Total.Init();
m_Peak.Init();
m_nIters = 0;
}
inline void CAverageCycleCounter::MarkIter(const CCycleCount& duration)
{
++m_nIters;
m_Total += duration;
if (m_Peak.IsLessThan(duration))
m_Peak = duration;
}
inline unsigned CAverageCycleCounter::GetIters(void) const
{
return m_nIters;
}
inline double CAverageCycleCounter::GetAverageMilliseconds(void) const
{
if (m_nIters)
return (m_Total.GetMillisecondsF() / (double)m_nIters);
else
return 0;
}
inline double CAverageCycleCounter::GetTotalMilliseconds(void) const
{
return m_Total.GetMillisecondsF();
}
inline double CAverageCycleCounter::GetPeakMilliseconds(void) const
{
return m_Peak.GetMillisecondsF();
}
// -------------------------------------------------------------------------- //
inline CAverageTimeMarker::CAverageTimeMarker(CAverageCycleCounter* pCounter)
{
m_pCounter = pCounter;
m_Timer.Start();
}
inline CAverageTimeMarker::~CAverageTimeMarker(void)
{
m_Timer.End();
m_pCounter->MarkIter(m_Timer.GetDuration());
}
// -------------------------------------------------------------------------- //
// CLimitTimer
// Use this to time whether a desired interval of time has passed. It's extremely fast
// to check while running. NOTE: CMicroSecOverage() and CMicroSecLeft() are not as fast to check.
// -------------------------------------------------------------------------- //
class CLimitTimer
{
public:
CLimitTimer(void) { }
CLimitTimer(uint64_t cMicroSecDuration) { SetLimit(cMicroSecDuration); }
void SetLimit(uint64_t m_cMicroSecDuration);
bool BLimitReached(void) const;
int CMicroSecOverage(void) const;
uint64_t CMicroSecLeft(void) const;
private:
uint64_t m_lCycleLimit{};
};
//-----------------------------------------------------------------------------
// Purpose: Initializes the limit timer with a period of time to measure.
// Input : cMicroSecDuration - How long a time period to measure
//-----------------------------------------------------------------------------
inline void CLimitTimer::SetLimit(uint64_t cMicroSecDuration)
{
uint64_t dlCycles = ((uint64_t)cMicroSecDuration * (uint64_t)g_dwClockSpeed) / (uint64_t)1000000L;
CCycleCount cycleCount;
cycleCount.Sample();
m_lCycleLimit = cycleCount.GetLongCycles() + dlCycles;
}
//-----------------------------------------------------------------------------
// Purpose: Determines whether our specified time period has passed
// Output: true if at least the specified time period has passed
//-----------------------------------------------------------------------------
inline bool CLimitTimer::BLimitReached(void) const
{
CCycleCount cycleCount;
cycleCount.Sample();
return (cycleCount.GetLongCycles() >= m_lCycleLimit);
}
//-----------------------------------------------------------------------------
// Purpose: If we're over our specified time period, return the amount of the overage.
// Output: # of microseconds since we reached our specified time period.
//-----------------------------------------------------------------------------
inline int CLimitTimer::CMicroSecOverage(void) const
{
CCycleCount cycleCount;
cycleCount.Sample();
uint64_t lcCycles = cycleCount.GetLongCycles();
if (lcCycles < m_lCycleLimit)
return 0;
return((int)((lcCycles - m_lCycleLimit) * (uint64_t)1000000L / g_dwClockSpeed));
}
//-----------------------------------------------------------------------------
// Purpose: If we're under our specified time period, return the amount under.
// Output: # of microseconds until we reached our specified time period, 0 if we've passed it
//-----------------------------------------------------------------------------
inline uint64_t CLimitTimer::CMicroSecLeft(void) const
{
CCycleCount cycleCount;
cycleCount.Sample();
uint64_t lcCycles = cycleCount.GetLongCycles();
if (lcCycles >= m_lCycleLimit)
return 0;
return((uint64_t)((m_lCycleLimit - lcCycles) * (uint64_t)1000000L / g_dwClockSpeed));
}
#endif // FASTTIMER_H

76
r5dev/tier0/platform.h Normal file
View File

@ -0,0 +1,76 @@
#ifndef PLATFORM_H
#define PLATFORM_H
#if defined( _WIN32 ) && defined( _MSC_VER ) && ( _MSC_VER >= 1400 )
#pragma intrinsic(__rdtsc)
#endif
inline uint64_t Plat_Rdtsc()
{
#if defined( _X360 )
return (uint64)__mftb32();
#elif defined( _WIN64 )
return (uint64_t)__rdtsc();
#elif defined( _WIN32 )
#if defined( _MSC_VER ) && ( _MSC_VER >= 1400 )
return (uint64)__rdtsc();
#else
__asm rdtsc;
__asm ret;
#endif
#elif defined( __i386__ )
uint64 val;
__asm__ __volatile__("rdtsc" : "=A" (val));
return val;
#elif defined( __x86_64__ )
uint32 lo, hi;
__asm__ __volatile__("rdtsc" : "=a" (lo), "=d" (hi));
return (((uint64)hi) << 32) | lo;
#else
#error
#endif
}
// Processor Information:
struct CPUInformation
{
int m_Size; // Size of this structure, for forward compatability.
uint8_t m_nLogicalProcessors; // Number op logical processors.
uint8_t m_nPhysicalProcessors; // Number of physical processors
bool m_bRDTSC : 1, // Is RDTSC supported?
m_bCMOV : 1, // Is CMOV supported?
m_bFCMOV : 1, // Is FCMOV supported?
m_bSSE : 1, // Is SSE supported?
m_bSSE2 : 1, // Is SSE2 Supported?
m_b3DNow : 1, // Is 3DNow! Supported?
m_bMMX : 1, // Is MMX supported?
m_bHT : 1; // Is HyperThreading supported?
bool m_bSSE3 : 1,
m_bSSSE3 : 1,
m_bSSE4a : 1,
m_bSSE41 : 1,
m_bSSE42 : 1,
m_bAVX : 1; // Is AVX supported?
int64_t m_Speed; // In cycles per second.
char* m_szProcessorID; // Processor vendor Identification.
char* m_szProcessorBrand; // Processor brand string, if available
uint32_t m_nModel;
uint32_t m_nFeatures[3];
uint32_t m_nL1CacheSizeKb;
uint32_t m_nL1CacheDesc;
uint32_t m_nL2CacheSizeKb;
uint32_t m_nL2CacheDesc;
uint32_t m_nL3CacheSizeKb;
uint32_t m_nL3CacheDesc;
CPUInformation() : m_Size(0) {}
};
#endif /* PLATFORM_H */

