Add 'cppkore' library to project

This commit is contained in:
Kawe Mazidjatari 2022-05-21 19:58:09 +02:00
parent 62f3108909
commit f11f3fe95d
407 changed files with 86206 additions and 0 deletions

674
r5dev/thirdparty/cppnet/LICENSE.md vendored Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

2
r5dev/thirdparty/cppnet/README.md vendored Normal file
View File

@ -0,0 +1,2 @@
# cppnet
It's .NET for C++17

View File

@ -0,0 +1,3 @@
#pragma once
typedef void(*Action)();

View File

@ -0,0 +1,45 @@
#include "stdafx.h"
#include "Adler32.h"
uint32_t Hashing::Adler32::ComputeHash(uint32_t adler, const void* ptr, size_t buflen)
{
if (!ptr)
{
return NULL;
}
const uint8_t* buffer = static_cast<const uint8_t*>(ptr);
const unsigned long ADLER_MOD = 65521;
unsigned long s1 = adler & 0xffff, s2 = adler >> 16;
size_t blocklen;
unsigned long i;
blocklen = buflen % 5552;
while (buflen)
{
for (i = 0; i + 7 < blocklen; i += 8)
{
s1 += buffer[0], s2 += s1;
s1 += buffer[1], s2 += s1;
s1 += buffer[2], s2 += s1;
s1 += buffer[3], s2 += s1;
s1 += buffer[4], s2 += s1;
s1 += buffer[5], s2 += s1;
s1 += buffer[6], s2 += s1;
s1 += buffer[7], s2 += s1;
buffer += 8;
}
for (; i < blocklen; ++i)
{
s1 += *buffer++, s2 += s1;
}
s1 %= ADLER_MOD, s2 %= ADLER_MOD;
buflen -= blocklen;
blocklen = 5552;
}
return (s2 << 16) + s1;
}

View File

@ -0,0 +1,12 @@
#pragma once
namespace Hashing
{
// Mark Adler's compact Adler32 hashing algorithm
// Originally from the public domain stb.h header.
class Adler32
{
public:
static uint32_t ComputeHash(uint32_t adler, const void* ptr, size_t buflen);
};
}

View File

@ -0,0 +1,30 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// Specifies how a control anchors to the edges of its container.
enum class AnchorStyles
{
// The control is anchored to the top edge of its container.
Top = 0x1,
// The control is anchored to the bottom edge of its container.
Bottom = 0x2,
// The control is anchored to the left edge of its container.
Left = 0x4,
// The control is anchored to the right edge of its container.
Right = 0x8,
// The control is not anchored to any edges of its container.
None = 0x0
};
//
// Allow bitwise operations on this enumeration
//
constexpr AnchorStyles operator|(AnchorStyles Lhs, AnchorStyles Rhs)
{
return static_cast<AnchorStyles>(static_cast<std::underlying_type<AnchorStyles>::type>(Lhs) | static_cast<std::underlying_type<AnchorStyles>::type>(Rhs));
};
}

View File

@ -0,0 +1,128 @@
#include "stdafx.h"
#include "Animation.h"
namespace Assets
{
Animation::Animation()
: Animation(0)
{
}
Animation::Animation(uint32_t BoneCount)
: Animation(BoneCount, 30.0f)
{
}
Animation::Animation(uint32_t BoneCount, float FrameRate)
: Bones(BoneCount), Looping(false), FrameRate(FrameRate), Name("error"), TransformSpace(AnimationTransformSpace::Local), RotationInterpolation(AnimationRotationInterpolation::Quaternion)
{
}
List<Curve>& Animation::GetNodeCurves(const string& NodeName)
{
if (Curves.ContainsKey(NodeName))
return Curves[NodeName];
Curves.Add(NodeName, List<Curve>());
return Curves[NodeName];
}
void Animation::AddNotification(const string& Name, uint32_t Frame)
{
if (Notificiations.ContainsKey(Name))
Notificiations[Name].EmplaceBack(Frame);
Notificiations.Add(Name, List<uint32_t>());
Notificiations[Name].EmplaceBack(Frame);
}
const uint32_t Animation::FrameCount(bool Legacy) const
{
uint32_t Result = 0;
for (auto& Kvp : Curves)
{
for (auto& Curve : Kvp.Value())
{
if (Legacy)
{
// Used for animation types which do not support non-bone like curves
// So we only have quaternion rotation, translations, and scales
if (Curve.Property == CurveProperty::RotateQuaternion || (Curve.Property >= CurveProperty::TranslateX && Curve.Property <= CurveProperty::TranslateZ) || (Curve.Property >= CurveProperty::ScaleX && Curve.Property <= CurveProperty::ScaleZ))
{
for (auto& Keyframe : Curve.Keyframes)
Result = max(Result, Keyframe.Frame.Integer32);
}
}
else
{
// Support all curves
for (auto& Keyframe : Curve.Keyframes)
Result = max(Result, Keyframe.Frame.Integer32);
}
}
}
for (auto& NoteTrack : Notificiations)
for (auto& Note : NoteTrack.Value())
Result = max(Result, Note);
// Frame count is the length of the animation in frames
// Frames start at index 0, so we add one to get the count
return Result + 1;
}
const uint32_t Animation::NotificationCount() const
{
uint32_t Result = 0;
for (auto& NoteTrack : Notificiations)
Result += NoteTrack.Value().Count();
return Result;
}
void Animation::Scale(float Factor)
{
for (auto& Kvp : Curves)
{
for (auto& Curve : Kvp.Value())
{
// Translation keyframes are scaled here...
if (Curve.Property >= CurveProperty::TranslateX && Curve.Property <= CurveProperty::TranslateZ)
{
for (auto& Keyframe : Curve.Keyframes)
{
Keyframe.Value.Float *= Factor;
}
}
}
}
for (auto& Bone : Bones)
{
if (Bone.GetFlag(BoneFlags::HasLocalSpaceMatrices))
{
Bone.SetLocalPosition(Bone.LocalPosition() * Factor);
}
if (Bone.GetFlag(BoneFlags::HasGlobalSpaceMatrices))
{
Bone.SetGlobalPosition(Bone.GlobalPosition() * Factor);
}
}
}
void Animation::RemoveEmptyNodes()
{
for (auto& Kvp : Curves)
{
for (int32_t i = ((int32_t)Kvp.Value().Count() - 1); i >= 0; i--)
{
if (Kvp.Value()[i].Keyframes.Count() == 0)
{
Kvp.Value().RemoveAt(i);
}
}
}
}
}

View File

@ -0,0 +1,62 @@
#pragma once
#include <memory>
#include <cstdint>
#include "ListBase.h"
#include "DictionaryBase.h"
// The separate anim parts
#include "Bone.h"
#include "Vector3.h"
#include "Quaternion.h"
#include "AnimationTypes.h"
#include "Curve.h"
namespace Assets
{
// A container class that holds 3D animation data.
class Animation
{
public:
// Initialize a blank 3D animation without any known counts.
Animation();
// Initialize a 3D animation with the given count for bones.
Animation(uint32_t BoneCount);
// Initialize a 3D animation with the given bone count and framerate.
Animation(uint32_t BoneCount, float FrameRate);
// The name of the animation
string Name;
// A collection of 3D bones for this animation. (May or may not represent the actual skeleton)
List<Bone> Bones;
// The collection of curves that make up this animation.
Dictionary<string, List<Curve>> Curves;
// A collection of notifications that may occur.
Dictionary<string, List<uint32_t>> Notificiations;
// Gets a reference to a list of node curves.
List<Curve>& GetNodeCurves(const string& NodeName);
// Adds a notification to the animation.
void AddNotification(const string& Name, uint32_t Frame);
// Gets the count of frames in the animation.
const uint32_t FrameCount(bool Legacy = false) const;
// Gets the count of notifications in the animation.
const uint32_t NotificationCount() const;
// Specifies if this animation should loop.
bool Looping;
// The framerate of this animation.
float FrameRate;
// The transformation space of this animation.
AnimationTransformSpace TransformSpace;
// The rotation interpolation mode.
AnimationRotationInterpolation RotationInterpolation;
// Scales the animation with the given factor.
void Scale(float Factor);
// Removes nodes without keyframes.
void RemoveEmptyNodes();
};
}

View File

@ -0,0 +1,33 @@
#pragma once
#include <cstdint>
namespace Assets
{
// This enumeration represents the possible animation types
enum class AnimationCurveMode
{
// Animation translations are set to this exact value each frame.
Absolute = 0,
// Animation values are added on to the scene values.
Additive = 1,
// Animation values are relative to rest position in the model.
Relative = 2
};
// This enumeration represents the possible transform spaces
enum class AnimationTransformSpace
{
// All of the curve nodes are in local object space
Local = 0,
// All of the curve nodes are in world space
World = 1,
};
// This enumeration represents the interpolation options
enum class AnimationRotationInterpolation
{
Quaternion = 0,
Euler = 1,
};
}

View File

@ -0,0 +1,15 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the appearance of a control.
enum class Appearence
{
// The default appearance defined by the control.
Normal = 0,
// The appearance of a Windows button.
Button = 1
};
}

View File

@ -0,0 +1,116 @@
#include "stdafx.h"
#include "Application.h"
// We're an application, so, we require GDI+, ComCtl32
#pragma comment(lib, "Gdiplus.lib")
#pragma comment(lib, "Comctl32.lib")
namespace Forms
{
// We haven't initialized it yet...
std::atomic<bool> Application::IsGdipInitialized = false;
ULONG_PTR Application::GdipToken = NULL;
void Application::Run(Form* MainWindow)
{
if (MainWindow == nullptr)
return;
// Initialize COM
OleInitialize(NULL);
#if _DEBUG
if (!IsGdipInitialized)
printf("-- Warning: GDI+ has not been initialized before Application::Run() --\n");
#endif
// Execute on the main loop
Application::RunMainLoop(MainWindow);
if (MainWindow)
delete MainWindow;
// Shutdown COM
OleUninitialize();
}
void Application::RunDialog(Form* MainDialog)
{
// We must disable the owner dialog so that we can properly be the focus
auto HwndOwner = GetWindowLongPtr(MainDialog->GetHandle(), GWLP_HWNDPARENT);
if (HwndOwner != NULL)
{
if (IsWindowEnabled((HWND)HwndOwner))
EnableWindow((HWND)HwndOwner, false);
}
RunMainLoop(MainDialog);
// We must re-enable the owner window
if (HwndOwner != NULL)
EnableWindow((HWND)HwndOwner, true);
}
void Application::EnableVisualStyles()
{
SetProcessDPIAware();
if (!IsGdipInitialized)
InitializeGdip();
}
void Application::RunMainLoop(Form* MainWindow)
{
bool ContinueLoop = true;
//
// Initialize the main window before starting the message pump...
//
MainWindow->Show();
//
// Loop until any of the conditions are met...
//
MSG nMSG;
while (ContinueLoop)
{
auto Peeked = PeekMessage(&nMSG, NULL, 0, 0, PM_NOREMOVE);
if (Peeked)
{
if (!GetMessage(&nMSG, NULL, 0, 0))
continue;
TranslateMessage(&nMSG);
DispatchMessage(&nMSG);
if (MainWindow)
ContinueLoop = !MainWindow->CheckCloseDialog(false);
}
else if (MainWindow == nullptr || MainWindow->GetState(ControlStates::StateDisposed))
{
break;
}
else if (!PeekMessage(&nMSG, NULL, 0, 0, PM_NOREMOVE))
{
WaitMessage();
}
}
}
void Application::InitializeGdip()
{
IsGdipInitialized = true;
Gdiplus::GdiplusStartupInput gdipStartup;
Gdiplus::GdiplusStartup(&GdipToken, &gdipStartup, NULL);
}
void Application::ShutdownGdip()
{
IsGdipInitialized = false;
Gdiplus::GdiplusShutdown(GdipToken);
}
}

View File

@ -0,0 +1,37 @@
#pragma once
#include <memory>
#include <atomic>
#include "Form.h"
namespace Forms
{
// Provides static methods and properties to manage an application.
class Application
{
public:
// Begins running a standard application message loop on the current
// thread, and makes the specified form visible.
static void Run(Form* MainWindow);
// Begins running a dialog application loop on the
// current thread, you MUST clean up the dialog after use.
static void RunDialog(Form* MainDialog);
// Enables the use of visual style components and initializes GDI+.
static void EnableVisualStyles();
private:
// Runs the main window loop.
static void RunMainLoop(Form* MainWindow);
// Whether or not GDI+ has been initialized
static std::atomic<bool> IsGdipInitialized;
// The token for GDI+
static ULONG_PTR GdipToken;
// Internal cleanup routines
static void InitializeGdip();
static void ShutdownGdip();
};
}