View File

@ -327,9 +327,13 @@
<ClInclude Include="..\tier0\commandline.h" />
<ClInclude Include="..\tier0\cmd.h" />
<ClInclude Include="..\tier0\completion.h" />
<ClInclude Include="..\tier0\cpu.h" />
<ClInclude Include="..\tier0\cputopology.h" />
<ClInclude Include="..\tier0\cvar.h" />
<ClInclude Include="..\tier0\fasttimer.h" />
<ClInclude Include="..\tier0\IConVar.h" />
<ClInclude Include="..\tier0\interface.h" />
<ClInclude Include="..\tier0\platform.h" />
<ClInclude Include="..\tier1\NetAdr2.h" />
<ClInclude Include="..\tier2\socketcreator.h" />
<ClInclude Include="..\vpc\basefilesystem.h" />
@ -403,7 +407,10 @@
<ClCompile Include="..\tier0\commandline.cpp" />
<ClCompile Include="..\tier0\cmd.cpp" />
<ClCompile Include="..\tier0\completion.cpp" />
<ClCompile Include="..\tier0\cpu.cpp" />
<ClCompile Include="..\tier0\cputopology.cpp" />
<ClCompile Include="..\tier0\cvar.cpp" />
<ClCompile Include="..\tier0\fasttimer.cpp" />
<ClCompile Include="..\tier0\IConVar.cpp" />
<ClCompile Include="..\tier1\NetAdr2.cpp" />
<ClCompile Include="..\tier2\socketcreator.cpp" />

View File

@ -792,6 +792,18 @@
<ClInclude Include="..\game\server\ai_utility.h">
<Filter>sdk\game\server</Filter>
</ClInclude>
<ClInclude Include="..\tier0\cpu.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\cputopology.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\platform.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\fasttimer.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\client\IVEngineClient.cpp">
@ -986,6 +998,15 @@
<ClCompile Include="..\game\server\ai_utility.cpp">
<Filter>sdk\game\server</Filter>
</ClCompile>
<ClCompile Include="..\tier0\cpu.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
<ClCompile Include="..\tier0\cputopology.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
<ClCompile Include="..\tier0\fasttimer.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<None Include="..\Dedicated.def" />

View File

@ -81,7 +81,10 @@
<ClCompile Include="..\tier0\commandline.cpp" />
<ClCompile Include="..\tier0\cmd.cpp" />
<ClCompile Include="..\tier0\completion.cpp" />
<ClCompile Include="..\tier0\cpu.cpp" />
<ClCompile Include="..\tier0\cputopology.cpp" />
<ClCompile Include="..\tier0\cvar.cpp" />
<ClCompile Include="..\tier0\fasttimer.cpp" />
<ClCompile Include="..\tier0\IConVar.cpp" />
<ClCompile Include="..\tier1\NetAdr2.cpp" />
<ClCompile Include="..\tier2\socketcreator.cpp" />
@ -329,9 +332,13 @@
<ClInclude Include="..\tier0\commandline.h" />
<ClInclude Include="..\tier0\cmd.h" />
<ClInclude Include="..\tier0\completion.h" />
<ClInclude Include="..\tier0\cpu.h" />
<ClInclude Include="..\tier0\cputopology.h" />
<ClInclude Include="..\tier0\cvar.h" />
<ClInclude Include="..\tier0\fasttimer.h" />
<ClInclude Include="..\tier0\IConVar.h" />
<ClInclude Include="..\tier0\interface.h" />
<ClInclude Include="..\tier0\platform.h" />
<ClInclude Include="..\tier1\NetAdr2.h" />
<ClInclude Include="..\tier2\socketcreator.h" />
<ClInclude Include="..\vguimatsurface\MatSystemSurface.h" />

View File

@ -399,6 +399,15 @@
<ClCompile Include="..\materialsystem\cmaterialglue.cpp">
<Filter>sdk\materialsystem</Filter>
</ClCompile>
<ClCompile Include="..\tier0\cpu.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
<ClCompile Include="..\tier0\cputopology.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
<ClCompile Include="..\tier0\fasttimer.cpp">
<Filter>sdk\tier0</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\client\cdll_engine_int.h">
@ -1145,6 +1154,18 @@
<ClInclude Include="..\materialsystem\cmaterialglue.h">
<Filter>sdk\materialsystem</Filter>
</ClInclude>
<ClInclude Include="..\tier0\fasttimer.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\platform.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\cputopology.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
<ClInclude Include="..\tier0\cpu.h">
<Filter>sdk\tier0</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Image Include="..\shared\resource\lockedserver.png">