View File

@ -0,0 +1,720 @@
#include "stdafx.h"
#include <thread>
#include "AssetRenderer.h"
#include "Path.h"
#include "Thread.h"
// Include the internal font, and shaders
#include "FontArial.h"
#include "ModelFragmentShader.h"
#include "ModelVertexShader.h"
// We need to include the OpenGL classes
#include "Mangler.h"
namespace Assets
{
AssetRenderer::AssetRenderer()
: OpenGLViewport(), _Camera(0.5f* (float)MathHelper::PI, 0.45f* (float)MathHelper::PI, 100.f), _UseWireframe(false), _ShowBones(true), _ShowMaterials(true), _DrawingMode(DrawMode::Model), _DrawInformation{}, _BonePointBuffer(0), _BonePointCount(0), _DrawTexture(0)
{
}
AssetRenderer::~AssetRenderer()
{
ClearViewModel();
ClearViewTexture();
}
void AssetRenderer::SetViewModel(const Model& Model)
{
this->_DrawingMode = DrawMode::Model;
ClearViewModel();
ClearViewTexture();
for (auto& Submesh : Model.Meshes)
{
auto Draw = DrawObject();
glGenVertexArrays(1, &Draw.VertexArrayObject);
glBindVertexArray(Draw.VertexArrayObject);
// We'll take the POSITION, NORMAL, COLOR, and first UV pair...
const uint32_t Stride = sizeof(Vector3) + sizeof(Vector3) + sizeof(VertexColor) + sizeof(Vector2);
auto VertexBuffer = std::make_unique<uint8_t[]>((uint64_t)Submesh.Vertices.Count() * Stride);
uint64_t Offset = 0;
for (auto& Vertex : Submesh.Vertices)
{
std::memcpy(&VertexBuffer.get()[Offset], &Vertex.Position(), Stride);
Offset += Stride;
}
glGenBuffers(1, &Draw.VertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, Draw.VertexBuffer);
glBufferData(GL_ARRAY_BUFFER, (Stride * (uint64_t)Submesh.Vertices.Count()), VertexBuffer.get(), GL_STATIC_DRAW);
glGenBuffers(1, &Draw.FaceBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Draw.FaceBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (uint64_t)Submesh.Faces.Count() * 3 * sizeof(uint32_t), &Submesh.Faces[0], GL_STATIC_DRAW);
wglSwapIntervalEXT(1);
Draw.FaceCount = Submesh.Faces.Count();
Draw.VertexCount = Submesh.Vertices.Count();
if (Submesh.MaterialIndices.Count() > 0 && this->_MaterialStreamer != nullptr && Model.Materials.Count() != 0)
{
Assets::Material& Material = Model.Materials[Submesh.MaterialIndices[0]];
if (Material.Slots.ContainsKey(MaterialSlotType::Albedo))
{
auto MaterialDiffuseMap = this->_MaterialStreamer("", Material.Slots[MaterialSlotType::Albedo].second);
if (MaterialDiffuseMap != nullptr)
{
glGenTextures(1, &Draw.Material.AlbedoMap);
this->LoadDXTextureOGL(*MaterialDiffuseMap.get(), Draw.Material.AlbedoMap);
}
}
if (Material.Slots.ContainsKey(MaterialSlotType::Normal))
{
auto MaterialNormalMap = this->_MaterialStreamer("", Material.Slots[MaterialSlotType::Normal].second);
if (MaterialNormalMap != nullptr)
{
glGenTextures(1, &Draw.Material.NormalMap);
this->LoadDXTextureOGL(*MaterialNormalMap.get(), Draw.Material.NormalMap);
}
}
if (Material.Slots.ContainsKey(MaterialSlotType::Gloss))
{
auto MaterialGlossMap = this->_MaterialStreamer("", Material.Slots[MaterialSlotType::Gloss].second);
if (MaterialGlossMap != nullptr)
{
glGenTextures(1, &Draw.Material.RoughnessMap);
this->LoadDXTextureOGL(*MaterialGlossMap.get(), Draw.Material.RoughnessMap);
}
}
if (Material.Slots.ContainsKey(MaterialSlotType::Specular))
{
auto MaterialSpecMap = this->_MaterialStreamer("", Material.Slots[MaterialSlotType::Specular].second);
if (MaterialSpecMap != nullptr)
{
glGenTextures(1, &Draw.Material.MetallicMap);
this->LoadDXTextureOGL(*MaterialSpecMap.get(), Draw.Material.MetallicMap);
}
}
Draw.LoadedMaterial = true;
}
this->_DrawObjects.Emplace(Draw);
this->_DrawInformation.VertexCount += Submesh.Vertices.Count();
this->_DrawInformation.TriangleCount += Submesh.Faces.Count();
}
glGenBuffers(1, &this->_BonePointBuffer);
List<Math::Vector3> Positions;
for (int32_t i = (int32_t)Model.Bones.Count() - 1; i >= 0; i--)
{
auto& CurrentBone = Model.Bones[i];
Positions.EmplaceBack(Math::Matrix::TransformVector(CurrentBone.GlobalPosition(), this->_Camera.GetModelMatrix()));
if (CurrentBone.Parent() > -1)
Positions.EmplaceBack(Math::Matrix::TransformVector(Model.Bones[CurrentBone.Parent()].GlobalPosition(), this->_Camera.GetModelMatrix()));
else
Positions.EmplaceBack(0.f, 0.f, 0.f);
}
this->_BonePointCount = Positions.Count();
glBindBuffer(GL_ARRAY_BUFFER, this->_BonePointBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(Math::Vector3) * Positions.Count(), &Positions[0], GL_STATIC_DRAW);
this->_DrawInformation.BoneCount = Model.Bones.Count();
this->_DrawInformation.MeshCount = Model.Meshes.Count();
// Trigger a resize, then redraw, first redraw needs invalidation...
this->OnResize();
this->Invalidate();
}
void AssetRenderer::SetAssetName(const string& Name)
{
this->_DrawInformation.AssetName = Name;
this->Redraw();
}
void AssetRenderer::ClearViewModel()
{
for (auto& Draw : _DrawObjects)
{
glDeleteVertexArrays(1, &Draw.VertexArrayObject);
glDeleteBuffers(1, &Draw.VertexBuffer);
glDeleteBuffers(1, &Draw.FaceBuffer);
if (Draw.LoadedMaterial)
{
glDeleteTextures(1, &Draw.Material.AlbedoMap);
glDeleteTextures(1, &Draw.Material.AmbientOccluionMap);
glDeleteTextures(1, &Draw.Material.MetallicMap);
glDeleteTextures(1, &Draw.Material.NormalMap);
glDeleteTextures(1, &Draw.Material.RoughnessMap);
}
}
glDeleteBuffers(1, &this->_BonePointBuffer);
this->_BonePointBuffer = 0;
this->_BonePointCount = 0;
_DrawObjects.Clear();
_DrawInformation = {};
}
void AssetRenderer::SetMaterialStreamer(MaterialStreamCallback Callback)
{
this->_MaterialStreamer = std::move(Callback);
}
void AssetRenderer::SetViewTexture(const Texture& Texture)
{
this->_DrawingMode = DrawMode::Texture;
ClearViewTexture();
ClearViewModel();
glGenTextures(1, &this->_DrawTexture);
// Load into the draw texture slot
this->LoadDXTextureOGL((Assets::Texture&)Texture, this->_DrawTexture);
this->_DrawInformation.Width = Texture.Width();
this->_DrawInformation.Height = Texture.Height();
// Determine best fit scale to fit the image
float Scale = min((float)this->_ClientWidth / (float)Texture.Width(), (float)this->_ClientHeight / (float)Texture.Height());
this->_DrawInformation.Scale = min(100, (int)(Scale * 100));
}
void AssetRenderer::ClearViewTexture()
{
glDeleteTextures(1, &this->_DrawTexture);
_DrawInformation = {};
}
void AssetRenderer::SetUseWireframe(bool Value)
{
if (Value != this->_UseWireframe)
{
this->_UseWireframe = Value;
this->Redraw();
}
}
void AssetRenderer::SetShowBones(bool Value)
{
if (Value != this->_ShowBones)
{
this->_ShowBones = Value;
this->Redraw();
}
}
void AssetRenderer::SetShowMaterials(bool Value)
{
if (Value != this->_ShowMaterials)
{
this->_ShowMaterials = Value;
this->Redraw();
}
}
void AssetRenderer::SetZUpAxis(bool ZUp)
{
if (ZUp)
this->_Camera.SetUpAxis(RenderViewCameraUpAxis::Z);
else
this->_Camera.SetUpAxis(RenderViewCameraUpAxis::Y);
if (this->GetState(Forms::ControlStates::StateCreated))
this->Redraw();
}
void AssetRenderer::ResetView()
{
this->_Camera.Reset(0.5f * (float)MathHelper::PI, 0.45f * (float)MathHelper::PI, 100.f);
this->Redraw();
}
void AssetRenderer::ZoomModelToView()
{
// Using the bounding box, we need to
// TODO: Implement this zoom code
}
void AssetRenderer::OnRender()
{
// Clear the frame
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
this->RenderBackground();
switch (this->_DrawingMode)
{
case DrawMode::Model:
this->RenderGrid();
this->RenderModel();
break;
case DrawMode::Texture:
this->RenderTexture();
break;
}
this->RenderHUD();
// Render the frame
SwapBuffers(this->_DCHandle);
}
void AssetRenderer::OnResize()
{
glViewport(0, 0, this->_ClientWidth, this->_ClientHeight);
// Update the projection matrix
this->_Camera.UpdateProjectionMatrix(45.f, (float)this->_ClientWidth, (float)this->_ClientHeight, .1f, 10000.f);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(this->_Camera.GetProjectionMatrix().GetMatrix());
// Switch back to the modelview matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Ask the control to do the resize event
OpenGLViewport::OnResize();
}
void AssetRenderer::OnHandleCreated()
{
OpenGLViewport::OnHandleCreated();
// Now, the opengl context is completely valid, we can initialize our font / shaders
this->_RenderFont.LoadFont(FontArial_PTRF, sizeof(FontArial_PTRF));
#if _DEBUG
// Grab the root path of the libraries...
auto CppNetPath = IO::Path::GetDirectoryName(IO::Path::GetDirectoryName(__FILE__));
auto Vert = IO::Path::Combine(CppNetPath, "cppkore_shaders\\preview.vert");
auto Frag = IO::Path::Combine(CppNetPath, "cppkore_shaders\\preview.frag");
printf("-- NOTICE: Using debug shaders from disk --\n");
printf("Vertex: %s\nFrag: %s\n", Vert.ToCString(), Frag.ToCString());
this->_ModelShader.LoadShader(Vert, Frag);
#else
this->_ModelShader.LoadShader(ModelVertexShader_Src, ModelFragmentShader_Src);
#endif
}
void AssetRenderer::OnKeyUp(const std::unique_ptr<Forms::KeyEventArgs>& EventArgs)
{
if (EventArgs->KeyCode() == Forms::Keys::W)
{
this->SetUseWireframe(!this->_UseWireframe);
}
else if (EventArgs->KeyCode() == Forms::Keys::B)
{
this->SetShowBones(!this->_ShowBones);
}
else if (EventArgs->KeyCode() == Forms::Keys::T)
{
this->SetShowMaterials(!this->_ShowMaterials);
}
OpenGLViewport::OnKeyUp(EventArgs);
}
void AssetRenderer::OnMouseDown(const std::unique_ptr<Forms::MouseEventArgs>& EventArgs)
{
this->_TargetMousePosition = Vector2((float)EventArgs->X, (float)EventArgs->Y);
OpenGLViewport::OnMouseDown(EventArgs);
}
void AssetRenderer::OnMouseMove(const std::unique_ptr<Forms::MouseEventArgs>& EventArgs)
{
auto IsAltKey = (GetKeyState(VK_MENU) & 0x8000);
if (EventArgs->Button == Forms::MouseButtons::Left && IsAltKey)
{
float dPhi = ((float)(this->_TargetMousePosition.Y - EventArgs->Y) / 200.f);
float dTheta = ((float)(this->_TargetMousePosition.X - EventArgs->X) / 200.f);
this->_Camera.Rotate(dTheta, dPhi);
this->Redraw();
}
else if (EventArgs->Button == Forms::MouseButtons::Middle && IsAltKey)
{
float dx = ((float)(this->_TargetMousePosition.X - EventArgs->X));
float dy = ((float)(this->_TargetMousePosition.Y - EventArgs->Y));
this->_Camera.Pan(dx * .1f, dy * .1f);
this->Redraw();
}
else if (EventArgs->Button == Forms::MouseButtons::Right && IsAltKey)
{
float dx = ((float)(this->_TargetMousePosition.X - EventArgs->X) / 2.f);
this->_Camera.Zoom(-dx);
this->Redraw();
}
this->_TargetMousePosition = Vector2((float)EventArgs->X, (float)EventArgs->Y);
OpenGLViewport::OnMouseMove(EventArgs);
}
void AssetRenderer::OnMouseWheel(const std::unique_ptr<Forms::HandledMouseEventArgs>& EventArgs)
{
if (this->_DrawingMode == DrawMode::Texture)
{
if (EventArgs->Delta > 0)
this->_DrawInformation.Scale += 3;
else
this->_DrawInformation.Scale -= 3;
this->_DrawInformation.Scale = max(min(200, this->_DrawInformation.Scale), 0);
}
else if (this->_DrawingMode == DrawMode::Model)
{
this->_Camera.Zoom((float)EventArgs->Delta * .04f);
}
this->Redraw();
OpenGLViewport::OnMouseWheel(EventArgs);
}
void AssetRenderer::RenderBackground()
{
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glDisable(GL_TEXTURE_2D);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glBegin(GL_QUADS);
glColor3f(this->_BackColor.GetR() / 255.f, this->_BackColor.GetG() / 255.f, this->_BackColor.GetB() / 255.f);
glVertex2f(-1.0, -1.0);
glVertex2f(1.0, -1.0);
glVertex2f(1.0, 1.0);
glVertex2f(-1.0, 1.0);
glEnd();
}
void AssetRenderer::RenderGrid()
{
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(this->_Camera.GetProjectionMatrix().GetMatrix());
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(this->_Camera.GetViewMatrix().GetMatrix());
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glBegin(GL_LINES);
glLineWidth(1.f);
auto Size = 5.0f;
auto MinSize = -Size;
auto Step = 0.5f;
for (GLfloat i = MinSize; i <= Size; i += Step)
{
if (i == 0)
{
glColor3f(0, 0, 0);
}
else
{
glColor3f(.70f, .70f, .70f);
}
glVertex3f(i, 0, Size); glVertex3f(i, 0, MinSize);
glVertex3f(Size, 0, i); glVertex3f(MinSize, 0, i);
}
glEnd();
}
void AssetRenderer::RenderModel()
{
this->_ModelShader.Use();
if (_UseWireframe)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// Calculate and load the matrix
auto Model = this->_Camera.GetModelMatrix();
auto View = this->_Camera.GetViewMatrix();
auto Proj = this->_Camera.GetProjectionMatrix();
const uint32_t Stride = sizeof(Vector3) + sizeof(Vector3) + sizeof(VertexColor) + sizeof(Vector2);
glUniformMatrix4fv(this->_ModelShader.GetUniformLocation("model"), 1, GL_FALSE, Model.GetMatrix());
glUniformMatrix4fv(this->_ModelShader.GetUniformLocation("view"), 1, GL_FALSE, View.GetMatrix());
glUniformMatrix4fv(this->_ModelShader.GetUniformLocation("projection"), 1, GL_FALSE, Proj.GetMatrix());
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
for (auto& Draw : this->_DrawObjects)
{
if (Draw.LoadedMaterial && this->_ShowMaterials)
{
const GLint DiffuseLoaded = 1;
glUniform1iv(this->_ModelShader.GetUniformLocation("diffuseLoaded"), 1, &DiffuseLoaded);
}
else
{
const GLint DiffuseLoaded = 0;
glUniform1iv(this->_ModelShader.GetUniformLocation("diffuseLoaded"), 1, &DiffuseLoaded);
}
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, Draw.Material.AlbedoMap);
const GLint DiffuseSlot = 0;
glUniform1iv(this->_ModelShader.GetUniformLocation("diffuseTexture"), 1, &DiffuseSlot);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, Draw.Material.NormalMap);
const GLint NormalSlot = 1;
glUniform1iv(this->_ModelShader.GetUniformLocation("normalTexture"), 1, &NormalSlot);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, Draw.Material.RoughnessMap);
const GLint GlossSlot = 2;
glUniform1iv(this->_ModelShader.GetUniformLocation("glossTexture"), 1, &GlossSlot);
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, Draw.Material.MetallicMap);
const GLint SpecularSlot = 3;
glUniform1iv(this->_ModelShader.GetUniformLocation("specularTexture"), 1, &SpecularSlot);
glActiveTexture(GL_TEXTURE0);
glBindBuffer(GL_ARRAY_BUFFER, Draw.VertexBuffer);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, Stride, (void*)0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, Stride, (void*)12);
glVertexAttribPointer(2, 4, GL_UNSIGNED_BYTE, GL_TRUE, Stride, (void*)24);
glVertexAttribPointer(3, 2, GL_FLOAT, GL_FALSE, Stride, (void*)28);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Draw.FaceBuffer);
glDrawElements(GL_TRIANGLES, Draw.FaceCount * 3, GL_UNSIGNED_INT, (void*)0);
}
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glDisableVertexAttribArray(3);
this->_ModelShader.Detatch();
if (this->_ShowBones)
{
glDisable(GL_DEPTH_TEST);
glColor3f(18 / 255.f, 0, 54 / 255.f);
glBindBuffer(GL_ARRAY_BUFFER, this->_BonePointBuffer);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_LINES, 0, this->_BonePointCount);
}
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void AssetRenderer::RenderTexture()
{
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(Matrix::CreateOrthographic(0, (float)this->_ClientWidth, (float)this->_ClientHeight, 0, -1, 1).GetMatrix());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glColor3f(1.0f, 1.0f, 1.0f);
glDisable(GL_BLEND);
float Scale = (float)this->_DrawInformation.Scale / 100.f;
float ImageWidth = this->_DrawInformation.Width * Scale;
float ImageHeight = this->_DrawInformation.Height * Scale;
float Width = (ImageWidth);
float Height = (ImageHeight);
float X = (this->_ClientWidth - (float)Width) / 2.0f;
float Y = (this->_ClientHeight - (float)Height) / 2.0f;
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, this->_DrawTexture);
glBegin(GL_QUADS);
glTexCoord2i(0, 0); glVertex2f(X, Y);
glTexCoord2i(0, 1); glVertex2f(X, Y + Height);
glTexCoord2i(1, 1); glVertex2f(X + Width, Y + Height);
glTexCoord2i(1, 0); glVertex2f(X + Width, Y);
glEnd();
}
void AssetRenderer::RenderHUD()
{
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(Matrix::CreateOrthographic(0, (float)this->_ClientWidth, (float)this->_ClientHeight, 0, -1, 1).GetMatrix());
// Scale the font size for dpi aware controls
auto Screen = GetDC(nullptr);
auto Ratio = GetDeviceCaps(Screen, LOGPIXELSX);
ReleaseDC(nullptr, Screen);
// We based layout on stock 96 dpi, which is 100% scaling on windows
// so scale linearly based on that
const auto Scale = (1.0f - (96.f / (float)Ratio)) + 1.0f;
const auto FontScale = 0.7f * Scale;
switch (this->_DrawingMode)
{
case DrawMode::Model:
glColor4f(3 / 255.f, 169 / 255.f, 244 / 255.f, 1);
_RenderFont.RenderString("Model", 22, 22, FontScale); _RenderFont.RenderString(":", 80, 22, FontScale);
_RenderFont.RenderString("Meshes", 22, 38, FontScale); _RenderFont.RenderString(":", 80, 38, FontScale);
_RenderFont.RenderString("Verts", 22, 54, FontScale); _RenderFont.RenderString(":", 80, 54, FontScale);
_RenderFont.RenderString("Tris", 22, 70, FontScale); _RenderFont.RenderString(":", 80, 70, FontScale);
_RenderFont.RenderString("Bones", 22, 86, FontScale); _RenderFont.RenderString(":", 80, 86, FontScale);
glColor4f(35 / 255.f, 206 / 255.f, 107 / 255.f, 1);
_RenderFont.RenderString(string((this->_ShowBones) ? "Hide Bones (b), " : "Draw Bones (b), ") + string((this->_ShowMaterials) ? "Shaded View (t), " : "Material View (t), ") + string((this->_UseWireframe) ? "Hide Wireframe (w)" : "Draw Wireframe (w)"), 22, this->_Height - 44.f, FontScale);
glColor4f(0.9f, 0.9f, 0.9f, 1);
_RenderFont.RenderString((this->_DrawInformation.AssetName == "") ? string("N/A") : this->_DrawInformation.AssetName, 96, 22, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.MeshCount), 96, 38, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.VertexCount), 96, 54, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.TriangleCount), 96, 70, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.BoneCount), 96, 86, FontScale);
break;
case DrawMode::Texture:
glColor4f(3 / 255.f, 169 / 255.f, 244 / 255.f, 1);
_RenderFont.RenderString("Image", 22, 22, FontScale); _RenderFont.RenderString(":", 80, 22, FontScale);
_RenderFont.RenderString("Width", 22, 38, FontScale); _RenderFont.RenderString(":", 80, 38, FontScale);
_RenderFont.RenderString("Height", 22, 54, FontScale); _RenderFont.RenderString(":", 80, 54, FontScale);
_RenderFont.RenderString("Scale", 22, 70, FontScale); _RenderFont.RenderString(":", 80, 70, FontScale);
glColor4f(0.9f, 0.9f, 0.9f, 1);
_RenderFont.RenderString((this->_DrawInformation.AssetName == "") ? string("N/A") : this->_DrawInformation.AssetName, 96, 22, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.Width), 96, 38, FontScale);
_RenderFont.RenderString(string::Format("%d", this->_DrawInformation.Height), 96, 54, FontScale);
_RenderFont.RenderString(string::Format("%d%%", this->_DrawInformation.Scale), 96, 70, FontScale);
break;
}
}
void AssetRenderer::LoadDXTextureOGL(Texture& Texture, const uint32_t TextureSlot)
{
glBindTexture(GL_TEXTURE_2D, TextureSlot);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
switch (Texture.Format())
{
case DXGI_FORMAT::DXGI_FORMAT_BC6H_UF16:
Texture.ConvertToFormat(DXGI_FORMAT_BC1_UNORM);
case DXGI_FORMAT::DXGI_FORMAT_BC1_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_BC1_UNORM_SRGB:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_BC2_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_BC2_UNORM_SRGB:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_BC3_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_BC3_UNORM_SRGB:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_BC4_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_BC4_SNORM:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RED_RGTC1, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_BC5_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_BC5_SNORM:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RG_RGTC2, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_BC7_UNORM_SRGB:
case DXGI_FORMAT::DXGI_FORMAT_BC7_UNORM:
glCompressedTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_BPTC_UNORM, Texture.Width(), Texture.Height(), 0, Texture.BlockSize(), Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_R8_UNORM:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, Texture.Width(), Texture.Height(), 0, GL_RED, GL_UNSIGNED_BYTE, Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_R8G8_UNORM:
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, Texture.Width(), Texture.Height(), 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, Texture.GetPixels());
break;
case DXGI_FORMAT::DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT::DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, Texture.Width(), Texture.Height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, Texture.GetPixels());
break;
default:
#if _DEBUG
printf("Unsupported DXGI->OGL mapping\n");
__debugbreak();
#endif
break;
}
}
DrawObject::DrawObject()
: VertexArrayObject(0), VertexBuffer(0), FaceBuffer(0), LoadedMaterial(false), FaceCount(0), VertexCount(0), Material{(uint32_t)-1, (uint32_t)-1, (uint32_t)-1, (uint32_t)-1, (uint32_t)-1}
{
}
}

View File

@ -0,0 +1,165 @@
#pragma once
#include <cstdint>
#include <memory>
#include <atomic>
#include <functional>
#include "Model.h"
#include "Animation.h"
#include "Texture.h"
#include "ListBase.h"
#include "OpenGLViewport.h"
#include "RenderViewCamera.h"
#include "RenderShader.h"
#include "RenderFont.h"
namespace Assets
{
// A 3D uniform buffer object
struct DrawObjectMaterial
{
uint32_t AlbedoMap;
uint32_t NormalMap;
uint32_t MetallicMap;
uint32_t RoughnessMap;
uint32_t AmbientOccluionMap;
};
// A 3D buffer object that is being drawn.
struct DrawObject
{
uint32_t VertexArrayObject;
uint32_t VertexBuffer;
uint32_t FaceBuffer;
bool LoadedMaterial;
DrawObjectMaterial Material;
uint32_t FaceCount;
uint32_t VertexCount;
DrawObject();
};
enum class DrawMode
{
Model,
Animation,
Texture
};
// A 3D asset renderer control.
class AssetRenderer : public Forms::OpenGLViewport
{
public:
AssetRenderer();
virtual ~AssetRenderer();
// Special function to stream in a material image
using MaterialStreamCallback = std::function<std::unique_ptr<Texture>(const string, const uint64_t)>;
// Clears the current model, if any, and assigns the new one
void SetViewModel(const Model& Model);
// Clears the current model
void ClearViewModel();
// Applies a custom material streamer routine
void SetMaterialStreamer(MaterialStreamCallback Callback);
// Clears the current texture, if any, and assigns the new one
void SetViewTexture(const Texture& Texture);
// Clears the current texture
void ClearViewTexture();
// Sets the name of the model
void SetAssetName(const string& Name);
// Enable or disable wireframe rendering
void SetUseWireframe(bool Value);
// Enable or disable bone rendering
void SetShowBones(bool Value);
// Enable or disable material rendering
void SetShowMaterials(bool Value);
// Changes the up axis
void SetZUpAxis(bool ZUp);
// Resets the current view to the default view
void ResetView();
// Brings the current model into view
void ZoomModelToView();
// We must define base events here
virtual void OnRender();
virtual void OnResize();
virtual void OnHandleCreated();
virtual void OnKeyUp(const std::unique_ptr<Forms::KeyEventArgs>& EventArgs);
virtual void OnMouseDown(const std::unique_ptr<Forms::MouseEventArgs>& EventArgs);
virtual void OnMouseMove(const std::unique_ptr<Forms::MouseEventArgs>& EventArgs);
virtual void OnMouseWheel(const std::unique_ptr<Forms::HandledMouseEventArgs>& EventArgs);
private:
// Internal buffers
List<DrawObject> _DrawObjects;
// Internal buffer for texture mode
uint32_t _DrawTexture;
// Internal bone point buffer
uint32_t _BonePointBuffer;
// Internal bone point count
uint32_t _BonePointCount;
struct
{
uint32_t VertexCount;
uint32_t TriangleCount;
uint32_t MeshCount;
uint32_t Width;
uint32_t Height;
int32_t Scale;
string AssetName;
uint32_t BoneCount;
} _DrawInformation;
DrawMode _DrawingMode;
// The target mouse position
Vector2 _TargetMousePosition;
// Function to handle streaming in material images
MaterialStreamCallback _MaterialStreamer;
// The view camera instance
RenderViewCamera _Camera;
// The shader for the model
RenderShader _ModelShader;
// The render font instance
RenderFont _RenderFont;
// Whether or not to use wireframe mode
bool _UseWireframe;
// Whether or not to show bones
bool _ShowBones;
// Whether or not to render with materials
bool _ShowMaterials;
// Internal routine to render the gradient background
void RenderBackground();
// Internal routine to render the grid
void RenderGrid();
// Internal routine to render the model
void RenderModel();
// Internal routine to render the texture
void RenderTexture();
// Internal routine to render the hud
void RenderHUD();
// Internal routine to load a texture to an index
void LoadDXTextureOGL(Texture& Texture, const uint32_t TextureSlot);
};
}

View File

@ -0,0 +1,75 @@
#pragma once
#include <atomic>
#include <thread>
#include <mutex>
#include "ListBase.h"
template<typename T>
class AtomicListBase
{
public:
AtomicListBase();
~AtomicListBase() = default;
void Enqueue(T& Item);
bool Dequeue(T& Item);
bool IsEmpty() const;
uint32_t Count() const;
private:
List<T> _List;
std::atomic<uint32_t> _SyncCount;
std::mutex _SyncContext;
};
template<typename T>
inline AtomicListBase<T>::AtomicListBase()
: _SyncCount(0)
{
}
template<typename T>
inline void AtomicListBase<T>::Enqueue(T& Item)
{
{
std::lock_guard lock(this->_SyncContext);
this->_List.EmplaceBack(Item);
}
this->_SyncCount++;
}
template<typename T>
inline bool AtomicListBase<T>::Dequeue(T& Item)
{
{
std::lock_guard lock(this->_SyncContext);
const auto Length = this->_List.Count();
if (Length > 0)
{
Item = this->_List[Length - 1];
this->_List.RemoveAt(Length - 1);
this->_SyncCount--;
return true;
}
}
return false;
}
template<typename T>
inline bool AtomicListBase<T>::IsEmpty() const
{
return (this->_SyncCount == 0);
}
template<typename T>
inline uint32_t AtomicListBase<T>::Count() const
{
return this->_SyncCount;
}

View File

@ -0,0 +1,132 @@
#pragma once
#include <atomic>
#include <mutex>
#include "ListBase.h"
struct AtomicSyncContext
{
std::atomic<uint32_t> _declspec(align(std::hardware_constructive_interference_size)) Head;
std::atomic<uint32_t> _declspec(align(std::hardware_constructive_interference_size)) Tail;
};
template<typename T>
class AtomicQueueBase
{
public:
AtomicQueueBase();
~AtomicQueueBase() = default;
bool Enqueue(T& Item, uint32_t Count = 1);
bool Dequeue(T& Item, uint32_t Count = 1);
bool IsEmpty() const;
uint32_t Count() const;
private:
AtomicSyncContext _Writer;
AtomicSyncContext _Reader;
constexpr static uint32_t BufferSize = (2 << 10);
constexpr static uint32_t Mask = BufferSize - 1;
std::atomic_flag _SpinLock;
T alignas(std::hardware_constructive_interference_size) _Buffer[BufferSize];
};
template<typename T>
inline AtomicQueueBase<T>::AtomicQueueBase()
: _Writer{ 0, 0 }, _Reader{ 0, 0 }, _Buffer{}, _SpinLock()
{
}
template<typename T>
inline bool AtomicQueueBase<T>::Enqueue(T& Item, uint32_t Count)
{
uint32_t NextHead, EndTail, NewHead;
// The queue can fail to insert if it's already full, so you must check the result..
bool Success = false;
do {
NextHead = _Writer.Head.load(std::memory_order_acquire);
EndTail = _Reader.Tail.load(std::memory_order_acquire);
// Check if queue is full, yield time slice to other threads
if ((NextHead - EndTail + 1) > Mask)
return false;
NewHead = NextHead + Count;
Success = _Writer.Head.compare_exchange_weak(NextHead, NewHead, std::memory_order_release);
} while (!Success);
_Buffer[NextHead & Mask] = Item;
std::atomic_thread_fence(std::memory_order_release);
while (_Writer.Tail.load(std::memory_order_acquire) != NextHead)
{
// Spin lock wait
while (_SpinLock.test_and_set(std::memory_order_acquire));
}
// Set the value and unlock the spin
_Writer.Tail.store(NewHead, std::memory_order_release);
_SpinLock.clear(std::memory_order_release);
return true;
}
template<typename T>
inline bool AtomicQueueBase<T>::Dequeue(T& Item, uint32_t Count)
{
uint32_t Head, Tail, Next;
bool Success = false;
do {
Tail = _Reader.Head.load(std::memory_order_acquire);
Head = _Writer.Tail.load(std::memory_order_acquire);
// Check if the queue is empty, in that case, no result
if (Head == Tail)
return false;
Next = Tail + Count;
Success = _Reader.Head.compare_exchange_weak(Tail, Next, std::memory_order_release);
} while (!Success);
Item = _Buffer[Tail & Mask];
std::atomic_thread_fence(std::memory_order_acquire);
while (_Reader.Tail.load(std::memory_order_acquire) != Tail)
{
// Spin lock wait
while (_SpinLock.test_and_set(std::memory_order_acquire));
}
_Reader.Tail.store(Next, std::memory_order_release);
_SpinLock.clear(std::memory_order_release);
return true;
}
template<typename T>
inline bool AtomicQueueBase<T>::IsEmpty() const
{
uint32_t Tail = _Reader.Head.load(std::memory_order_acquire);
uint32_t Head = _Writer.Tail.load(std::memory_order_acquire);
// Check if the queue is empty, in that case, no result
if (Head == Tail)
return true;
return false;
}
template<typename T>
inline uint32_t AtomicQueueBase<T>::Count() const
{
// We need to subtract where we are writing to
uint32_t Tail = _Reader.Head.load(std::memory_order_acquire);
uint32_t Head = _Writer.Tail.load(std::memory_order_acquire);
return (Head - Tail);
}

View File

@ -0,0 +1,13 @@
#pragma once
namespace Forms
{
// Specifies the auto scaling mode used by a container control.
enum class AutoScaleMode
{
None,
Font,
Dpi,
Inherit
};
}

View File

@ -0,0 +1,517 @@
#include "stdafx.h"
#include "AutodeskMaya.h"
#include "File.h"
#include "Path.h"
#include "CRC32.h"
#include "StreamWriter.h"
#include "DictionaryBase.h"
namespace Assets::Exporters
{
bool AutodeskMaya::ExportAnimation(const Animation& Animation, const string& Path)
{
return false;
}
bool AutodeskMaya::ExportModel(const Model& Model, const string& Path)
{
auto Writer = IO::StreamWriter(IO::File::Create(Path));
auto FileName = IO::Path::GetFileNameWithoutExtension(Path);
auto Hash = Hashing::CRC32::HashString(FileName);
Writer.WriteLine(
"//Maya ASCII 8.5 scene\n\n"
"requires maya \"8.5\";\ncurrentUnit -l centimeter -a degree -t film;\nfileInfo \"application\" \"maya\";\nfileInfo \"product\" \"Maya Unlimited 8.5\";\nfileInfo \"version\" \"8.5\";\nfileInfo \"cutIdentifier\" \"200612162224-692032\";"
"createNode transform -s -n \"persp\";\n\tsetAttr \".v\" no;\n\tsetAttr \".t\" -type \"double3\" 48.186233840145825 37.816674066853686 41.0540421364379 ;\n\tsetAttr \".r\" -type \"double3\" -29.738352729603015 49.400000000000432 0 ;\ncreateNode camera -s -n \"perspShape\" -p \"persp\";\n\tsetAttr -k off \".v\" no;\n\tsetAttr \".fl\" 34.999999999999993;\n\tsetAttr \".fcp\" 10000;\n\tsetAttr \".coi\" 73.724849603665149;\n\tsetAttr \".imn\" -type \"string\" \"persp\";\n\tsetAttr \".den\" -type \"string\" \"persp_depth\";\n\tsetAttr \".man\" -type \"string\" \"persp_mask\";\n\tsetAttr \".hc\" -type \"string\" \"viewSet -p %camera\";\ncreateNode transform -s -n \"top\";\n\tsetAttr \".v\" no;\n\tsetAttr \".t\" -type \"double3\" 0 100.1 0 ;\n\tsetAttr \".r\" -type \"double3\" -89.999999999999986 0 0 ;\ncreateNode camera -s -n \"topShape\" -p \"top\";\n\tsetAttr -k off \".v\" no;\n\tsetAttr \".rnd\" no;\n\tsetAttr \".coi\" 100.1;\n\tsetAttr \".ow\" 30;\n\tsetAttr \".imn\" -type \"string\" \"top\";\n\tsetAttr \".den\" -type \"string\" \"top_depth\";\n\tsetAttr \".man\" -type \"string\" \"top_mask\";\n\tsetAttr \".hc\" -type \"string\" \"viewSet -t %camera\";\n\tsetAttr \".o\" yes;\ncreateNode transform -s -n \"front\";\n\tsetAttr \".v\" no;\n\tsetAttr \".t\" -type \"double3\" 0 0 100.1 ;\ncreateNode camera -s -n \"frontShape\" -p \"front\";\n\tsetAttr -k off \".v\" no;\n\tsetAttr \".rnd\" no;\n\tsetAttr \".coi\" 100.1;\n\tsetAttr \".ow\" 30;\n\tsetAttr \".imn\" -type \"string\" \"front\";\n\tsetAttr \".den\" -type \"string\" \"front_depth\";\n\tsetAttr \".man\" -type \"string\" \"front_mask\";\n\tsetAttr \".hc\" -type \"string\" \"viewSet -f %camera\";\n\tsetAttr \".o\" yes;\ncreateNode transform -s -n \"side\";\n\tsetAttr \".v\" no;\n\tsetAttr \".t\" -type \"double3\" 100.1 0 0 ;\n\tsetAttr \".r\" -type \"double3\" 0 89.999999999999986 0 ;\ncreateNode camera -s -n \"sideShape\" -p \"side\";\n\tsetAttr -k off \".v\" no;\n\tsetAttr \".rnd\" no;\n\tsetAttr \".coi\" 100.1;\n\tsetAttr \".ow\" 30;\n\tsetAttr \".imn\" -type \"string\" \"side\";\n\tsetAttr \".den\" -type \"string\" \"side_depth\";\n\tsetAttr \".man\" -type \"string\" \"side_mask\";\n\tsetAttr \".hc\" -type \"string\" \"viewSet -s %camera\";\n\tsetAttr \".o\" yes;\ncreateNode lightLinker -n \"lightLinker1\";\n\tsetAttr -s 9 \".lnk\";\n\tsetAttr -s 9 \".slnk\";\ncreateNode displayLayerManager -n \"layerManager\";\ncreateNode displayLayer -n \"defaultLayer\";\ncreateNode renderLayerManager -n \"renderLayerManager\";\ncreateNode renderLayer -n \"defaultRenderLayer\";\n\tsetAttr \".g\" yes;\ncreateNode script -n \"sceneConfigurationScriptNode\";\n\tsetAttr \".b\" -type \"string\" \"playbackOptions -min 1 -max 24 -ast 1 -aet 48 \";\n\tsetAttr \".st\" 6;\nselect -ne :time1;\n\tsetAttr \".o\" 1;\nselect -ne :renderPartition;\n\tsetAttr -s 2 \".st\";\nselect -ne :renderGlobalsList1;\nselect -ne :defaultShaderList1;\n\tsetAttr -s 2 \".s\";\nselect -ne :postProcessList1;\n\tsetAttr -s 2 \".p\";\nselect -ne :lightList1;\nselect -ne :initialShadingGroup;\n\tsetAttr \".ro\" yes;\nselect -ne :initialParticleSE;\n\tsetAttr \".ro\" yes;\nselect -ne :hardwareRenderGlobals;\n\tsetAttr \".ctrs\" 256;\n\tsetAttr \".btrs\" 512;\nselect -ne :defaultHardwareRenderGlobals;\n\tsetAttr \".fn\" -type \"string\" \"im\";\n\tsetAttr \".res\" -type \"string\" \"ntsc_4d 646 485 1.333\";\nselect -ne :ikSystem;\n\tsetAttr -s 4 \".sol\";\nconnectAttr \":defaultLightSet.msg\" \"lightLinker1.lnk[0].llnk\";\nconnectAttr \":initialShadingGroup.msg\" \"lightLinker1.lnk[0].olnk\";\nconnectAttr \":defaultLightSet.msg\" \"lightLinker1.lnk[1].llnk\";\nconnectAttr \":initialParticleSE.msg\" \"lightLinker1.lnk[1].olnk\";\nconnectAttr \":defaultLightSet.msg\" \"lightLinker1.slnk[0].sllk\";\nconnectAttr \":initialShadingGroup.msg\" \"lightLinker1.slnk[0].solk\";\nconnectAttr \":defaultLightSet.msg\" \"lightLinker1.slnk[1].sllk\";\nconnectAttr \":initialParticleSE.msg\" \"lightLinker1.slnk[1].solk\";\nconnectAttr \"layerManager.dli[0]\" \"defaultLayer.id\";\nconnectAttr \"renderLayerManager.rlmi[0]\" \"defaultRenderLayer.rlid\";\nconnectAttr \"lightLinker1.msg\" \":lightList1.ln\" -na;"
);
Writer.WriteLineFmt(
"createNode transform -n \"%s\";\n"
"setAttr \".ove\" yes;",
(char*)FileName
);
uint32_t SubmeshIndex = 0;
for (auto& Submesh : Model.Meshes)
{
Writer.WriteLineFmt(
"createNode transform -n \"KoreMesh_%08x_%02d\" -p \"%s\";\n"
"setAttr \".rp\" -type \"double3\" 0.000000 0.000000 0.000000 ;\nsetAttr \".sp\" -type \"double3\" 0.000000 0.000000 0.000000 ;\n"
"createNode mesh -n \"MeshShape_%d\" -p \"KoreMesh_%08x_%02d\";\n"
"setAttr -k off \".v\";\nsetAttr \".vir\" yes;\nsetAttr \".vif\" yes;\n"
"setAttr -s %d \".uvst\";",
Hash, SubmeshIndex, (char*)FileName,
SubmeshIndex, Hash, SubmeshIndex,
Submesh.Vertices.UVLayerCount()
);
for (uint8_t i = 1; i < Submesh.Vertices.UVLayerCount() + 1; i++)
{
if (Submesh.Vertices.Count() == 1)
{
Writer.WriteFmt(
"setAttr \".uvst[%d].uvsn\" -type \"string\" \"map%d\";\n"
"setAttr -s 1 \".uvst[0].uvsp[0]\" -type \"float2\"",
(i - 1), i
);
}
else
{
Writer.WriteFmt(
"setAttr \".uvst[%d].uvsn\" -type \"string\" \"map%d\";\n"
"setAttr -s %d \".uvst[0].uvsp[0:%d]\" -type \"float2\"",
(i - 1), i,
Submesh.Vertices.Count(), (Submesh.Vertices.Count() - 1)
);
}
for (auto& Vertex : Submesh.Vertices)
{
auto& Layer = Vertex.UVLayers(i - 1);
Writer.WriteFmt(" %f %f", Layer.U, (1 - Layer.V));
}
Writer.Write(";\n");
}
Writer.WriteFmt(
"setAttr \".cuvs\" -type \"string\" \"map1\";\nsetAttr \".dcol\" yes;\nsetAttr \".dcc\" -type \"string\" \"Ambient+Diffuse\";\nsetAttr \".ccls\" -type \"string\" \"colorSet1\";\nsetAttr \".clst[0].clsn\" -type \"string\" \"colorSet1\";\n"
"setAttr -s %d \".clst[0].clsp\";\n"
"setAttr \".clst[0].clsp[0:%d]\"",
(Submesh.Faces.Count() * 3),
(Submesh.Faces.Count() * 3) - 1
);
for (auto& Face : Submesh.Faces)
{
auto& Vertex1 = Submesh.Vertices[Face[2]].Color();
auto& Vertex2 = Submesh.Vertices[Face[1]].Color();
auto& Vertex3 = Submesh.Vertices[Face[0]].Color();
Writer.WriteFmt(
" %f %f %f %f"
" %f %f %f %f"
" %f %f %f %f",
Vertex1[0] / 255.f, Vertex1[1] / 255.f, Vertex1[2] / 255.f, Vertex1[3] / 255.f,
Vertex2[0] / 255.f, Vertex2[1] / 255.f, Vertex2[2] / 255.f, Vertex2[3] / 255.f,
Vertex3[0] / 255.f, Vertex3[1] / 255.f, Vertex3[2] / 255.f, Vertex3[3] / 255.f
);
}
Writer.WriteLineFmt(
";\n"
"setAttr \".covm[0]\" 0 1 1;\nsetAttr \".cdvm[0]\" 0 1 1;\nsetAttr -s %d \".vt\";",
Submesh.Vertices.Count()
);
if (Submesh.Vertices.Count() == 1)
Writer.Write("setAttr \".vt[0]\"");
else
Writer.WriteFmt("setAttr \".vt[0:%d]\"", Submesh.Vertices.Count() - 1);
for (auto& Vertex : Submesh.Vertices)
{
auto& Position = Vertex.Position();
Writer.WriteFmt(" %f %f %f", Position.X, Position.Y, Position.Z);
}
Writer.WriteFmt(
";\n"
"setAttr -s %d \".ed\";\n"
"setAttr \".ed[0:%d]\"",
(Submesh.Faces.Count() * 3),
(Submesh.Faces.Count() * 3) - 1
);
for (auto& Face : Submesh.Faces)
Writer.WriteFmt(" %d %d 0 %d %d 0 %d %d 0", Face[2], Face[1], Face[1], Face[0], Face[0], Face[2]);
Writer.WriteFmt(
";\n"
"setAttr -s %d \".n\";\n"
"setAttr \".n[0:%d]\" -type \"float3\"",
(Submesh.Faces.Count() * 3),
(Submesh.Faces.Count() * 3) - 1
);
for (auto& Face : Submesh.Faces)
{
auto& Vertex1 = Submesh.Vertices[Face[2]].Normal();
auto& Vertex2 = Submesh.Vertices[Face[1]].Normal();
auto& Vertex3 = Submesh.Vertices[Face[0]].Normal();
Writer.WriteFmt(
" %f %f %f"
" %f %f %f"
" %f %f %f",
Vertex1.X, Vertex1.Y, Vertex1.Z,
Vertex2.X, Vertex2.Y, Vertex2.Z,
Vertex3.X, Vertex3.Y, Vertex3.Z
);
}
Writer.WriteLine(";");
if (Submesh.Faces.Count() == 1)
Writer.WriteFmt("setAttr -s %d \".fc[0]\" -type \"polyFaces\"", Submesh.Faces.Count());
else
Writer.WriteFmt("setAttr -s %d \".fc[0:%d]\" -type \"polyFaces\"", Submesh.Faces.Count(), Submesh.Faces.Count() - 1);
uint32_t FaceIndex = 0;
for (auto& Face : Submesh.Faces)
{
Writer.WriteFmt(" f 3 %d %d %d", FaceIndex, (FaceIndex + 1), (FaceIndex + 2));
for (uint8_t i = 0; i < Submesh.Vertices.UVLayerCount(); i++)
Writer.WriteFmt(" mu %d 3 %d %d %d", i, Face[2], Face[1], Face[0]);
Writer.WriteFmt(" mc 0 3 %d %d %d", FaceIndex, (FaceIndex + 1), (FaceIndex + 2));
FaceIndex += 3;
}
Writer.WriteLine(
";\n"
"setAttr \".cd\" -type \"dataPolyComponent\" Index_Data Edge 0 ;\nsetAttr \".cvd\" -type \"dataPolyComponent\" Index_Data Vertex 0 ;\nsetAttr \".hfd\" -type \"dataPolyComponent\" Index_Data Face 0 ;"
);
SubmeshIndex++;
}
Writer.Write("\n");
for (auto& Material : Model.Materials)
{
auto MaterialName = (char*)Material.Name;
Writer.WriteLineFmt(
"createNode shadingEngine -n \"%sSG\";\n"
"setAttr \".ihi\" 0;\n"
"setAttr \".ro\" yes;\n"
"createNode materialInfo -n \"%sMI\";\r\ncreateNode lambert -n \"%s\";\n"
"createNode place2dTexture -n \"%sP2DT\";",
MaterialName,
MaterialName, MaterialName,
MaterialName
);
auto DiffuseTexture = (Material.Slots.ContainsKey(MaterialSlotType::Albedo))
? MaterialSlotType::Albedo : (Material.Slots.ContainsKey(MaterialSlotType::Diffuse) ? MaterialSlotType::Diffuse : MaterialSlotType::Invalid);
if (DiffuseTexture != MaterialSlotType::Invalid)
{
Writer.WriteLineFmt(
"createNode file -n \"%sFILE\";\n"
"setAttr \".ftn\" -type \"string\" \"%s\";",
MaterialName,
(char*)string(Material.Slots[DiffuseTexture].first).Replace("\\", "\\\\")
);
}
}
uint32_t LightConnectionIndex = 2;
for (auto& Material : Model.Materials)
{
auto MaterialName = (char*)Material.Name;
Writer.WriteLineFmt(
"connectAttr \":defaultLightSet.msg\" \"lightLinker1.lnk[%d].llnk\";\n"
"connectAttr \"%sSG.msg\" \"lightLinker1.lnk[%d].olnk\";\n"
"connectAttr \":defaultLightSet.msg\" \"lightLinker1.slnk[%d].sllk\";\n"
"connectAttr \"%sSG.msg\" \"lightLinker1.slnk[%d].solk\";\n"
"connectAttr \"%s.oc\" \"%sSG.ss\";\n"
"connectAttr \"%sSG.msg\" \"%sMI.sg\";\n"
"connectAttr \"%s.msg\" \"%sMI.m\";",
LightConnectionIndex,
MaterialName, LightConnectionIndex,
LightConnectionIndex,
MaterialName, LightConnectionIndex,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName
);
auto DiffuseTexture = (Material.Slots.ContainsKey(MaterialSlotType::Albedo))
? MaterialSlotType::Albedo : (Material.Slots.ContainsKey(MaterialSlotType::Diffuse) ? MaterialSlotType::Diffuse : MaterialSlotType::Invalid);
if (DiffuseTexture != MaterialSlotType::Invalid)
{
Writer.WriteLineFmt(
"connectAttr \"%sFILE.msg\" \"%sMI.t\" -na;\n"
"connectAttr \"%sFILE.oc\" \"%s.c\";\n"
"connectAttr \"%sP2DT.c\" \"%sFILE.c\";\n"
"connectAttr \"%sP2DT.tf\" \"%sFILE.tf\";\n"
"connectAttr \"%sP2DT.rf\" \"%sFILE.rf\";\n"
"connectAttr \"%sP2DT.mu\" \"%sFILE.mu\";\n"
"connectAttr \"%sP2DT.mv\" \"%sFILE.mv\";\n"
"connectAttr \"%sP2DT.s\" \"%sFILE.s\";\n"
"connectAttr \"%sP2DT.wu\" \"%sFILE.wu\";\n"
"connectAttr \"%sP2DT.wv\" \"%sFILE.wv\";\n"
"connectAttr \"%sP2DT.re\" \"%sFILE.re\";\n"
"connectAttr \"%sP2DT.of\" \"%sFILE.of\";\n"
"connectAttr \"%sP2DT.r\" \"%sFILE.ro\";\n"
"connectAttr \"%sP2DT.n\" \"%sFILE.n\";\n"
"connectAttr \"%sP2DT.vt1\" \"%sFILE.vt1\";\n"
"connectAttr \"%sP2DT.vt2\" \"%sFILE.vt2\";\n"
"connectAttr \"%sP2DT.vt3\" \"%sFILE.vt3\";\n"
"connectAttr \"%sP2DT.vc1\" \"%sFILE.vc1\";\n"
"connectAttr \"%sP2DT.o\" \"%sFILE.uv\";\n"
"connectAttr \"%sP2DT.ofs\" \"%sFILE.fs\";\n",
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName,
MaterialName, MaterialName
);
}
Writer.WriteLineFmt(
"connectAttr \"%sSG.pa\" \":renderPartition.st\" -na;\n"
"connectAttr \"%s.msg\" \":defaultShaderList1.s\" -na;\n"
"connectAttr \"%sP2DT.msg\" \":defaultRenderUtilityList1.u\" -na;\n"
"connectAttr \"%sFILE.msg\" \":defaultTextureList1.tx\" -na;\n",
MaterialName,
MaterialName,
MaterialName,
MaterialName
);
LightConnectionIndex++;
}
SubmeshIndex = 0;
for (auto& Submesh : Model.Meshes)
{
Writer.WriteLineFmt(
"setAttr -s %d \"MeshShape_%d.iog\";",
Submesh.Vertices.UVLayerCount(), SubmeshIndex
);
for (uint8_t i = 0; i < Submesh.Vertices.UVLayerCount(); i++)
{
if (Submesh.MaterialIndices[i] < 0)
continue;
Writer.WriteLineFmt(
"connectAttr \"MeshShape_%d.iog[%d]\" \"%sSG.dsm\" -na;",
SubmeshIndex, i, (char*)Model.Materials[Submesh.MaterialIndices[i]].Name
);
}
SubmeshIndex++;
}
Writer.WriteLine(
"createNode transform -n \"Joints\";\nsetAttr \".ove\" yes;\n"
);
for (auto& Bone : Model.Bones)
{
if (Bone.Parent() == -1)
Writer.WriteLineFmt("createNode joint -n \"%s\" -p \"Joints\";", (char*)Bone.Name());
else
Writer.WriteLineFmt("createNode joint -n \"%s\" -p \"%s\";", (char*)Bone.Name(), (char*)Model.Bones[Bone.Parent()].Name());
if (Bone.GetFlag(BoneFlags::HasLocalSpaceMatrices))
{
auto Rotation = Bone.LocalRotation().ToEulerAngles();
auto& Position = Bone.LocalPosition();
auto& Scale = Bone.Scale();
Writer.WriteLineFmt(
"addAttr -ci true -sn \"liw\" -ln \"lockInfluenceWeights\" -bt \"lock\" -min 0 -max 1 -at \"bool\";\n"
"setAttr \".uoc\" yes;\n"
"setAttr \".ove\" yes;\n"
"setAttr \".t\" -type \"double3\" %f %f %f ;\n"
"setAttr \".mnrl\" -type \"double3\" -360 -360 -360 ;\n"
"setAttr \".mxrl\" -type \"double3\" 360 360 360 ;\n"
"setAttr \".radi\" 0.50;\n"
"setAttr \".jo\" -type \"double3\" %f %f %f;\n"
"setAttr \".scale\" -type \"double3\" %f %f %f;\n",
Position.X, Position.Y, Position.Z,
Rotation.X, Rotation.Y, Rotation.Z,
Scale.X, Scale.Y, Scale.Z
);
}
else
{
auto Rotation = Bone.GlobalRotation().ToEulerAngles();
auto& Position = Bone.GlobalPosition();
auto& Scale = Bone.Scale();
Writer.WriteLineFmt(
"addAttr -ci true -sn \"liw\" -ln \"lockInfluenceWeights\" -bt \"lock\" -min 0 -max 1 -at \"bool\";\n"
"setAttr \".uoc\" yes;\n"
"setAttr \".ove\" yes;\n"
"setAttr \".it\" no;\n"
"setAttr \".t\" -type \"double3\" %f %f %f ;\n"
"setAttr \".mnrl\" -type \"double3\" -360 -360 -360 ;\n"
"setAttr \".mxrl\" -type \"double3\" 360 360 360 ;\n"
"setAttr \".radi\" 0.50;\n"
"setAttr \".jo\" -type \"double3\" %f %f %f;\n"
"setAttr \".scale\" -type \"double3\" %f %f %f;\n",
Position.X, Position.Y, Position.Z,
Rotation.X, Rotation.Y, Rotation.Z,
Scale.X, Scale.Y, Scale.Z
);
}
}
auto Binder = IO::StreamWriter(IO::File::Create(IO::Path::Combine(IO::Path::GetDirectoryName(Path), FileName + "_BIND.mel")));
Binder.WriteLine(
"/*\n* Autodesk Maya Bind Script\n*/\n"
);
SubmeshIndex = 0;
for (auto& Submesh : Model.Meshes)
{
Binder.WriteLineFmt(
"global proc KoreMesh_%08x_%02d_BindFunc()\n{\n"
" select -r KoreMesh_%08x_%02d;",
Hash, SubmeshIndex,
Hash, SubmeshIndex
);
auto MaximumInfluence = Submesh.Vertices.WeightCount();
uint32_t BoneMapIndex = 0;
Dictionary<uint32_t, uint8_t> BoneMap;
Dictionary<uint32_t, uint32_t> ReverseBoneMap;
List<string> BoneNames;
for (auto& Vertex : Submesh.Vertices)
{
for (uint8_t i = 0; i < Vertex.WeightCount(); i++)
{
auto& Weight = Vertex.Weights(i);
if (BoneMap.Add(Weight.Bone, 0))
{
BoneNames.Add(Model.Bones[Weight.Bone].Name());
ReverseBoneMap.Add(BoneMapIndex, Weight.Bone);
BoneMapIndex++;
}
}
}
for (auto& BoneName : BoneNames)
Binder.WriteLineFmt(" select -add %s;", (char*)BoneName);
Binder.WriteLineFmt(
" newSkinCluster \"-toSelectedBones -mi %d -omi true -dr 5.0 -rui false\";\n"
" string $clu = findRelatedSkinCluster(\"KoreMesh_%08x_%02d\");",
MaximumInfluence,
Hash, SubmeshIndex
);
// If we are a complex skin, we need a weight matrix
if (BoneNames.Count() > 1)
{
Binder.WriteFmt(" int $NV = %d;\n matrix $WM[%d][%d] = <<", Submesh.Vertices.Count(), Submesh.Vertices.Count(), BoneNames.Count());
for (uint32_t i = 0; i < Submesh.Vertices.Count(); i++)
{
auto Vertex = Submesh.Vertices[i];
if (i != 0)
Binder.Write(";");
for (uint32_t b = 0; b < BoneNames.Count(); b++)
{
if (b != 0)
Binder.Write(",");
float WeightValue = 0.0f;
for (uint8_t w = 0; w < Vertex.WeightCount(); w++)
{
if (Vertex.Weights(w).Bone == ReverseBoneMap[b])
{
WeightValue = Vertex.Weights(w).Value;
break;
}
}
if (WeightValue == 0.0f || WeightValue == 1.0f)
Binder.WriteFmt("%d", (uint32_t)WeightValue);
else
Binder.WriteFmt("%f", WeightValue);
}
}
Binder.WriteLine(">>;");
Binder.Write(" for ($i = 0; $i < $NV; $i++) {");
Binder.WriteFmt(" setAttr($clu + \".weightList[\" + $i + \"].weights[0:%d]\")", BoneNames.Count() - 1);
for (uint32_t i = 0; i < BoneNames.Count(); i++)
Binder.WriteFmt(" $WM[$i][%d]", i);
Binder.WriteLine("; }");
}
Binder.WriteLine("}\n");
SubmeshIndex++;
}
Binder.WriteLine("global proc RunAdvancedScript()\n{");
SubmeshIndex = 0;
for (auto& Submesh : Model.Meshes)
Binder.WriteLineFmt(" catch(KoreMesh_%08x_%02d_BindFunc());", Hash, SubmeshIndex++);
Binder.WriteLine("}\n\nglobal proc NamespacePurge()\n{\n string $allNodes[] = `ls`;\n for($node in $allNodes) {\n string $buffer[];\n tokenize $node \":\" $buffer;\n string $newName = $buffer[size($buffer)-1];\n catchQuiet(`rename $node $newName`);\n }\n}\n\nprint(\"Currently binding the current model, please wait...\\n\");\nNamespacePurge();\nRunAdvancedScript();\nprint(\"The model has been binded.\\n\");\n");
return true;
}
imstring AutodeskMaya::ModelExtension()
{
return ".ma";
}
imstring AutodeskMaya::AnimationExtension()
{
return ".anim";
}
ExporterScale AutodeskMaya::ExportScale()
{
return ExporterScale::CM;
}
bool AutodeskMaya::SupportsAnimations()
{
return true;
}
bool AutodeskMaya::SupportsModels()
{
return true;
}
}

View File

@ -0,0 +1,33 @@
#pragma once
#include <cstdint>
#include "Exporter.h"
namespace Assets::Exporters
{
// The Autodesk Maya exporter
class AutodeskMaya : public Exporter
{
public:
AutodeskMaya() = default;
~AutodeskMaya() = default;
// Exports the given animation to the provided path.
virtual bool ExportAnimation(const Animation& Animation, const string& Path);
// Exports the given model to the provided path.
virtual bool ExportModel(const Model& Model, const string& Path);
// Gets the file extension for this exporters model format.
virtual imstring ModelExtension();
// Gets the file extension for this exporters animation format.
virtual imstring AnimationExtension();
// Gets the required scaling constant for this exporter.
virtual ExporterScale ExportScale();
// Gets whether or not the exporter supports animation exporting.
virtual bool SupportsAnimations();
// Gets whether or not the exporter supports model exporting.
virtual bool SupportsModels();
};
}

View File

@ -0,0 +1,251 @@
#include "stdafx.h"
#include "BinaryReader.h"
#include "Pattern.h"
namespace IO
{
BinaryReader::BinaryReader()
: BinaryReader(nullptr, false)
{
}
BinaryReader::BinaryReader(std::unique_ptr<Stream> Stream)
: BinaryReader(std::move(Stream), false)
{
}
BinaryReader::BinaryReader(std::unique_ptr<Stream> Stream, bool LeaveOpen)
{
this->BaseStream = std::move(Stream);
this->_LeaveOpen = LeaveOpen;
}
BinaryReader::BinaryReader(Stream* Stream)
: BinaryReader(Stream, false)
{
}
BinaryReader::BinaryReader(Stream* Stream, bool LeaveOpen)
{
this->BaseStream.reset(Stream);
this->_LeaveOpen = LeaveOpen;
}
BinaryReader::~BinaryReader()
{
this->Close();
}
std::unique_ptr<uint8_t[]> BinaryReader::Read(uint64_t Count, uint64_t& Result)
{
auto Buffer = std::make_unique<uint8_t[]>(Count);
Result = Read(Buffer.get(), 0, Count);
return Buffer;
}
uint64_t BinaryReader::Read(uint8_t* Buffer, uint64_t Index, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
return this->BaseStream->Read(Buffer, Index, Count);
}
uint64_t BinaryReader::Read(void* Buffer, uint64_t Index, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
return this->BaseStream->Read((uint8_t*)Buffer, Index, Count);
}
string BinaryReader::ReadCString()
{
if (!this->BaseStream)
IOError::StreamBaseStream();
string Buffer = "";
char Cur = this->Read<char>();
while ((uint8_t)Cur > 0)
{
Buffer += Cur;
Cur = this->Read<char>();
}
return std::move(Buffer);
}
wstring BinaryReader::ReadWCString()
{
if (!this->BaseStream)
IOError::StreamBaseStream();
wstring Buffer = L"";
wchar_t Cur = this->Read<wchar_t>();
while (Cur != (wchar_t)'\0')
{
Buffer += Cur;
Cur = this->Read<wchar_t>();
}
return std::move(Buffer);
}
string BinaryReader::ReadSizeString(uint64_t Size)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
auto Buffer = string((uint32_t)Size, '\0');
this->BaseStream->Read((uint8_t*)&Buffer[0], 0, Size);
return std::move(Buffer);
}
string BinaryReader::ReadNetString()
{
if (!this->BaseStream)
IOError::StreamBaseStream();
auto Buffer = string(this->ReadVarInt(), '\0');
this->BaseStream->Read((uint8_t*)&Buffer[0], 0, (uint64_t)Buffer.Length());
return std::move(Buffer);
}
uint32_t BinaryReader::ReadVarInt()
{
uint32_t Count = 0, Shift = 0;
uint8_t Byte;
do
{
if (Shift == 5 * 7)
return 0;
Byte = this->Read<uint8_t>();
Count |= (Byte & 0x7F) << Shift;
Shift += 7;
} while ((Byte & 0x80) != 0);
return Count;
}
int64_t BinaryReader::SignatureScan(const string& Signature)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
auto Sig = Data::Pattern(Signature);
auto Position = this->BaseStream->GetPosition();
auto Length = this->BaseStream->GetLength();
auto ChunkSize = (0x5F5E100 + (0x5F5E100 % Sig.DataSize()));
uint64_t SearchResult = -1, ReadResult = 0, DataRead = 0;
while (true)
{
auto StartPosition = this->BaseStream->GetPosition();
auto Buffer = this->Read(ChunkSize, ReadResult);
auto ChunkResult = Sig.Search(Buffer.get(), 0, ReadResult);
if (ChunkResult > -1)
{
return (DataRead + ChunkResult + StartPosition);
}
DataRead += ReadResult;
if (ReadResult < ChunkSize)
break;
}
return SearchResult;
}
int64_t BinaryReader::SignatureScan(const string& Signature, uint64_t Offset, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
uint64_t ReadResult = 0;
auto Sig = Data::Pattern(Signature);
this->BaseStream->SetPosition(Offset);
auto Buffer = this->Read(Count, ReadResult);
auto SearchResult = Sig.Search(Buffer.get(), 0, ReadResult);
if (SearchResult > -1)
return (SearchResult + Offset);
return SearchResult;
}
List<int64_t> BinaryReader::SignatureScanAll(const string & Signature)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
auto ResultList = List<int64_t>();
auto Sig = Data::Pattern(Signature);
auto Position = this->BaseStream->GetPosition();
auto Length = this->BaseStream->GetLength();
auto ChunkSize = (0x5F5E100 + (0x5F5E100 % Sig.DataSize()));
uint64_t SearchResult = -1, ReadResult = 0, DataRead = 0;
while (true)
{
auto StartPosition = this->BaseStream->GetPosition();
auto Buffer = this->Read(ChunkSize, ReadResult);
auto ChunkResult = Sig.SearchAll(Buffer.get(), 0, ReadResult);
for (auto& Result : ChunkResult)
ResultList.EmplaceBack(Result + DataRead + StartPosition);
DataRead += ReadResult;
if (ReadResult < ChunkSize)
break;
}
return ResultList;
}
List<int64_t> BinaryReader::SignatureScanAll(const string & Signature, uint64_t Offset, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
uint64_t ReadResult = 0;
auto Sig = Data::Pattern(Signature);
this->BaseStream->SetPosition(Offset);
auto Buffer = this->Read(Count, ReadResult);
auto ResultList = Sig.SearchAll(Buffer.get(), 0, ReadResult);
for (auto& Result : ResultList)
Result += Offset;
return ResultList;
}
Stream* BinaryReader::GetBaseStream() const
{
return this->BaseStream.get();
}
void BinaryReader::Close()
{
// Forcefully reset the stream
if (this->_LeaveOpen)
this->BaseStream.release();
else
this->BaseStream.reset();
}
}

View File

@ -0,0 +1,72 @@
#pragma once
#include <memory>
#include "Stream.h"
#include "ListBase.h"
#include "StringBase.h"
namespace IO
{
// BinaryReader supports reading binary data streams
class BinaryReader
{
public:
BinaryReader();
BinaryReader(std::unique_ptr<Stream> Stream);
BinaryReader(std::unique_ptr<Stream> Stream, bool LeaveOpen);
BinaryReader(Stream* Stream);
BinaryReader(Stream* Stream, bool LeaveOpen);
~BinaryReader();
template <class T>
// Reads data of type T from the stream
T Read() const
{
if (!this->BaseStream)
IOError::StreamBaseStream();
T ResultValue{};
this->BaseStream->Read((uint8_t*)&ResultValue, 0, sizeof(T));
return ResultValue;
}
// Reads data from the stream
std::unique_ptr<uint8_t[]> Read(uint64_t Count, uint64_t& Result);
// Reads data from the stream to the specified buffer
uint64_t Read(uint8_t* Buffer, uint64_t Index, uint64_t Count);
// Reads data from the stream to the specified buffer
uint64_t Read(void* Buffer, uint64_t Index, uint64_t Count);
// Reads a null-terminated string from the stream
string ReadCString();
// Reads a wide null-terminated string from the stream
wstring ReadWCString();
// Reads a size-string from the stream
string ReadSizeString(uint64_t Size);
// Reads a .NET string from the stream
string ReadNetString();
// Reads an integer encoded into 7 bits, top bit = read more
uint32_t ReadVarInt();
// Scan the stream for a given signature
int64_t SignatureScan(const string& Signature);
// Scan the stream for a given signature
int64_t SignatureScan(const string& Signature, uint64_t Offset, uint64_t Count);
// Scan the process for a given signature (All occurences)
List<int64_t> SignatureScanAll(const string& Signature);
// Scan the process for a given signature (All occurences)
List<int64_t> SignatureScanAll(const string& Signature, uint64_t Offset, uint64_t Count);
// Get the underlying stream
Stream* GetBaseStream() const;
// Close the BinaryReader and underlying stream
void Close();
private:
std::unique_ptr<Stream> BaseStream;
bool _LeaveOpen;
};
}

View File

@ -0,0 +1,145 @@
#include "stdafx.h"
#include "BinaryWriter.h"
namespace IO
{
BinaryWriter::BinaryWriter()
: BinaryWriter(nullptr, false)
{
}
BinaryWriter::BinaryWriter(std::unique_ptr<Stream> Stream)
: BinaryWriter(std::move(Stream), false)
{
}
BinaryWriter::BinaryWriter(std::unique_ptr<Stream> Stream, bool LeaveOpen)
{
this->BaseStream = std::move(Stream);
this->_LeaveOpen = LeaveOpen;
}
BinaryWriter::BinaryWriter(Stream* Stream)
: BinaryWriter(Stream, false)
{
}
BinaryWriter::BinaryWriter(Stream * Stream, bool LeaveOpen)
{
this->BaseStream.reset(Stream);
this->_LeaveOpen = LeaveOpen;
}
BinaryWriter::~BinaryWriter()
{
this->Close();
}
void BinaryWriter::Write(std::unique_ptr<uint8_t[]>& Buffer, uint64_t Count)
{
this->Write(Buffer.get(), 0, Count);
}
void BinaryWriter::Write(uint8_t* Buffer, uint64_t Index, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
this->BaseStream->Write(Buffer, Index, Count);
}
void BinaryWriter::Write(void* Buffer, uint64_t Index, uint64_t Count)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
this->BaseStream->Write((uint8_t*)Buffer, Index, Count);
}
void BinaryWriter::WriteCString(const string& Value)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
uint8_t NullBuffer = 0x0;
auto ValueLength = Value.Length();
this->BaseStream->Write((uint8_t*)Value.begin(), 0, ValueLength);
if (ValueLength == 0 || Value[ValueLength - 1] != '\0')
this->BaseStream->Write(&NullBuffer, 0, 1);
}
void BinaryWriter::WriteWCString(const wstring& Value)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
uint16_t NullBuffer = 0x0;
auto ValueLength = Value.Length();
this->BaseStream->Write((uint8_t*)Value.begin(), 0, ValueLength * sizeof(wchar_t));
if (ValueLength == 0 || Value[ValueLength - 1] != (wchar_t)'\0')
this->BaseStream->Write((uint8_t*)&NullBuffer, 0, sizeof(uint16_t));
}
void BinaryWriter::WriteSizeString(const string& Value)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
this->BaseStream->Write((uint8_t*)Value.begin(), 0, Value.Length());
}
void BinaryWriter::WriteNetString(const string& Value)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
auto ValueSize = (uint32_t)Value.Length();
this->WriteVarInt(ValueSize);
this->BaseStream->Write((uint8_t*)Value.begin(), 0, ValueSize);
}
void BinaryWriter::WriteVarInt(uint32_t Value)
{
// Write out 7 bits per byte, highest bit = keep reading
while (Value >= 0x80)
{
this->Write<uint8_t>((uint8_t)(Value | 0x80));
Value >>= 7;
}
this->Write<uint8_t>((uint8_t)Value);
}
void BinaryWriter::Pad(uint64_t Count)
{
char Padding[0x1000]{};
while (Count > 0)
{
auto Want = (Count > 0x1000) ? 0x1000 : Count;
Write(Padding, 0, Want);
Count -= Want;
}
}
Stream* BinaryWriter::GetBaseStream() const
{
return this->BaseStream.get();
}
void BinaryWriter::Close()
{
// Forcefully reset the stream
if (this->_LeaveOpen)
this->BaseStream.release();
else
this->BaseStream.reset();
}
}

View File

@ -0,0 +1,61 @@
#pragma once
#include <memory>
#include "Stream.h"
#include "StringBase.h"
namespace IO
{
// BinaryWriter supports writing to binary data streams
class BinaryWriter
{
public:
BinaryWriter();
BinaryWriter(std::unique_ptr<Stream> Stream);
BinaryWriter(std::unique_ptr<Stream> Stream, bool LeaveOpen);
BinaryWriter(Stream* Stream);
BinaryWriter(Stream* Stream, bool LeaveOpen);
~BinaryWriter();
template<class T>
// Writes data of type T to the stream
void Write(T Value)
{
if (!this->BaseStream)
IOError::StreamBaseStream();
this->BaseStream->Write((uint8_t*)&Value, 0, sizeof(T));
}
// Writes data to the stream
void Write(std::unique_ptr<uint8_t[]>& Buffer, uint64_t Count);
// Writes data to the stream to the specified buffer
void Write(uint8_t* Buffer, uint64_t Index, uint64_t Count);
// Writes data to the stream to the specified buffer
void Write(void* Buffer, uint64_t Index, uint64_t Count);
// Writes a null-terminated string to the stream
void WriteCString(const string& Value);
// Writes a wide null-terminated string to the stream
void WriteWCString(const wstring& Value);
// Writes a already predetermined size string to the stream
void WriteSizeString(const string& Value);
// Writes a .NET string to the stream
void WriteNetString(const string& Value);
// Writes an integer encoded into 7 bits, top bit = read more
void WriteVarInt(uint32_t Value);
// Writes padding bytes (0x0) to the stream
void Pad(uint64_t Count);
// Get the underlying stream
Stream* GetBaseStream() const;
// Close the BinaryWriter and underlying stream
void Close();
private:
std::unique_ptr<Stream> BaseStream;
bool _LeaveOpen;
};
}

140
r5dev/thirdparty/cppnet/cppkore/Bone.cpp vendored Normal file
View File

@ -0,0 +1,140 @@
#include "stdafx.h"
#include "Bone.h"
namespace Assets
{
Bone::Bone()
: _Parent(-1), _Flags(BoneFlags::HasLocalSpaceMatrices), _LocalSpacePosition(0, 0, 0), _LocalSpaceRotation(0, 0, 0, 1), _GlobalSpacePosition(0, 0, 0), _GlobalSpaceRotation(0, 0, 0, 1), _Scale(1, 1, 1)
{
}
Bone::Bone(const string& Name)
: Bone(Name, -1, { 0, 0, 0 }, { 0, 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0, 1 }, { 1, 1, 1 }, BoneFlags::HasLocalSpaceMatrices)
{
}
Bone::Bone(const string& Name, int32_t ParentIndex)
: Bone(Name, ParentIndex, { 0, 0, 0 }, { 0, 0, 0, 1 }, { 0, 0, 0 }, { 0, 0, 0, 1 }, { 1, 1, 1 }, BoneFlags::HasLocalSpaceMatrices)
{
}
Bone::Bone(const string& Name, int32_t ParentIndex, Vector3 Position, Quaternion Rotation, BoneFlags Flags)
: Bone(Name, ParentIndex)
{
if (((int)Flags & (int)BoneFlags::HasLocalSpaceMatrices) == (int)BoneFlags::HasLocalSpaceMatrices)
{
this->_LocalSpacePosition = Position;
this->_LocalSpaceRotation = Rotation;
}
else
{
this->_GlobalSpacePosition = Position;
this->_GlobalSpaceRotation = Rotation;
}
this->_Flags = Flags;
}
Bone::Bone(const string & Name, int32_t ParentIndex, Vector3 Position, Quaternion Rotation, Vector3 Scale, BoneFlags Flags)
: Bone(Name, ParentIndex)
{
if (((int)Flags & (int)BoneFlags::HasLocalSpaceMatrices) == (int)BoneFlags::HasLocalSpaceMatrices)
{
this->_LocalSpacePosition = Position;
this->_LocalSpaceRotation = Rotation;
}
else
{
this->_GlobalSpacePosition = Position;
this->_GlobalSpaceRotation = Rotation;
}
this->_Scale = Scale;
this->_Flags = Flags;
}
Bone::Bone(const string& Name, int32_t ParentIndex, Vector3 LocalPosition, Quaternion LocalRotation, Vector3 GlobalPosition, Quaternion GlobalRotation, Vector3 Scale, BoneFlags Flags)
: _Name(Name), _Parent(ParentIndex), _LocalSpacePosition(LocalPosition), _LocalSpaceRotation(LocalRotation), _GlobalSpacePosition(GlobalPosition), _GlobalSpaceRotation(GlobalRotation), _Scale(Scale), _Flags(Flags)
{
}
bool Bone::GetFlag(BoneFlags Flag)
{
return ((int)this->_Flags & (int)Flag) == (int)Flag;
}
void Bone::SetFlag(BoneFlags Flags, bool Value)
{
this->_Flags = Value ? (BoneFlags)((int)this->_Flags | (int)Flags) : (BoneFlags)((int)this->_Flags & ~(int)Flags);
}
const string& Bone::Name() const
{
return this->_Name;
}
void Bone::SetName(const string& Value)
{
this->_Name = Value;
}
const int32_t& Bone::Parent() const
{
return this->_Parent;
}
void Bone::SetParent(int32_t Value)
{
this->_Parent = Value;
}
const Vector3& Bone::LocalPosition() const
{
return this->_LocalSpacePosition;
}
void Bone::SetLocalPosition(Vector3 Value)
{
this->_LocalSpacePosition = Value;
}
const Quaternion& Bone::LocalRotation() const
{
return this->_LocalSpaceRotation;
}
void Bone::SetLocalRotation(Quaternion Value)
{
this->_LocalSpaceRotation = Value;
}
const Vector3& Bone::GlobalPosition() const
{
return this->_GlobalSpacePosition;
}
void Bone::SetGlobalPosition(Vector3 Value)
{
this->_GlobalSpacePosition = Value;
}
const Quaternion& Bone::GlobalRotation() const
{
return this->_GlobalSpaceRotation;
}
void Bone::SetGlobalRotation(Quaternion Value)
{
this->_GlobalSpaceRotation = Value;
}
const Vector3& Bone::Scale() const
{
return this->_Scale;
}
void Bone::SetScale(Vector3 Value)
{
this->_Scale = Value;
}
}

93
r5dev/thirdparty/cppnet/cppkore/Bone.h vendored Normal file
View File

@ -0,0 +1,93 @@
#pragma once
#include <cstdint>
#include "StringBase.h"
#include "MathHelper.h"
#include "Vector3.h"
#include "Quaternion.h"
#include "BoneFlags.h"
namespace Assets
{
using namespace Math; // All of the matrices classes are in Math::*
// A container class that holds 3D bone data.
class Bone
{
public:
// Initialize a blank 3D bone.
Bone();
// Initialize a 3D bone with it's tag name.
Bone(const string& Name);
// Initialize a 3D bone with it's tag name, and parent index.
Bone(const string& Name, int32_t ParentIndex);
// Initialize a 3D bone with it's tag name, parent index, and transposition matrix.
Bone(const string& Name, int32_t ParentIndex, Vector3 Position, Quaternion Rotation, BoneFlags Flags = BoneFlags::HasLocalSpaceMatrices);
// Initialize a 3D bone with it's tag name, parent index, transposition matrix, and scale transform.
Bone(const string& Name, int32_t ParentIndex, Vector3 Position, Quaternion Rotation, Vector3 Scale, BoneFlags Flags = (BoneFlags::HasLocalSpaceMatrices | BoneFlags::HasScale));
// Initialize a 3D bone with it's tag name, parent index, local and global transposition matrix, and scale transform.
Bone(const string& Name, int32_t ParentIndex, Vector3 LocalPosition, Quaternion LocalRotation, Vector3 GlobalPosition, Quaternion GlobalRotation, Vector3 Scale, BoneFlags Flags = (BoneFlags::HasGlobalSpaceMatrices | BoneFlags::HasLocalSpaceMatrices | BoneFlags::HasScale));
// Destroy all 3D bone resources.
~Bone() = default;
// Ensure that our bone is not copied or assigned to for performance reasons.
Bone(const Bone&) = delete;
// Gets bone specific flags.
bool GetFlag(BoneFlags Flag);
// Sets bone specific flags.
void SetFlag(BoneFlags Flags, bool Value);
// Gets the tag name assigned to the bone.
const string& Name() const;
// Sets the tag name assigned to the bone.
void SetName(const string& Value);
// Gets the parent bone index.
const int32_t& Parent() const;
// Sets the parent bone index.
void SetParent(int32_t Value);
// Gets the local space position.
const Vector3& LocalPosition() const;
// Sets the local space position.
void SetLocalPosition(Vector3 Value);
// Gets the local space rotation.
const Quaternion& LocalRotation() const;
// Sets the local space rotation.
void SetLocalRotation(Quaternion Value);
// Gets the global space position.
const Vector3& GlobalPosition() const;
// Sets the global space position.
void SetGlobalPosition(Vector3 Value);
// Gets the global space rotation.
const Quaternion& GlobalRotation() const;
// Sets the global space rotation.
void SetGlobalRotation(Quaternion Value);
// Gets the scale transform.
const Vector3& Scale() const;
// Sets the scale transform.
void SetScale(Vector3 Value);
private:
// Internal tag name
string _Name;
// Internal parent index
int32_t _Parent;
// Internal flags for this bone
BoneFlags _Flags;
// Internal 3D matrix information for this bone
Vector3 _LocalSpacePosition;
Vector3 _GlobalSpacePosition;
Quaternion _LocalSpaceRotation;
Quaternion _GlobalSpaceRotation;
Vector3 _Scale;
};
}

View File

@ -0,0 +1,26 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Assets
{
// This enumeration represents the possible bone flags.
enum class BoneFlags : uint8_t
{
// Whether or not the bone has local space transforms
HasLocalSpaceMatrices = 0x1,
// Whether or not the bone has global space transforms
HasGlobalSpaceMatrices = 0x2,
// Whether or not the bone has a scale transform
HasScale = 0x4
};
//
// Allow bitwise operations on this enumeration
//
constexpr BoneFlags operator|(BoneFlags Lhs, BoneFlags Rhs)
{
return static_cast<BoneFlags>(static_cast<std::underlying_type<BoneFlags>::type>(Lhs) | static_cast<std::underlying_type<BoneFlags>::type>(Rhs));
};
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the border style for a control or form.
enum class BorderStyle
{
// No border.
None = 0,
// A single-line border.
FixedSingle = 1,
// A three-dimensional border.
Fixed3D = 2
};
}

View File

@ -0,0 +1,21 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// Specifies the bounds of the control to
// use when defining a control's size and position.
enum class BoundsSpecified : uint32_t
{
X = 0x1,
Y = 0x2,
Width = 0x4,
Height = 0x8,
Location = X | Y,
Size = Width | Height,
All = Location | Size,
None = 0,
};
}

View File

@ -0,0 +1,27 @@
#include "stdafx.h"
#include "BufferedGraphics.h"
namespace Drawing
{
BufferedGraphics::BufferedGraphics(HDC TargetDC, Drawing::Rectangle TargetRectangle)
: _TargetDC(TargetDC), Rectangle(TargetRectangle)
{
this->Buffer = std::make_unique<Drawing::Bitmap>(TargetRectangle.Width, TargetRectangle.Height);
this->Graphics = std::make_unique<Drawing::Graphics>(this->Buffer.get());
}
void BufferedGraphics::Render()
{
// Render the buffer to the target
auto Gfx = Gdiplus::Graphics::FromHDC(this->_TargetDC);
Gfx->DrawImage(this->Buffer.get(), this->Rectangle);
// Clean up the graphics object
delete Gfx;
}
Drawing::Rectangle BufferedGraphics::Region()
{
return Drawing::Rectangle(0, 0, this->Rectangle.Width, this->Rectangle.Height);
}
}

View File

@ -0,0 +1,32 @@
#pragma once
#include <memory>
#include "DrawingBase.h"
namespace Drawing
{
class BufferedGraphics
{
public:
BufferedGraphics(HDC TargetDC, Drawing::Rectangle TargetRectangle);
~BufferedGraphics() = default;
// Renders the buffered graphics to the target surface
void Render();
// Gets the size of the region
Drawing::Rectangle Region();
// The graphics instance for this instance
std::unique_ptr<Drawing::Graphics> Graphics;
private:
// Internal buffer to draw to
std::unique_ptr<Drawing::Bitmap> Buffer;
// Internal target handle
HDC _TargetDC;
// Internal size of the buffer region
Drawing::Rectangle Rectangle;
};
}

View File

@ -0,0 +1,104 @@
#include "stdafx.h"
#include "Button.h"
#include "Form.h"
namespace Forms
{
Button::Button()
: ButtonBase(), _DialogResult(DialogResult::None)
{
SetStyle(ControlStyles::StandardClick | ControlStyles::StandardDoubleClick, false);
// We are a button control
this->_RTTI = ControlTypes::Button;
}
DialogResult Button::GetDialogResult()
{
return this->_DialogResult;
}
void Button::SetDialogResult(DialogResult Value)
{
this->_DialogResult = Value;
}
void Button::PerformClick()
{
if (CanSelect())
{
ResetFlagsAndPaint();
OnClick();
}
}
void Button::NotifyDefault(bool Value)
{
if (IsDefault() != Value)
SetIsDefault(Value);
}
void Button::OnClick()
{
auto Form = this->FindForm();
if (Form != nullptr)
((Forms::Form*)Form)->SetDialogResult(this->_DialogResult);
// Call base event last
ButtonBase::OnClick();
}
void Button::OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs)
{
if (EventArgs->Button == MouseButtons::Left && GetFlag(ButtonFlags::FlagMousePressed))
{
auto isMouseDown = GetFlag(ButtonFlags::FlagMouseDown);
if (GetStyle(ControlStyles::UserPaint))
{
this->ResetFlagsAndPaint();
}
if (isMouseDown)
{
auto Pt = PointToScreen({ (INT)EventArgs->X, (INT)EventArgs->Y });
POINT nPt;
nPt.x = Pt.X;
nPt.y = Pt.Y;
if (WindowFromPoint(nPt) == this->_Handle)
{
if (GetStyle(ControlStyles::UserPaint))
OnClick();
OnMouseClick(EventArgs);
}
}
}
// Call base event last
ButtonBase::OnMouseUp(EventArgs);
}
CreateParams Button::GetCreateParams()
{
auto Cp = ButtonBase::GetCreateParams();
Cp.ClassName = "BUTTON";
if (GetStyle(ControlStyles::UserPaint))
Cp.Style |= BS_OWNERDRAW;
else
{
Cp.Style |= BS_MULTILINE;
Cp.Style |= BS_PUSHBUTTON;
if (this->IsDefault())
Cp.Style |= BS_DEFPUSHBUTTON;
}
return Cp;
}
}

View File

@ -0,0 +1,42 @@
#pragma once
#include <cstdint>
#include "Control.h"
#include "ButtonBase.h"
#include "DialogResult.h"
namespace Forms
{
// Represents a Windows button.
class Button : public ButtonBase
{
public:
Button();
virtual ~Button() = default;
// Gets a value that is returned to the
// parent form when the button is clicked.
DialogResult GetDialogResult();
// Sets a value that is returned to the
// parent form when the button is clicked.
void SetDialogResult(DialogResult Value);
// Generates a click event for a button.
void PerformClick();
// Changes the default action status.
void NotifyDefault(bool Value);
// We must define base events here
virtual void OnClick();
virtual void OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs);
protected:
// Get custom control creation parameters for this instance.
virtual CreateParams GetCreateParams();
private:
// Internal cached dialog result that this button represents
DialogResult _DialogResult;
};
}

View File

@ -0,0 +1,330 @@
#include "stdafx.h"
#include "ButtonBase.h"
namespace Forms
{
ButtonBase::ButtonBase()
: Control(), _OwnerDraw(false), _Flags((ButtonFlags)0), _FlatStyle(FlatStyle::Standard), _TextAlign(Drawing::ContentAlignment::MiddleCenter)
{
SetStyle(ControlStyles::SupportsTransparentBackColor |
ControlStyles::Opaque |
ControlStyles::ResizeRedraw |
ControlStyles::OptimizedDoubleBuffer |
ControlStyles::CacheText |
ControlStyles::StandardClick, true);
SetStyle(ControlStyles::UserMouse |
ControlStyles::UserPaint, this->_OwnerDraw);
}
bool ButtonBase::OwnerDraw()
{
return this->_OwnerDraw;
}
void ButtonBase::SetOwnerDraw(bool Value)
{
this->_OwnerDraw = Value;
SetStyle(ControlStyles::UserMouse | ControlStyles::UserPaint, Value);
UpdateStyles();
Invalidate();
}
Drawing::ContentAlignment ButtonBase::TextAlign()
{
return this->_TextAlign;
}
void ButtonBase::SetTextAlign(Drawing::ContentAlignment Value)
{
this->_TextAlign = Value;
if (this->_OwnerDraw)
Invalidate();
else
UpdateStyles();
}
FlatStyle ButtonBase::GetFlatStyle()
{
return this->_FlatStyle;
}
void ButtonBase::SetFlatStyle(FlatStyle Value)
{
this->_FlatStyle = Value;
Invalidate();
// Force update styles...
SetStyle(ControlStyles::UserMouse | ControlStyles::UserPaint, this->_OwnerDraw);
UpdateStyles();
}
bool ButtonBase::IsDefault()
{
return GetFlag(ButtonFlags::FlagIsDefault);
}
void ButtonBase::SetIsDefault(bool Value)
{
if (IsDefault() != Value)
{
SetFlag(ButtonFlags::FlagIsDefault, Value);
if (this->_OwnerDraw)
Invalidate();
else
UpdateStyles();
}
}
bool ButtonBase::GetFlag(ButtonFlags Flag)
{
return ((int)this->_Flags & (int)Flag) == (int)Flag;
}
void ButtonBase::SetFlag(ButtonFlags Flags, bool Value)
{
this->_Flags = Value ? (ButtonFlags)((int)this->_Flags | (int)Flags) : (ButtonFlags)((int)this->_Flags & ~(int)Flags);
}
void ButtonBase::OnLostFocus()
{
Control::OnLostFocus();
// Hitting tab while holding down the space key
SetFlag(ButtonFlags::FlagMouseDown, false);
SetCapture(false);
Invalidate();
}
void ButtonBase::OnGotFocus()
{
Control::OnGotFocus();
Invalidate();
}
void ButtonBase::OnMouseEnter()
{
SetFlag(ButtonFlags::FlagMouseOver, true);
Invalidate();
// Call base event last
Control::OnMouseEnter();
}
void ButtonBase::OnMouseLeave()
{
SetFlag(ButtonFlags::FlagMouseOver, false);
Invalidate();
// Call base event last
Control::OnMouseLeave();
}
void ButtonBase::OnEnabledChanged()
{
Control::OnEnabledChanged();
if (!Enabled())
{
SetFlag(ButtonFlags::FlagMouseDown | ButtonFlags::FlagMouseOver, false);
Invalidate();
}
}
void ButtonBase::OnTextChanged()
{
Control::OnTextChanged();
Invalidate();
}
void ButtonBase::OnMouseMove(const std::unique_ptr<MouseEventArgs>& EventArgs)
{
if (EventArgs->Button != MouseButtons::None && GetFlag(ButtonFlags::FlagMousePressed))
{
auto CRect = this->ClientRectangle();
if (!CRect.Contains(EventArgs->X, EventArgs->Y))
{
if (GetFlag(ButtonFlags::FlagMouseDown))
{
SetFlag(ButtonFlags::FlagMouseDown, false);
Invalidate();
}
}
else
{
if (!GetFlag(ButtonFlags::FlagMouseDown))
{
SetFlag(ButtonFlags::FlagMouseDown, true);
Invalidate();
}
}
}
// Call base event last
Control::OnMouseMove(EventArgs);
}
void ButtonBase::OnMouseDown(const std::unique_ptr<MouseEventArgs>& EventArgs)
{
if (EventArgs->Button == MouseButtons::Left)
{
SetFlag(ButtonFlags::FlagMouseDown | ButtonFlags::FlagMousePressed, true);
Invalidate();
}
// Call base event last
Control::OnMouseDown(EventArgs);
}
void ButtonBase::OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs)
{
// Call base event last
Control::OnMouseUp(EventArgs);
}
void ButtonBase::OnKeyUp(const std::unique_ptr<KeyEventArgs>& EventArgs)
{
if (GetFlag(ButtonFlags::FlagMouseDown))
{
if (this->_OwnerDraw)
ResetFlagsAndPaint();
else
{
SetFlag(ButtonFlags::FlagMousePressed | ButtonFlags::FlagMouseDown, false);
SendMessageA(this->_Handle, BM_SETSTATE, 0, 0);
}
if (EventArgs->KeyCode() == Keys::Enter || EventArgs->KeyCode() == Keys::Space)
OnClick();
EventArgs->SetHandled(true);
}
// Call base event last
Control::OnKeyUp(EventArgs);
}
void ButtonBase::OnKeyDown(const std::unique_ptr<KeyEventArgs>& EventArgs)
{
if (EventArgs->KeyData() == Keys::Space)
{
if (!GetFlag(ButtonFlags::FlagMouseDown))
{
SetFlag(ButtonFlags::FlagMouseDown, true);
if (!this->_OwnerDraw)
SendMessageA(this->_Handle, BM_SETSTATE, 1, 0);
Invalidate();
}
EventArgs->SetHandled(true);
}
// Call base event last
Control::OnKeyDown(EventArgs);
}
void ButtonBase::WndProc(Message& Msg)
{
switch (Msg.Msg)
{
case BM_CLICK:
OnClick();
return;
}
if (this->_OwnerDraw)
{
switch (Msg.Msg)
{
case BM_SETSTATE:
break;
case WM_KILLFOCUS:
case WM_CANCELMODE:
case WM_CAPTURECHANGED:
if (!GetFlag(ButtonFlags::FlagInButtonUp) && GetFlag(ButtonFlags::FlagMousePressed))
{
SetFlag(ButtonFlags::FlagMousePressed, false);
if (GetFlag(ButtonFlags::FlagMouseDown))
{
SetFlag(ButtonFlags::FlagMouseDown, false);
Invalidate();
}
}
Control::WndProc(Msg);
break;
case WM_LBUTTONUP:
case WM_MBUTTONUP:
case WM_RBUTTONUP:
SetFlag(ButtonFlags::FlagInButtonUp, true);
Control::WndProc(Msg);
SetFlag(ButtonFlags::FlagInButtonUp, false);
break;
default:
Control::WndProc(Msg);
break;
}
}
else
{
if (Msg.Msg == (WM_REFLECT + WM_COMMAND) && HIWORD(Msg.WParam) == BN_CLICKED)
OnClick();
else
Control::WndProc(Msg);
}
}
CreateParams ButtonBase::GetCreateParams()
{
auto Cp = Control::GetCreateParams();
if (!this->_OwnerDraw)
{
Cp.ExStyle &= ~WS_EX_RIGHT; // Messes up the BM_ Alignment flags
Cp.Style |= BS_MULTILINE;
if (IsDefault())
Cp.Style |= BS_DEFPUSHBUTTON;
if (((int)this->_TextAlign & (int)Drawing::AnyLeftAlign) != 0)
Cp.Style |= BS_LEFT;
else if (((int)this->_TextAlign & (int)Drawing::AnyRightAlign) != 0)
Cp.Style |= BS_RIGHT;
else
Cp.Style |= BS_CENTER;
if (((int)this->_TextAlign & (int)Drawing::AnyTopAlign) != 0)
Cp.Style |= BS_TOP;
else if (((int)this->_TextAlign & (int)Drawing::AnyBottomAlign) != 0)
Cp.Style |= BS_BOTTOM;
else
Cp.Style |= BS_VCENTER;
}
return Cp;
}
void ButtonBase::ResetFlagsAndPaint()
{
SetFlag(ButtonFlags::FlagMousePressed | ButtonFlags::FlagMouseDown, false);
Invalidate();
Update();
}
}

View File

@ -0,0 +1,76 @@
#pragma once
#include <cstdint>
#include "Control.h"
#include "FlatStyle.h"
#include "ButtonFlags.h"
#include "ContentAlignment.h"
namespace Forms
{
// Implements the basic functionality required by a button control.
class ButtonBase : public Control
{
public:
virtual ~ButtonBase() = default;
// Gets the drawing mode of the button control.
bool OwnerDraw();
// Sets the drawing mode of the button control.
void SetOwnerDraw(bool Value);
// Gets the alignment of the text on the button control.
Drawing::ContentAlignment TextAlign();
// Sets the alignment of the text on the button control.
void SetTextAlign(Drawing::ContentAlignment Value);
// Gets the flat style appearance of the button control.
FlatStyle GetFlatStyle();
// Sets the flat style appearance of the button control.
void SetFlatStyle(FlatStyle Value);
// Get whether or not this control is the default response.
bool IsDefault();
// Sets whether or not this control is the default response.
void SetIsDefault(bool Value);
// We must define base events here
virtual void OnLostFocus();
virtual void OnGotFocus();
virtual void OnMouseEnter();
virtual void OnMouseLeave();
virtual void OnEnabledChanged();
virtual void OnTextChanged();
virtual void OnMouseMove(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseDown(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnKeyUp(const std::unique_ptr<KeyEventArgs>& EventArgs);
virtual void OnKeyDown(const std::unique_ptr<KeyEventArgs>& EventArgs);
// Override WndProc for specific button messages.
virtual void WndProc(Message& Msg);
protected:
ButtonBase();
// Get custom control creation parameters for this instance.
virtual CreateParams GetCreateParams();
// Used for quick re-painting of the button after the pressed state.
void ResetFlagsAndPaint();
// Gets button specific flags
bool GetFlag(ButtonFlags Flag);
// Sets button specific flags
void SetFlag(ButtonFlags Flags, bool Value);
// Whether or not the control will draw itself
bool _OwnerDraw;
// Control specific flags
ButtonFlags _Flags;
// Controls the style of the control
FlatStyle _FlatStyle;
// Controls the alignment of text on the control
Drawing::ContentAlignment _TextAlign;
};
}

View File

@ -0,0 +1,29 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// This enumeration represents the ButtonBase flags...
enum class ButtonFlags
{
FlagMouseOver = 0x0001,
FlagMouseDown = 0x0002,
FlagMousePressed = 0x0004,
FlagInButtonUp = 0x0008,
FlagCurrentlyAnimating = 0x0010,
FlagAutoEllipsis = 0x0020,
FlagIsDefault = 0x0040,
FlagUseMnemonic = 0x0080,
FlagShowToolTip = 0x0100,
};
//
// Allow bitwise operations on this enumeration
//
constexpr ButtonFlags operator|(ButtonFlags Lhs, ButtonFlags Rhs)
{
return static_cast<ButtonFlags>(static_cast<std::underlying_type<ButtonFlags>::type>(Lhs) | static_cast<std::underlying_type<ButtonFlags>::type>(Rhs));
};
}

View File

@ -0,0 +1,69 @@
#include "stdafx.h"
#include "CRC32.h"
namespace Hashing
{
// The table of precalculated CRC32 primes.
static constexpr uint32_t CRC32LookupTable[] =
{
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
uint32_t CRC32::HashString(const string& Input, uint32_t Seed)
{
return ComputeHash((uint8_t*)(char*)Input, 0, Input.Length(), Seed);
}
uint32_t CRC32::ComputeHash(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint32_t Seed)
{
auto pCur = (uint8_t*)(Input + InputOffset);
uint32_t _crc = ~Seed;
for (; InputLength--; ++pCur)
_crc = (_crc >> 8) ^ CRC32LookupTable[(_crc ^ *pCur) & 0xFF];
return (~_crc);
}
}

26
r5dev/thirdparty/cppnet/cppkore/CRC32.h vendored Normal file
View File

@ -0,0 +1,26 @@
#pragma once
#include <cstdint>
#include "StringBase.h"
namespace Hashing
{
// A hashing algo that implements CRC32.
class CRC32
{
public:
// Computes the hash code of the integral value using CRC32 algo.
template<class Tinput>
static uint32_t HashValue(Tinput Input, uint32_t Seed = 0)
{
return ComputeHash((uint8_t*)&Input, 0, sizeof(Tinput), Seed);
}
// Computes the hash code of the input string using CRC32 algo.
static uint32_t HashString(const string& Input, uint32_t Seed = 0);
// Computes the hash code using the CRC32 algo.
static uint32_t ComputeHash(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint32_t Seed = 0);
};
}

View File

@ -0,0 +1,10 @@
#include "stdafx.h"
#include "CacheVirtualItemsEventArgs.h"
namespace Forms
{
CacheVirtualItemsEventArgs::CacheVirtualItemsEventArgs(int32_t Start, int32_t End)
: StartIndex(Start), EndIndex(End)
{
}
}

View File

@ -0,0 +1,19 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Provides data for the CacheVirtualItems event.
class CacheVirtualItemsEventArgs
{
public:
CacheVirtualItemsEventArgs(int32_t Start, int32_t End);
~CacheVirtualItemsEventArgs() = default;
// The start of the cache index.
int32_t StartIndex;
// The end of the cache index.
int32_t EndIndex;
};
}

View File

@ -0,0 +1,15 @@
#include "stdafx.h"
#include "CancelEventArgs.h"
namespace Forms
{
CancelEventArgs::CancelEventArgs()
: CancelEventArgs(false)
{
}
CancelEventArgs::CancelEventArgs(bool Cancel)
: Cancel(Cancel)
{
}
}

View File

@ -0,0 +1,18 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Provides data for the cancel event.
class CancelEventArgs
{
public:
CancelEventArgs();
CancelEventArgs(bool Cancel);
~CancelEventArgs() = default;
// Gets or sets a value indicating whether the operation should be cancelled.
bool Cancel;
};
}

View File

@ -0,0 +1,402 @@
#include "stdafx.h"
#include "CastAsset.h"
#include "CastNode.h"
#include "File.h"
#include "XXHash.h"
#include "BinaryWriter.h"
namespace Assets::Exporters
{
struct CastHeader
{
uint32_t Magic; // char[4] cast (0x74736163)
uint32_t Version; // 0x1
uint32_t RootNodes; // Number of root nodes, which contain various sub nodes if necessary
uint32_t Flags; // Reserved for flags, or padding, whichever is needed
};
static_assert(sizeof(CastHeader) == 0x10, "Cast header size mismatch");
bool CastAsset::ExportAnimation(const Animation& Animation, const string& Path)
{
auto Writer = IO::BinaryWriter(IO::File::Create(Path));
// Magic, version 1, one root node, no flags.
Writer.Write<CastHeader>({ 0x74736163, 0x1, 0x1, 0x0 });
// This is the base of the virtual scene
auto Root = CastNode(CastId::Root);
auto& AnimNode = Root.Children.Emplace(CastId::Animation, Hashing::XXHash::HashString("animation"));
auto& SkeletonNode = AnimNode.Children.Emplace(CastId::Skeleton, Hashing::XXHash::HashString("skeleton"));
AnimNode.Properties.Emplace(CastPropertyId::Float, "fr").AddFloat(Animation.FrameRate);
AnimNode.Properties.Emplace(CastPropertyId::Byte, "lo").AddByte((uint8_t)Animation.Looping);
for (auto& Bone : Animation.Bones)
{
auto& BoneNode = SkeletonNode.Children.Emplace(CastId::Bone);
BoneNode.Properties.Emplace(CastPropertyId::String, "n").SetString(Bone.Name());
BoneNode.Properties.Emplace(CastPropertyId::Integer32, "p").AddInteger32(Bone.Parent());
if (Bone.GetFlag(Assets::BoneFlags::HasLocalSpaceMatrices))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "lp").AddVector3(Bone.LocalPosition());
BoneNode.Properties.Emplace(CastPropertyId::Vector4, "lr").AddVector4(Bone.LocalRotation());
}
if (Bone.GetFlag(Assets::BoneFlags::HasGlobalSpaceMatrices))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "wp").AddVector3(Bone.GlobalPosition());
BoneNode.Properties.Emplace(CastPropertyId::Vector4, "wr").AddVector4(Bone.GlobalRotation());
}
if (Bone.GetFlag(Assets::BoneFlags::HasScale))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "s").AddVector3(Bone.Scale());
}
}
for (auto& Kvp : Animation.Curves)
{
for (auto& Curve : Kvp.Value())
{
auto& CurveNode = AnimNode.Children.Emplace(CastId::Curve, 0);
CurveNode.Properties.Emplace(CastPropertyId::String, "nn").SetString(Curve.Name);
constexpr const char* PropertyNameMap[] = {
"ex",
"rq",
"rx",
"ry",
"rz",
"tx",
"ty",
"tz",
"sx",
"sy",
"sz",
"vb"
};
constexpr const char* ModeNameMap[] = {
"absolute",
"additive",
"relative"
};
CurveNode.Properties.Emplace(CastPropertyId::String, "kp").SetString(PropertyNameMap[(uint32_t)Curve.Property]);
CurveNode.Properties.Emplace(CastPropertyId::String, "m").SetString(ModeNameMap[(uint32_t)Curve.Mode]);
auto KeyframeValueProperty = CastPropertyId::Float;
switch (Curve.Property)
{
case CurveProperty::RotateQuaternion:
KeyframeValueProperty = CastPropertyId::Vector4;
break;
case CurveProperty::RotateX:
case CurveProperty::RotateY:
case CurveProperty::RotateZ:
case CurveProperty::TranslateX:
case CurveProperty::TranslateY:
case CurveProperty::TranslateZ:
case CurveProperty::ScaleX:
case CurveProperty::ScaleY:
case CurveProperty::ScaleZ:
KeyframeValueProperty = CastPropertyId::Float;
break;
case CurveProperty::Visibility:
KeyframeValueProperty = CastPropertyId::Byte;
break;
}
auto KeyframeFrameProperty = CastPropertyId::Float;
if (Curve.IsFrameIntegral())
{
uint32_t LargestFrameIndex = 0;
for (auto& KeyFrame : Curve.Keyframes)
LargestFrameIndex = max(LargestFrameIndex, KeyFrame.Frame.Integer32);
if (LargestFrameIndex <= 0xFF)
KeyframeFrameProperty = CastPropertyId::Byte;
else if (LargestFrameIndex <= 0xFFFF)
KeyframeFrameProperty = CastPropertyId::Short;
else
KeyframeFrameProperty = CastPropertyId::Integer32;
}
auto& KeyFrameBuffer = CurveNode.Properties.Emplace(KeyframeFrameProperty, "kb");
auto& KeyValueBuffer = CurveNode.Properties.Emplace(KeyframeValueProperty, "kv");
for (auto& KeyFrame : Curve.Keyframes)
{
switch (KeyframeFrameProperty)
{
case CastPropertyId::Float:
KeyFrameBuffer.AddFloat(KeyFrame.Frame.Float);
break;
case CastPropertyId::Byte:
KeyFrameBuffer.AddByte((uint8_t)KeyFrame.Frame.Integer32);
break;
case CastPropertyId::Short:
KeyFrameBuffer.AddShort((uint16_t)KeyFrame.Frame.Integer32);
break;
case CastPropertyId::Integer32:
KeyFrameBuffer.AddInteger32(KeyFrame.Frame.Integer32);
break;
}
switch (Curve.Property)
{
case CurveProperty::RotateQuaternion:
KeyValueBuffer.AddVector4(KeyFrame.Value.Vector4);
break;
case CurveProperty::RotateX:
case CurveProperty::RotateY:
case CurveProperty::RotateZ:
case CurveProperty::TranslateX:
case CurveProperty::TranslateY:
case CurveProperty::TranslateZ:
case CurveProperty::ScaleX:
case CurveProperty::ScaleY:
case CurveProperty::ScaleZ:
KeyValueBuffer.AddFloat(KeyFrame.Value.Float);
break;
case CurveProperty::Visibility:
KeyValueBuffer.AddByte(KeyFrame.Value.Byte);
break;
}
}
}
}
for (auto& Notetrack : Animation.Notificiations)
{
auto& TrackNode = AnimNode.Children.Emplace(CastId::NotificationTrack, Hashing::XXHash::HashString(Notetrack.Key()));
TrackNode.Properties.Emplace(CastPropertyId::String, "n").SetString(Notetrack.Key());
auto& KeyBuffer = TrackNode.Properties.Emplace(CastPropertyId::Integer32, "kb");
for (auto& Key : Notetrack.Value())
KeyBuffer.AddInteger32(Key);
}
// Finally, serialize the node to the disk
Root.Write(Writer);
return true;
}
bool CastAsset::ExportModel(const Model& Model, const string& Path)
{
auto Writer = IO::BinaryWriter(IO::File::Create(Path));
// Magic, version 1, one root node, no flags.
Writer.Write<CastHeader>({ 0x74736163, 0x1, 0x1, 0x0 });
// This is the base of the virtual scene
auto Root = CastNode(CastId::Root);
auto& ModelNode = Root.Children.Emplace(CastId::Model, Hashing::XXHash::HashString("model"));
auto& SkeletonNode = ModelNode.Children.Emplace(CastId::Skeleton, Hashing::XXHash::HashString("skeleton"));
auto BoneCount = Model.Bones.Count();
for (auto& Bone : Model.Bones)
{
auto& BoneNode = SkeletonNode.Children.Emplace(CastId::Bone);
BoneNode.Properties.Emplace(CastPropertyId::String, "n").SetString(Bone.Name());
BoneNode.Properties.Emplace(CastPropertyId::Integer32, "p").AddInteger32(Bone.Parent());
if (Bone.GetFlag(Assets::BoneFlags::HasLocalSpaceMatrices))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "lp").AddVector3(Bone.LocalPosition());
BoneNode.Properties.Emplace(CastPropertyId::Vector4, "lr").AddVector4(Bone.LocalRotation());
}
if (Bone.GetFlag(Assets::BoneFlags::HasGlobalSpaceMatrices))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "wp").AddVector3(Bone.GlobalPosition());
BoneNode.Properties.Emplace(CastPropertyId::Vector4, "wr").AddVector4(Bone.GlobalRotation());
}
if (Bone.GetFlag(Assets::BoneFlags::HasScale))
{
BoneNode.Properties.Emplace(CastPropertyId::Vector3, "s").AddVector3(Bone.Scale());
}
}
Dictionary<uint32_t, uint64_t> MaterialHashMap;
uint32_t MaterialIndex = 0;
for (auto& Mat : Model.Materials)
{
auto& MatNode = ModelNode.Children.Emplace(CastId::Material, Hashing::XXHash::HashString(Mat.Name));
MatNode.Properties.Emplace(CastPropertyId::String, "n").SetString(Mat.Name);
MatNode.Properties.Emplace(CastPropertyId::String, "t").SetString("pbr");
for (auto& Kvp : Mat.Slots)
{
auto FileHash = Hashing::XXHash::HashString(Kvp.second.first);
MatNode.Children.Emplace(CastId::File, FileHash).Properties.Emplace(CastPropertyId::String, "p").SetString(Kvp.second.first);
// Cast material property mapping
constexpr const char* MaterialSlotNames[] =
{
"extra", // Invalid
"albedo",
"diffuse",
"normal",
"specular",
"emissive",
"gloss",
"roughness",
"ao",
"cavity"
};
MatNode.Properties.Emplace(CastPropertyId::Integer64, MaterialSlotNames[(uint32_t)Kvp.first]).AddInteger64(FileHash);
}
MaterialHashMap.Add(MaterialIndex++, MatNode.Hash);
}
uint32_t MeshIndex = 0;
for (auto& Mesh : Model.Meshes)
{
auto& MeshNode = ModelNode.Children.Emplace(CastId::Mesh, Hashing::XXHash::HashString(string::Format("mesh%02d", MeshIndex++)));
MeshNode.Properties.EmplaceBack(CastPropertyId::Vector3, "vp");
MeshNode.Properties.EmplaceBack(CastPropertyId::Vector3, "vn");
MeshNode.Properties.EmplaceBack(CastPropertyId::Integer32, "vc");
auto VertexCount = Mesh.Vertices.Count();
if (VertexCount <= 0xFF)
MeshNode.Properties.EmplaceBack(CastPropertyId::Byte, "f");
else if (VertexCount <= 0xFFFF)
MeshNode.Properties.EmplaceBack(CastPropertyId::Short, "f");
else
MeshNode.Properties.EmplaceBack(CastPropertyId::Integer32, "f");
// Configure the uv layer count, and maximum influence
MeshNode.Properties.Emplace(CastPropertyId::Byte, "ul").AddByte((uint8_t)Mesh.Vertices.UVLayerCount());
MeshNode.Properties.Emplace(CastPropertyId::Byte, "mi").AddByte((uint8_t)Mesh.Vertices.WeightCount());
if (BoneCount <= 0xFF)
MeshNode.Properties.Emplace(CastPropertyId::Byte, "wb");
else if (BoneCount <= 0xFFFF)
MeshNode.Properties.Emplace(CastPropertyId::Short, "wb");
else
MeshNode.Properties.Emplace(CastPropertyId::Integer32, "wb");
MeshNode.Properties.Emplace(CastPropertyId::Float, "wv");
List<CastProperty*> UVLayers;
for (uint8_t i = 0; i < Mesh.Vertices.UVLayerCount(); i++)
MeshNode.Properties.EmplaceBack(CastPropertyId::Vector2, string::Format("u%d", i));
auto& VertexPositions = MeshNode.Properties[0];
auto& VertexNormals = MeshNode.Properties[1];
auto& VertexColors = MeshNode.Properties[2];
auto& FaceIndices = MeshNode.Properties[3];
auto& VertexWeightBones = MeshNode.Properties[6];
auto& VertexWeightValues = MeshNode.Properties[7];
for (auto& Layer : MeshNode.Properties)
{
if (Layer.Name != "ul" && Layer.Name.StartsWith("u"))
UVLayers.Add(&Layer);
}
for (auto& Vertex : Mesh.Vertices)
{
VertexPositions.AddVector3(Vertex.Position());
VertexNormals.AddVector3(Vertex.Normal());
VertexColors.AddInteger32(*(uint32_t*)&Vertex.Color());
for (uint8_t i = 0; i < Mesh.Vertices.WeightCount(); i++)
{
if (BoneCount <= 0xFF)
VertexWeightBones.AddByte((uint8_t)Vertex.Weights(i).Bone);
else if (BoneCount <= 0xFFFF)
VertexWeightBones.AddShort((uint16_t)Vertex.Weights(i).Bone);
else
VertexWeightBones.AddInteger32(Vertex.Weights(i).Bone);
VertexWeightValues.AddFloat(Vertex.Weights(i).Value);
}
for (uint8_t i = 0; i < Mesh.Vertices.UVLayerCount(); i++)
{
UVLayers[i]->AddVector2(Vertex.UVLayers(i));
}
}
for (auto& Face : Mesh.Faces)
{
if (VertexCount <= 0xFF)
{
FaceIndices.AddByte((uint8_t)Face[2]);
FaceIndices.AddByte((uint8_t)Face[1]);
FaceIndices.AddByte((uint8_t)Face[0]);
}
else if (VertexCount <= 0xFFFF)
{
FaceIndices.AddShort((uint16_t)Face[2]);
FaceIndices.AddShort((uint16_t)Face[1]);
FaceIndices.AddShort((uint16_t)Face[0]);
}
else
{
FaceIndices.AddInteger32(Face[2]);
FaceIndices.AddInteger32(Face[1]);
FaceIndices.AddInteger32(Face[0]);
}
}
if (Mesh.MaterialIndices.Count() > 0 && Mesh.MaterialIndices[0] > -1)
{
MeshNode.Properties.Emplace(CastPropertyId::Integer64, "m").AddInteger64(MaterialHashMap[Mesh.MaterialIndices[0]]);
}
}
// Finally, serialize the node to the disk
Root.Write(Writer);
return true;
}
imstring CastAsset::ModelExtension()
{
return ".cast";
}
imstring CastAsset::AnimationExtension()
{
return ".cast";
}
ExporterScale CastAsset::ExportScale()
{
return ExporterScale::Default;
}
bool CastAsset::SupportsAnimations()
{
return true;
}
bool CastAsset::SupportsModels()
{
return true;
}
}

View File

@ -0,0 +1,32 @@
#pragma once
#include <cstdint>
#include "Exporter.h"
namespace Assets::Exporters
{
class CastAsset : public Exporter
{
public:
CastAsset() = default;
~CastAsset() = default;
// Exports the given animation to the provided path.
virtual bool ExportAnimation(const Animation& Animation, const string& Path);
// Exports the given model to the provided path.
virtual bool ExportModel(const Model& Model, const string& Path);
// Gets the file extension for this exporters model format.
virtual imstring ModelExtension();
// Gets the file extension for this exporters animation format.
virtual imstring AnimationExtension();
// Gets the required scaling constant for this exporter.
virtual ExporterScale ExportScale();
// Gets whether or not the exporter supports animation exporting.
virtual bool SupportsAnimations();
// Gets whether or not the exporter supports model exporting.
virtual bool SupportsModels();
};
}

View File

@ -0,0 +1,222 @@
#include "stdafx.h"
#include "CastNode.h"
namespace Assets::Exporters
{
CastProperty::CastProperty()
: Identifier(CastPropertyId::Byte)
{
}
CastProperty::CastProperty(CastPropertyId Id, const char* Name)
: Identifier(Id), Name(Name)
{
// All property names are lower-case
this->Name = this->Name.ToLower();
}
const uint32_t CastProperty::Length() const
{
switch (this->Identifier)
{
case CastPropertyId::Byte: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(uint8_t) * this->IntegralValues.Count());
case CastPropertyId::Short: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(uint16_t) * this->IntegralValues.Count());
case CastPropertyId::Integer32: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(uint32_t) * this->IntegralValues.Count());
case CastPropertyId::Integer64: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(uint64_t) * this->IntegralValues.Count());
case CastPropertyId::Float: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(float) * this->IntegralValues.Count());
case CastPropertyId::Double: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(double) * this->IntegralValues.Count());
case CastPropertyId::Vector2 : return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(Math::Vector2) * this->IntegralValues.Count());
case CastPropertyId::Vector3: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(Math::Vector3) * this->IntegralValues.Count());
case CastPropertyId::Vector4: return sizeof(CastPropertyHeader) + this->Name.Length() + (sizeof(Math::Quaternion) * this->IntegralValues.Count());
case CastPropertyId::String: return sizeof(CastPropertyHeader) + this->Name.Length() + (StringValue.Length() + sizeof(uint8_t));
default: return 0;
}
}
void CastProperty::Write(IO::BinaryWriter& Writer) const
{
auto Size = (this->Identifier == CastPropertyId::String) ? 1 : this->IntegralValues.Count();
Writer.Write<CastPropertyHeader>({this->Identifier, (uint16_t)this->Name.Length(), Size});
Writer.Write(&this->Name[0], 0, this->Name.Length());
switch (this->Identifier)
{
case CastPropertyId::Byte:
for (auto& Value : this->IntegralValues)
Writer.Write<uint8_t>(Value.Byte);
break;
case CastPropertyId::Short:
for (auto& Value : this->IntegralValues)
Writer.Write<uint16_t>(Value.Short);
break;
case CastPropertyId::Integer32:
for (auto& Value : this->IntegralValues)
Writer.Write<uint32_t>(Value.Integer32);
break;
case CastPropertyId::Integer64:
for (auto& Value : this->IntegralValues)
Writer.Write<uint64_t>(Value.Integer64);
break;
case CastPropertyId::Float:
for (auto& Value : this->IntegralValues)
Writer.Write<float>(Value.Float);
break;
case CastPropertyId::Double:
for (auto& Value : this->IntegralValues)
Writer.Write<double>(Value.Double);
break;
case CastPropertyId::Vector2:
for (auto& Value : this->IntegralValues)
Writer.Write<Math::Vector2>(Value.Vector2);
break;
case CastPropertyId::Vector3:
for (auto& Value : this->IntegralValues)
Writer.Write<Math::Vector3>(Value.Vector3);
break;
case CastPropertyId::Vector4:
for (auto& Value : this->IntegralValues)
Writer.Write<Math::Quaternion>(Value.Vector4);
break;
case CastPropertyId::String:
Writer.WriteCString(this->StringValue);
break;
}
}
void CastProperty::AddByte(uint8_t Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddShort(uint16_t Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddInteger32(uint32_t Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddInteger64(uint64_t Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddFloat(float Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddDouble(double Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddVector2(Math::Vector2 Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddVector3(Math::Vector3 Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::AddVector4(Math::Quaternion Value)
{
this->IntegralValues.EmplaceBack(Value);
}
void CastProperty::SetString(const string& Value)
{
this->StringValue = Value;
}
CastNode::CastNode()
: Identifier(CastId::Root), Hash(0)
{
}
CastNode::CastNode(CastId Id)
: Identifier(Id), Hash(0)
{
}
CastNode::CastNode(CastId Id, uint64_t Hash)
: Identifier(Id), Hash(Hash)
{
}
const uint32_t CastNode::Length() const
{
uint32_t Result = sizeof(CastNodeHeader);
for (auto& Child : this->Children)
Result += Child.Length();
for (auto& Property : this->Properties)
Result += Property.Length();
return Result;
}
void CastNode::Write(IO::BinaryWriter& Writer) const
{
Writer.Write<CastNodeHeader>({this->Identifier, this->Length(), this->Hash, this->Properties.Count(), this->Children.Count()});
for (auto& Prop : Properties)
Prop.Write(Writer);
for (auto& Child : Children)
Child.Write(Writer);
}
CastPropertyUnion::CastPropertyUnion()
: Vector4(0,0,0,0)
{
}
CastPropertyUnion::CastPropertyUnion(uint8_t Value)
: Byte(Value)
{
}
CastPropertyUnion::CastPropertyUnion(uint16_t Value)
: Short(Value)
{
}
CastPropertyUnion::CastPropertyUnion(uint32_t Value)
: Integer32(Value)
{
}
CastPropertyUnion::CastPropertyUnion(uint64_t Value)
: Integer64(Value)
{
}
CastPropertyUnion::CastPropertyUnion(float Value)
: Float(Value)
{
}
CastPropertyUnion::CastPropertyUnion(double Value)
: Double(Value)
{
}
CastPropertyUnion::CastPropertyUnion(Math::Vector2 Value)
: Vector2(Value)
{
}
CastPropertyUnion::CastPropertyUnion(Math::Vector3 Value)
: Vector3(Value)
{
}
CastPropertyUnion::CastPropertyUnion(Math::Quaternion Value)
: Vector4(Value)
{
}
}

View File

@ -0,0 +1,146 @@
#pragma once
#include <cstdint>
#include "Vector2.h"
#include "Vector3.h"
#include "Quaternion.h"
#include "StringBase.h"
#include "ListBase.h"
#include "BinaryWriter.h"
namespace Assets::Exporters
{
enum class CastId : uint32_t
{
Root = 0x746F6F72,
Model = 0x6C646F6D,
Mesh = 0x6873656D,
Skeleton = 0x6C656B73,
Bone = 0x656E6F62,
Animation = 0x6D696E61,
Curve = 0x76727563,
NotificationTrack = 0x6669746E,
Material = 0x6C74616D,
File = 0x656C6966,
};
enum class CastPropertyId : uint16_t
{
Byte = 'b', // <uint8_t>
Short = 'h', // <uint16_t>
Integer32 = 'i', // <uint32_t>
Integer64 = 'l', // <uint64_t>
Float = 'f', // <float>
Double = 'd', // <double>
String = 's', // Null terminated UTF-8 string
Vector2 = 'v2', // Float precision vector XY
Vector3 = 'v3', // Float precision vector XYZ
Vector4 = 'v4' // Float precision vector XYZW
};
struct CastNodeHeader
{
CastId Identifier; // Used to signify which class this node uses
uint32_t NodeSize; // Size of all data and sub data following the node
uint64_t NodeHash; // Unique hash, like an id, used to link nodes together
uint32_t PropertyCount; // The count of properties
uint32_t ChildCount; // The count of direct children nodes
// We must read until the node size hits, and that means we are done.
// The nodes are in a stack layout, so it's easy to load, FILO order.
};
struct CastPropertyHeader
{
CastPropertyId Identifier; // The element type of this property
uint16_t NameSize; // The size of the name of this property
uint32_t ArrayLength; // The number of elements this property contains (1 for single)
// Following is UTF-8 string lowercase, size of namesize, NOT null terminated
// cast_property[ArrayLength] array of data
};
union CastPropertyUnion
{
uint8_t Byte;
uint16_t Short;
uint32_t Integer32;
uint64_t Integer64;
float Float;
double Double;
Math::Vector2 Vector2;
Math::Vector3 Vector3;
Math::Quaternion Vector4;
CastPropertyUnion();
explicit CastPropertyUnion(uint8_t Value);
explicit CastPropertyUnion(uint16_t Value);
explicit CastPropertyUnion(uint32_t Value);
explicit CastPropertyUnion(uint64_t Value);
explicit CastPropertyUnion(float Value);
explicit CastPropertyUnion(double Value);
explicit CastPropertyUnion(Math::Vector2 Value);
explicit CastPropertyUnion(Math::Vector3 Value);
explicit CastPropertyUnion(Math::Quaternion Value);
};
static_assert(sizeof(CastNodeHeader) == 0x18, "CastNode header size mismatch");
static_assert(sizeof(CastPropertyHeader) == 0x8, "CastProperty header size mismatch");
static_assert(sizeof(CastPropertyUnion) == 0x10, "CastProperty union size mismatch");
class CastProperty
{
public:
CastProperty();
explicit CastProperty(CastPropertyId Id, const char* Name);
const uint32_t Length() const;
void Write(IO::BinaryWriter& Writer) const;
void AddByte(uint8_t Value);
void AddShort(uint16_t Value);
void AddInteger32(uint32_t Value);
void AddInteger64(uint64_t Value);
void AddFloat(float Value);
void AddDouble(double Value);
void AddVector2(Math::Vector2 Value);
void AddVector3(Math::Vector3 Value);
void AddVector4(Math::Quaternion Value);
void SetString(const string& Value);
CastPropertyId Identifier;
string Name;
private:
List<CastPropertyUnion> IntegralValues;
string StringValue;
};
class CastNode
{
public:
CastNode();
CastNode(CastId Id);
CastNode(CastId Id, uint64_t Hash);
const uint32_t Length() const;
void Write(IO::BinaryWriter& Writer) const;
CastId Identifier;
uint64_t Hash;
List<CastProperty> Properties;
List<CastNode> Children;
};
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the case of characters in a Textbox control.
enum class CharacterCasing
{
// The case of characters is left unchanged.
Normal = 0,
// Converts all characters to uppercase.
Upper = 1,
// Converts all characters to lowercase.
Lower = 2,
};
}

View File

@ -0,0 +1,188 @@
#include "stdafx.h"
#include "CheckBox.h"
namespace Forms
{
CheckBox::CheckBox()
: ButtonBase(), _AutoCheck(true), _ThreeState(false), _Appearence(Appearence::Normal), _CheckState(CheckState::Unchecked)
{
SetStyle(ControlStyles::StandardClick | ControlStyles::StandardDoubleClick, false);
this->SetTextAlign(Drawing::ContentAlignment::MiddleLeft);
// We are a checkbox control
this->_RTTI = ControlTypes::CheckBox;
}
Appearence CheckBox::GetAppearence()
{
return this->_Appearence;
}
void CheckBox::SetAppearence(Appearence Value)
{
if (this->_Appearence != Value)
{
this->_Appearence = Value;
if (this->_OwnerDraw)
Refresh();
else
UpdateStyles();
OnAppearenceChanged();
}
}
bool CheckBox::AutoCheck()
{
return this->_AutoCheck;
}
void CheckBox::SetAutoCheck(bool Value)
{
this->_AutoCheck = Value;
}
bool CheckBox::Checked()
{
return _CheckState != CheckState::Unchecked;
}
void CheckBox::SetChecked(bool Value)
{
this->SetCheckState((Value) ? CheckState::Checked : CheckState::Unchecked);
}
CheckState CheckBox::GetCheckState()
{
return _CheckState;
}
void CheckBox::SetCheckState(CheckState Value)
{
if (_CheckState != Value)
{
bool oChecked = Checked();
_CheckState = Value;
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_Handle, BM_SETCHECK, (int)_CheckState, 0);
if (oChecked != Checked())
{
OnCheckedChanged();
}
OnCheckStateChanged();
}
}
bool CheckBox::ThreeState()
{
return _ThreeState;
}
void CheckBox::SetThreeState(bool Value)
{
_ThreeState = Value;
}
void CheckBox::OnClick()
{
if (_AutoCheck)
{
switch (_CheckState)
{
case CheckState::Unchecked:
SetCheckState(CheckState::Checked);
break;
case CheckState::Checked:
if (_ThreeState)
SetCheckState(CheckState::Indeterminate);
else
SetCheckState(CheckState::Unchecked);
break;
default:
SetCheckState(CheckState::Unchecked);
break;
}
}
// Call base event last
ButtonBase::OnClick();
}
void CheckBox::OnAppearenceChanged()
{
AppearenceChanged.RaiseEvent(this);
}
void CheckBox::OnCheckedChanged()
{
CheckedChanged.RaiseEvent(this);
}
void CheckBox::OnCheckStateChanged()
{
if (this->_OwnerDraw)
Refresh();
CheckStateChanged.RaiseEvent(this);
}
void CheckBox::OnHandleCreated()
{
SendMessageA(this->_Handle, BM_SETCHECK, (int)_CheckState, NULL);
// We must call base event last
Control::OnHandleCreated();
}
void CheckBox::OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs)
{
if (EventArgs->Button == MouseButtons::Left && GetFlag(ButtonFlags::FlagMousePressed))
{
if (GetFlag(ButtonFlags::FlagMouseDown))
{
auto Pt = PointToScreen({ (INT)EventArgs->X, (INT)EventArgs->Y });
POINT nPt;
nPt.x = Pt.X;
nPt.y = Pt.Y;
if (WindowFromPoint(nPt) == this->_Handle)
{
ResetFlagsAndPaint();
if (this->Capture())
OnClick();
OnMouseClick(EventArgs);
}
}
}
// Call base event last
ButtonBase::OnMouseUp(EventArgs);
}
CreateParams CheckBox::GetCreateParams()
{
auto Cp = ButtonBase::GetCreateParams();
Cp.ClassName = "BUTTON";
if (GetStyle(ControlStyles::UserPaint))
Cp.Style |= BS_OWNERDRAW;
else
{
Cp.Style |= BS_3STATE;
if (this->_Appearence == Appearence::Button)
Cp.Style |= BS_PUSHLIKE;
}
return Cp;
}
}

View File

@ -0,0 +1,72 @@
#pragma once
#include <cstdint>
#include "Control.h"
#include "Appearence.h"
#include "ButtonBase.h"
#include "CheckState.h"
#include "ContentAlignment.h"
namespace Forms
{
// Represents a Windows check box.
class CheckBox : public ButtonBase
{
public:
CheckBox();
virtual ~CheckBox() = default;
// Gets the value that determines the appearance of a check box control.
Appearence GetAppearence();
// Sets the value that determines the appearance of a check box control.
void SetAppearence(Appearence Value);
// Gets a value indicating whether the check box automatically checks itself.
bool AutoCheck();
// Sets a value indicating whether the check box automatically checks itself.
void SetAutoCheck(bool Value);
// Gets a value indicating whether the check box is checked.
bool Checked();
// Sets a value indicating whether the check box is checked.
void SetChecked(bool Value);
// Gets a value indicating whether the check box is checked.
CheckState GetCheckState();
// Sets a value indicating whether the check box is checked.
void SetCheckState(CheckState Value);
// Gets a value indicating whether the check box will allow three check states rather than two.
bool ThreeState();
// Sets a value indicating whether the check box will allow three check states rather than two.
void SetThreeState(bool Value);
// We must define base events here
virtual void OnClick();
virtual void OnAppearenceChanged();
virtual void OnCheckedChanged();
virtual void OnCheckStateChanged();
virtual void OnHandleCreated();
virtual void OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs);
// We must define event handlers here
EventBase<void(*)(Control*)> AppearenceChanged;
EventBase<void(*)(Control*)> CheckedChanged;
EventBase<void(*)(Control*)> CheckStateChanged;
protected:
// Get custom control creation parameters for this instance.
virtual CreateParams GetCreateParams();
private:
// Whether or not the control handles checking itself.
bool _AutoCheck;
// Whether or not the control handles three checked states.
bool _ThreeState;
// The appearence of the control.
Appearence _Appearence;
// The checked state of the control.
CheckState _CheckState;
};
}

View File

@ -0,0 +1,92 @@
#pragma once
constexpr const unsigned char CheckBoxImage_Src[] =
{
0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x00, 0x10, 0x00, 0x20, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x0E, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x59, 0xFF, 0xFF,
0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0x6C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x49, 0xFF, 0xFF,
0xFF, 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF,
0xFF, 0x63, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x3B, 0xFF, 0xFF,
0xFF, 0xF6, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0x5B, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x2F, 0xFF, 0xFF,
0xFF, 0xEF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF9, 0xFF, 0xFF,
0xFF, 0x7E, 0xFF, 0xFF, 0xFF, 0xEF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFC, 0xFF, 0xFF, 0xFF, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x24, 0xFF, 0xFF,
0xFF, 0xE8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF,
0xFF, 0x56, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x37, 0xFF, 0xFF,
0xFF, 0xF2, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0xFF, 0xFF,
0xFF, 0x4B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0xD4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x65, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xFF, 0xFF, 0xF5, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF8, 0xFF, 0xFF, 0xFF, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x8B, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x76, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0x44, 0xFF, 0xFF, 0xFF, 0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xF5, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x4B, 0xFF, 0xFF,
0xFF, 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0xFF, 0xFF,
0xFF, 0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x53, 0xFF, 0xFF, 0xFF, 0xFC, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0xFF, 0xFF, 0xFF, 0x31, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0x5B, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xEB, 0xFF, 0xFF, 0xFF, 0x2B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x63, 0xFF, 0xFF,
0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC8, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x6C, 0xFF, 0xFF, 0xFF, 0xF7, 0xFF, 0xFF,
0xFF, 0x6B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

View File

@ -0,0 +1,19 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the state of a control,
// such as a check box, that can be checked, unchecked, or
// set to an indeterminate state.
enum class CheckState
{
// The control is unchecked.
Unchecked = 0,
// The control is checked.
Checked = 1,
// The control is indeterminate. An indeterminate control generally has a shaded appearance.
Indeterminate = 2
};
}

View File

@ -0,0 +1,25 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the reason for the Form Closing.
enum class CloseReason
{
// No reason for closure of the Form.
None = 0,
// In the process of shutting down, Windows has closed the application.
WindowsShutDown = 1,
// The parent form of this MDI form is closing.
MdiFormClosing = 2,
// The user has clicked the close button on the form window, selected Close from the window's control menu or hit Alt + F4
UserClosing = 3,
// The Microsoft Windows Task Manager is closing the application.
TaskManagerClosing = 4,
// A form is closing because its owner is closing.
FormOwnerClosing = 5,
// A form is closing because Application.Exit() was called.
ApplicationExitCall = 6
};
}

View File

@ -0,0 +1,251 @@
#include "stdafx.h"
#include "CoDXAssetExport.h"
#include "File.h"
#include "Path.h"
#include "Matrix.h"
#include "StreamWriter.h"
namespace Assets::Exporters
{
bool CoDXAssetExport::ExportAnimation(const Animation& Animation, const string& Path)
{
return false;
}
bool CoDXAssetExport::ExportModel(const Model& Model, const string& Path)
{
auto Writer = IO::StreamWriter(IO::File::Create(Path));
Writer.WriteLine(
"MODEL\nVERSION 6\n"
);
Writer.WriteLineFmt("NUMBONES %d", Model.Bones.Count());
uint32_t BoneIndex = 0;
for (auto& Bone : Model.Bones)
{
Writer.WriteLineFmt("BONE %d %d \"%s\"", BoneIndex, Bone.Parent(), (char*)Bone.Name());
BoneIndex++;
}
Writer.Write("\n");
BoneIndex = 0;
for (auto& Bone : Model.Bones)
{
auto Rotation = ::Math::Matrix::CreateFromQuaternion(Bone.GlobalRotation());
auto& Position = Bone.GlobalPosition();
auto& Scale = Bone.Scale();
Writer.WriteLineFmt(
"BONE %d\n"
"OFFSET %f, %f, %f\n"
"SCALE %f, %f, %f\n"
"X %f, %f, %f\n"
"Y %f, %f, %f\n"
"Z %f, %f, %f\n",
BoneIndex,
Position.X, Position.Y, Position.Z,
Scale.X, Scale.Y, Scale.Z,
MathHelper::Clamp(Rotation.Mat(0, 0), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(0, 1), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(0, 2), -1.f, 1.f),
MathHelper::Clamp(Rotation.Mat(1, 0), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(1, 1), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(1, 2), -1.f, 1.f),
MathHelper::Clamp(Rotation.Mat(2, 0), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(2, 1), -1.f, 1.f), MathHelper::Clamp(Rotation.Mat(2, 2), -1.f, 1.f)
);
BoneIndex++;
}
auto TotalVertexCount = Model.VertexCount();
auto TotalFaceCount = Model.FaceCount();
if (TotalVertexCount > UINT16_MAX)
Writer.WriteLineFmt("NUMVERTS32 %d", TotalVertexCount);
else
Writer.WriteLineFmt("NUMVERTS %d", TotalVertexCount);
uint32_t VertexIndex = 0;
for (auto& Submesh : Model.Meshes)
{
for (auto& Vertex : Submesh.Vertices)
{
auto& Position = Vertex.Position();
if (TotalVertexCount > UINT16_MAX)
Writer.WriteLineFmt(
"VERT32 %d\n"
"OFFSET %f, %f, %f",
VertexIndex,
Position.X, Position.Y, Position.Z
);
else
Writer.WriteLineFmt(
"VERT %d\n"
"OFFSET %f, %f, %f",
VertexIndex,
Position.X, Position.Y, Position.Z
);
if (Vertex.WeightCount() == 1)
Writer.WriteLineFmt(
"BONES 1\n"
"BONE %d 1.0\n",
Vertex.Weights(0).Bone
);
else
{
Writer.WriteLineFmt("BONES %d", Vertex.WeightCount());
for (uint8_t i = 0; i < Vertex.WeightCount(); i++)
Writer.WriteLineFmt("BONE %d %f", Vertex.Weights(i).Bone, Vertex.Weights(i).Value);
Writer.Write("\n");
}
VertexIndex++;
}
}
Writer.WriteLineFmt("NUMFACES %d", TotalFaceCount);
uint32_t SubmeshIndex = 0;
VertexIndex = 0;
for (auto& Submesh : Model.Meshes)
{
for (auto& Face : Submesh.Faces)
{
if (SubmeshIndex > UINT8_MAX || Submesh.MaterialIndices[0] > UINT8_MAX)
Writer.WriteLineFmt("TRI16 %d %d 0 0", SubmeshIndex, Submesh.MaterialIndices[0]);
else
Writer.WriteLineFmt("TRI %d %d 0 0", SubmeshIndex, Submesh.MaterialIndices[0]);
//
// Face vertex [2]
//
Writer.WriteLineFmt((TotalVertexCount > UINT16_MAX) ? "VERT32 %d" : "VERT %d", (Face[2] + VertexIndex));
auto& Face1Normal = Submesh.Vertices[Face[2]].Normal();
auto& Face1Color = Submesh.Vertices[Face[2]].Color();
Writer.WriteFmt(
"NORMAL %f %f %f\n"
"COLOR %f %f %f %f\n"
"UV %d",
Face1Normal.X, Face1Normal.Y, Face1Normal.Z,
Face1Color[0], Face1Color[1], Face1Color[2], Face1Color[3],
Submesh.Vertices.UVLayerCount()
);
for (uint8_t i = 0; i < Submesh.Vertices.UVLayerCount(); i++)
Writer.WriteFmt(" %f %f", Submesh.Vertices[Face[2]].UVLayers(i).U, Submesh.Vertices[Face[2]].UVLayers(i).V);
Writer.Write("\n");
//
// Face vertex [0]
//
Writer.WriteLineFmt((TotalVertexCount > UINT16_MAX) ? "VERT32 %d" : "VERT %d", (Face[0] + VertexIndex));
auto& Face2Normal = Submesh.Vertices[Face[0]].Normal();
auto& Face2Color = Submesh.Vertices[Face[0]].Color();
Writer.WriteFmt(
"NORMAL %f %f %f\n"
"COLOR %f %f %f %f\n"
"UV %d",
Face2Normal.X, Face2Normal.Y, Face2Normal.Z,
Face2Color[0], Face2Color[1], Face2Color[2], Face2Color[3],
Submesh.Vertices.UVLayerCount()
);
for (uint8_t i = 0; i < Submesh.Vertices.UVLayerCount(); i++)
Writer.WriteFmt(" %f %f", Submesh.Vertices[Face[0]].UVLayers(i).U, Submesh.Vertices[Face[0]].UVLayers(i).V);
Writer.Write("\n");
//
// Face vertex [1]
//
Writer.WriteLineFmt((TotalVertexCount > UINT16_MAX) ? "VERT32 %d" : "VERT %d", (Face[1] + VertexIndex));
auto& Face3Normal = Submesh.Vertices[Face[1]].Normal();
auto& Face3Color = Submesh.Vertices[Face[1]].Color();
Writer.WriteFmt(
"NORMAL %f %f %f\n"
"COLOR %f %f %f %f\n"
"UV %d",
Face3Normal.X, Face3Normal.Y, Face3Normal.Z,
Face3Color[0], Face3Color[1], Face3Color[2], Face3Color[3],
Submesh.Vertices.UVLayerCount()
);
for (uint8_t i = 0; i < Submesh.Vertices.UVLayerCount(); i++)
Writer.WriteFmt(" %f %f", Submesh.Vertices[Face[1]].UVLayers(i).U, Submesh.Vertices[Face[1]].UVLayers(i).V);
Writer.Write("\n");
}
VertexIndex += Submesh.Vertices.Count();
SubmeshIndex++;
}
Writer.WriteLineFmt("\nNUMOBJECTS %d", Model.Meshes.Count());
SubmeshIndex = 0;
for (auto& Submesh : Model.Meshes)
Writer.WriteLineFmt("OBJECT %d \"KoreMesh_%d\"", SubmeshIndex, SubmeshIndex++);
Writer.Write("\n");
Writer.WriteLineFmt("NUMMATERIALS %d", Model.Materials.Count());
uint32_t MaterialIndex = 0;
for (auto& Material : Model.Materials)
{
Writer.WriteFmt("MATERIAL %d \"%s\" \"Phong\" \"", MaterialIndex, (char*)Material.Name);
if (Material.Slots.ContainsKey(MaterialSlotType::Albedo))
Writer.WriteFmt("color:%s", (char*)Material.Slots[MaterialSlotType::Albedo].first);
else if (Material.Slots.ContainsKey(MaterialSlotType::Diffuse))
Writer.WriteFmt("color:%s", (char*)Material.Slots[MaterialSlotType::Diffuse].first);
Writer.WriteLine("\"\nCOLOR 0.000000 0.000000 0.000000 1.000000\nTRANSPARENCY 0.000000 0.000000 0.000000 1.000000\nAMBIENTCOLOR 1.000000 1.000000 1.000000 1.000000\nINCANDESCENCE 0.000000 0.000000 0.000000 1.000000\nCOEFFS 0.800000 0.000000\nGLOW 0.000000 0\nREFRACTIVE 6 1.000000\nSPECULARCOLOR 0.500000 0.500000 0.500000 1.000000\nREFLECTIVECOLOR 0.000000 0.000000 0.000000 1.000000\nREFLECTIVE 1 0.500000\nBLINN -1.000000 -1.000000\nPHONG 20.000000");
MaterialIndex++;
}
return true;
}
imstring CoDXAssetExport::ModelExtension()
{
return ".xmodel_export";
}
imstring CoDXAssetExport::AnimationExtension()
{
return ".xanim_export";
}
ExporterScale CoDXAssetExport::ExportScale()
{
// Call of Duty uses inches as the primary scale constant.
return ExporterScale::Inch;
}
bool CoDXAssetExport::SupportsAnimations()
{
return true;
}
bool CoDXAssetExport::SupportsModels()
{
return true;
}
}

View File

@ -0,0 +1,33 @@
#pragma once
#include <cstdint>
#include "Exporter.h"
namespace Assets::Exporters
{
// The Call of Duty XAsset Export exporter
class CoDXAssetExport : public Exporter
{
public:
CoDXAssetExport() = default;
~CoDXAssetExport() = default;
// Exports the given animation to the provided path.
virtual bool ExportAnimation(const Animation& Animation, const string& Path);
// Exports the given model to the provided path.
virtual bool ExportModel(const Model& Model, const string& Path);
// Gets the file extension for this exporters model format.
virtual imstring ModelExtension();
// Gets the file extension for this exporters animation format.
virtual imstring AnimationExtension();
// Gets the required scaling constant for this exporter.
virtual ExporterScale ExportScale();
// Gets whether or not the exporter supports animation exporting.
virtual bool SupportsAnimations();
// Gets whether or not the exporter supports model exporting.
virtual bool SupportsModels();
};
}

View File

@ -0,0 +1,10 @@
#include "stdafx.h"
#include "ColumnClickEventArgs.h"
namespace Forms
{
ColumnClickEventArgs::ColumnClickEventArgs(int32_t Column)
: Column(Column)
{
}
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Provides data for the OnColumnClick event.
class ColumnClickEventArgs
{
public:
ColumnClickEventArgs(int32_t Column);
~ColumnClickEventArgs() = default;
// The index of the column that was clicked.
const int32_t Column;
};
}

View File

@ -0,0 +1,158 @@
#include "stdafx.h"
#include "ColumnHeader.h"
#include "ListView.h"
namespace Forms
{
ColumnHeader::ColumnHeader()
: ColumnHeader("")
{
}
ColumnHeader::ColumnHeader(const string& Text)
: ColumnHeader(Text, 60)
{
}
ColumnHeader::ColumnHeader(const string& Text, int32_t Width)
: ColumnHeader(Text, Width, HorizontalAlignment::Left)
{
}
ColumnHeader::ColumnHeader(const string& Text, int32_t Width, HorizontalAlignment Alignment)
: _Text(Text), _Width(Width), _TextAlign(Alignment), _OwnerListView(nullptr), _IndexInternal(-1)
{
}
int32_t ColumnHeader::Index() const
{
if (_OwnerListView != nullptr)
return _OwnerListView->Columns.IndexOf(*this);
return -1;
}
int32_t ColumnHeader::DisplayIndex()
{
return this->_IndexInternal;
}
void ColumnHeader::SetDisplayIndex(int32_t Value)
{
if (this->_OwnerListView == nullptr)
{
this->_IndexInternal = Value;
return;
}
auto LowDI = min(this->_IndexInternal, Value);
auto HiDI = max(this->_IndexInternal, Value);
auto ColsOrder = std::make_unique<int32_t[]>(_OwnerListView->Columns.Count());
bool HdrMovedForward = Value > this->_IndexInternal;
ColumnHeader* MovedHdr = nullptr;
for (uint32_t i = 0; i < _OwnerListView->Columns.Count(); i++)
{
auto& Hdr = _OwnerListView->Columns[i];
if (Hdr.DisplayIndex() == _IndexInternal)
MovedHdr = &Hdr;
else if (Hdr.DisplayIndex() >= LowDI && Hdr.DisplayIndex() <= HiDI)
Hdr._IndexInternal -= HdrMovedForward ? 1 : -1;
if (i != this->Index())
ColsOrder[Hdr._IndexInternal] = i;
}
if (MovedHdr != nullptr)
{
MovedHdr->_IndexInternal = Value;
ColsOrder[MovedHdr->_IndexInternal] = MovedHdr->Index();
}
SetDisplayIndices(ColsOrder, _OwnerListView->Columns.Count());
}
void ColumnHeader::SetDisplayIndexInternal(int32_t Value)
{
this->_IndexInternal = Value;
}
const string& ColumnHeader::Text() const
{
return this->_Text;
}
void ColumnHeader::SetText(const string& Value)
{
_Text = Value;
if (_OwnerListView)
_OwnerListView->SetColumnInfo(LVCF_TEXT, *this);
}
int32_t ColumnHeader::Width() const
{
if (_OwnerListView != nullptr && _OwnerListView->GetState(Forms::ControlStates::StateCreated) && _OwnerListView->GetState(ControlStates::StateCreated))
{
auto HwndHdr = (HWND)SendMessageA(_OwnerListView->GetHandle(), LVM_GETHEADER, NULL, NULL);
if (HwndHdr != NULL)
{
auto NativeItemCount = (int32_t)SendMessageA(HwndHdr, HDM_GETITEMCOUNT, NULL, NULL);
auto Idx = Index();
if (Idx < NativeItemCount)
return (int32_t)SendMessageA(_OwnerListView->GetHandle(), LVM_GETCOLUMNWIDTH, (WPARAM)Idx, 0);
}
}
return this->_Width;
}
void ColumnHeader::SetWidth(int32_t Value)
{
_Width = Value;
if (_OwnerListView)
_OwnerListView->SetColumnWidth(this->Index(), _Width);
}
HorizontalAlignment ColumnHeader::TextAlign() const
{
return this->_TextAlign;
}
void ColumnHeader::SetTextAlign(HorizontalAlignment Value)
{
if (_TextAlign != Value)
{
_TextAlign = Value;
if (_OwnerListView)
{
_OwnerListView->SetColumnInfo(LVCF_FMT, *this);
_OwnerListView->Invalidate();
}
}
}
ListView* ColumnHeader::GetListView()
{
return this->_OwnerListView;
}
void ColumnHeader::SetListView(ListView* Owner)
{
this->_OwnerListView = Owner;
}
bool ColumnHeader::operator==(const ColumnHeader& Rhs)
{
return (this->_IndexInternal == Rhs._IndexInternal && this->_Text == Rhs._Text && this->_TextAlign == Rhs._TextAlign);
}
void ColumnHeader::SetDisplayIndices(const std::unique_ptr<int32_t[]>& Cols, int32_t Count)
{
if (this->_OwnerListView != nullptr && this->_OwnerListView->GetState(ControlStates::StateCreated))
SendMessageA(this->_OwnerListView->GetHandle(), LVM_SETCOLUMNORDERARRAY, (WPARAM)Count, (LPARAM)Cols.get());
}
}

View File

@ -0,0 +1,71 @@
#pragma once
#include <cstdint>
#include "StringBase.h"
#include "HorizontalAlignment.h"
namespace Forms
{
// Externally defined so we don't conflict
class ListView;
// Displays a single column header in a ListView control.
class ColumnHeader
{
public:
ColumnHeader();
ColumnHeader(const string& Text);
ColumnHeader(const string& Text, int32_t Width);
ColumnHeader(const string& Text, int32_t Width, HorizontalAlignment Alignment);
~ColumnHeader() = default;
// The index of this column.
int32_t Index() const;
// The index of this column as it is displayed.
int32_t DisplayIndex();
// The index of this column as it is displayed.
void SetDisplayIndex(int32_t Value);
// Sets the display index without reflowing others.
void SetDisplayIndexInternal(int32_t Value);
// The text displayed in the column header.
const string& Text() const;
// The text displayed in the column header.
void SetText(const string& Value);
// The width of the column in pixels.
int32_t Width() const;
// The width of the column in pixels.
void SetWidth(int32_t Value);
// The horizontal alignment of the text contained in this column.
HorizontalAlignment TextAlign() const;
// The horizontal alignment of the text contained in this column.
void SetTextAlign(HorizontalAlignment Value);
// Returns the ListView control that this column is displayed in. May be null.
ListView* GetListView();
// Sets the ListView control that this column is displayed in.
void SetListView(ListView* Owner);
// Custom equality operator
bool operator==(const ColumnHeader& Rhs);
private:
// Internal cached properties
ListView* _OwnerListView;
// Width and index
int32_t _Width;
int32_t _IndexInternal;
// Text to display
string _Text;
HorizontalAlignment _TextAlign;
// Set the display indices of the ListView columns.
void SetDisplayIndices(const std::unique_ptr<int32_t[]>& Cols, int32_t Count);
};
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies how ListView column headers behave.
enum class ColumnHeaderStyle
{
// No visible column header.
None = 0,
// Visible column header that does not respond to clicking.
NonClickable = 1,
// Visible column header that responds to clicking.
Clickable = 2
};
}

View File

@ -0,0 +1,496 @@
#include "stdafx.h"
#include "ComboBox.h"
namespace Forms
{
ComboBox::ComboBox()
: Control(), Items(this), _DrawMode(DrawMode::Normal), _FlatStyle(FlatStyle::Standard), _DropDownStyle(ComboBoxStyle::DropDown), _IntegralHeight(true), _DropDownWidth(-1), _DropDownHeight(-1), _MaxDropDownItems(8), _MaximumLength(SHRT_MAX), _SelectedIndex(-1), _ChildEdit(nullptr), _ChildListBox(nullptr)
{
SetStyle(ControlStyles::UserPaint |
ControlStyles::UseTextForAccessibility |
ControlStyles::StandardClick, false);
// Default back color is different...
this->_BackColor = Drawing::GetSystemColor(Drawing::SystemColors::Window);
// We are a ComboBox control.
this->_RTTI = ControlTypes::ComboBox;
}
DrawMode ComboBox::GetDrawMode()
{
return this->_DrawMode;
}
void ComboBox::SetDrawMode(DrawMode Value)
{
if (_DrawMode != Value)
{
_DrawMode = Value;
UpdateStyles();
}
}
uint32_t ComboBox::DropDownWidth()
{
if (_DropDownWidth > -1)
return _DropDownWidth;
return _Width;
}
void ComboBox::SetDropDownWidth(uint32_t Value)
{
_DropDownWidth = (int32_t)Value;
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_Handle, CB_SETDROPPEDWIDTH, (WPARAM)Value, NULL);
}
uint32_t ComboBox::DropDownHeight()
{
if (_DropDownHeight > -1)
return _DropDownHeight;
return 106; // Default drop down height...
}
void ComboBox::SetDropDownHeight(uint32_t Value)
{
_DropDownHeight = (int32_t)Value;
SetIntegralHeight(false);
}
bool ComboBox::DroppedDown()
{
if (GetState(ControlStates::StateCreated))
return (SendMessageA(this->_Handle, CB_GETDROPPEDSTATE, NULL, NULL) != 0);
return false;
}
void ComboBox::SetDroppedDown(bool Value)
{
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_Handle, CB_SHOWDROPDOWN, Value ? -1 : 0, NULL);
}
FlatStyle ComboBox::GetFlatStyle()
{
return this->_FlatStyle;
}
void ComboBox::SetFlatStyle(FlatStyle Value)
{
if (_FlatStyle != Value)
{
_FlatStyle = Value;
UpdateStyles();
}
}
bool ComboBox::IntegralHeight()
{
return this->_IntegralHeight;
}
void ComboBox::SetIntegralHeight(bool Value)
{
if (_IntegralHeight != Value)
{
_IntegralHeight = Value;
UpdateStyles();
}
}
int32_t ComboBox::ItemHeight()
{
return (int32_t)SendMessageA(this->_Handle, CB_GETITEMHEIGHT, NULL, NULL);
}
void ComboBox::SetItemHeight(int32_t Value)
{
if (_DrawMode == DrawMode::OwnerDrawFixed)
{
SendMessageA(this->_Handle, CB_SETITEMHEIGHT, (WPARAM)-1, (LPARAM)Value);
SendMessageA(this->_Handle, CB_SETITEMHEIGHT, (WPARAM)0, (LPARAM)Value);
}
else if (_DrawMode == DrawMode::OwnerDrawVariable)
{
SendMessageA(this->_Handle, CB_SETITEMHEIGHT, (WPARAM)-1, (LPARAM)Value);
for (uint32_t i = 0; i < Items.Count(); i++)
SendMessageA(this->_Handle, CB_SETITEMHEIGHT, (WPARAM)i, (LPARAM)Value);
}
}
uint8_t ComboBox::MaxDropDownItems()
{
return this->_MaxDropDownItems;
}
void ComboBox::SetMaxDropDownItems(uint8_t Value)
{
this->_MaxDropDownItems = Value;
}
uint32_t ComboBox::MaxLength()
{
return this->_MaximumLength;
}
void ComboBox::SetMaxLength(uint32_t Value)
{
if (_MaximumLength != Value)
{
_MaximumLength = Value;
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_Handle, CB_LIMITTEXT, (WPARAM)Value, NULL);
}
}
int32_t ComboBox::SelectedIndex()
{
if (GetState(ControlStates::StateCreated))
return (int32_t)SendMessageA(this->_Handle, CB_GETCURSEL, NULL, NULL);
return this->_SelectedIndex;
}
void ComboBox::SetSelectedIndex(int32_t Value)
{
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_Handle, CB_SETCURSEL, (WPARAM)Value, NULL);
else
_SelectedIndex = Value;
OnTextChanged();
OnSelectedIndexChanged();
OnSelectedItemChanged();
}
string ComboBox::SelectedText()
{
if (_DropDownStyle == ComboBoxStyle::DropDownList)
return "";
return Text().Substring(SelectionStart(), SelectionLength());
}
void ComboBox::SetSelectedText(const string& Value)
{
if (_DropDownStyle != ComboBoxStyle::DropDownList)
{
if (GetState(ControlStates::StateCreated))
SendMessageA(this->_ChildEdit, EM_REPLACESEL, (WPARAM)-1, (LPARAM)(const char*)Value);
}
}
int32_t ComboBox::SelectionLength()
{
int32_t End = 0;
int32_t Start = 0;
SendMessageA(this->_Handle, CB_GETEDITSEL, (WPARAM)&Start, (WPARAM)&End);
return End - Start;
}
void ComboBox::SetSelectionLength(int32_t Value)
{
Select(SelectionStart(), Value);
}
int32_t ComboBox::SelectionStart()
{
int32_t Value = 0;
SendMessageA(this->_Handle, CB_GETEDITSEL, (WPARAM)&Value, NULL);
return Value;
}
void ComboBox::SetSelectionStart(int32_t Value)
{
Select(Value, SelectionLength());
}
ComboBoxStyle ComboBox::DropDownStyle()
{
return this->_DropDownStyle;
}
void ComboBox::SetDropDownStyle(ComboBoxStyle Value)
{
if (_DropDownStyle != Value)
{
_DropDownStyle = Value;
if (GetState(ControlStates::StateCreated))
UpdateStyles();
}
}
void ComboBox::Select(int32_t Start, int32_t Length)
{
int32_t End = Start + Length;
SendMessageA(this->_Handle, CB_SETEDITSEL, NULL, MAKELPARAM(Start, End));
}
void ComboBox::OnHandleCreated()
{
if (_MaximumLength > 0)
SendMessageA(this->_Handle, CB_LIMITTEXT, (WPARAM)_MaximumLength, NULL);
if (_DropDownStyle != ComboBoxStyle::DropDownList)
{
auto Hwnd = GetWindow(this->_Handle, GW_CHILD);
if (Hwnd != NULL)
{
if (_DropDownStyle == ComboBoxStyle::Simple)
{
_ChildListBox = Hwnd;
Hwnd = GetWindow(Hwnd, GW_HWNDNEXT);
}
_ChildEdit = Hwnd;
}
}
if (_DropDownWidth > -1)
SendMessageA(this->_Handle, CB_SETDROPPEDWIDTH, (WPARAM)_DropDownWidth, NULL);
// If we have items, add them now
for (auto& Item : Items)
this->NativeAdd((const char*)Item);
if (_SelectedIndex > -1)
{
SendMessageA(this->_Handle, CB_SETCURSEL, (WPARAM)_SelectedIndex, NULL);
_SelectedIndex = -1;
}
// We must call the base event last
Control::OnHandleCreated();
}
void ComboBox::OnSelectedItemChanged()
{
SelectedItemChanged.RaiseEvent(this);
}
void ComboBox::OnSelectedIndexChanged()
{
SelectedIndexChanged.RaiseEvent(this);
}
void ComboBox::OnDropDownClosed()
{
DropDownClosed.RaiseEvent(this);
}
void ComboBox::WndProc(Message& Msg)
{
switch (Msg.Msg)
{
case WM_CTLCOLOREDIT:
case WM_CTLCOLORLISTBOX:
Msg.Result = InitializeDCForWmCtlColor((HDC)Msg.WParam, Msg.Msg);
break;
case WM_REFLECT + WM_COMMAND:
WmReflectCommand(Msg);
break;
default:
Control::WndProc(Msg);
break;
}
}
CreateParams ComboBox::GetCreateParams()
{
auto Cp = Control::GetCreateParams();
Cp.ClassName = "COMBOBOX";
Cp.Style |= WS_VSCROLL | CBS_HASSTRINGS | CBS_AUTOHSCROLL;
if (!_IntegralHeight)
Cp.Style |= CBS_NOINTEGRALHEIGHT;
switch (_FlatStyle)
{
case FlatStyle::Popup:
case FlatStyle::Flat:
Cp.ExStyle |= WS_EX_STATICEDGE;
default:
Cp.ExStyle |= WS_EX_CLIENTEDGE;
break;
}
switch (_DropDownStyle)
{
case ComboBoxStyle::Simple:
Cp.Style |= CBS_SIMPLE;
break;
case ComboBoxStyle::DropDown:
Cp.Style |= CBS_DROPDOWN;
break;
case ComboBoxStyle::DropDownList:
Cp.Style |= CBS_DROPDOWNLIST;
break;
}
switch (_DrawMode)
{
case DrawMode::OwnerDrawFixed:
Cp.Style |= CBS_OWNERDRAWFIXED;
break;
case DrawMode::OwnerDrawVariable:
Cp.Style |= CBS_OWNERDRAWVARIABLE;
break;
}
return Cp;
}
uintptr_t ComboBox::InitializeDCForWmCtlColor(HDC Dc, int32_t Message)
{
if ((Message == WM_CTLCOLORSTATIC))
{
return (uintptr_t)0;
}
else if ((Message == WM_CTLCOLORLISTBOX) && GetStyle(ControlStyles::UserPaint))
{
SetTextColor(Dc, this->ForeColor().ToCOLORREF());
SetBkColor(Dc, this->BackColor().ToCOLORREF());
return BackColorBrush();
}
else
{
return Control::InitializeDCForWmCtlColor(Dc, Message);
}
}
int32_t ComboBox::NativeAdd(const char* Value)
{
return (int32_t)SendMessageA(this->_Handle, CB_ADDSTRING, NULL, (LPARAM)Value);
}
void ComboBox::NativeClear()
{
string Saved;
if (_DropDownStyle != ComboBoxStyle::DropDownList)
Saved = this->WindowText();
SendMessageA(this->_Handle, CB_RESETCONTENT, NULL, NULL);
if (!string::IsNullOrEmpty(Saved))
this->SetWindowText(Saved);
}
int32_t ComboBox::NativeInsert(int32_t Index, const char* Value)
{
return (int32_t)SendMessageA(this->_Handle, CB_INSERTSTRING, (WPARAM)Index, (LPARAM)Value);
}
void ComboBox::NativeRemoveAt(int32_t Index)
{
if (_DropDownStyle == ComboBoxStyle::DropDownList && SelectedIndex() == Index)
Invalidate();
SendMessageA(this->_Handle, CB_DELETESTRING, (WPARAM)Index, NULL);
}
void ComboBox::WmReflectCommand(Message& Msg)
{
switch ((int16_t)HIWORD(Msg.WParam))
{
case CBN_EDITCHANGE:
OnTextChanged();
break;
case CBN_SELCHANGE:
OnSelectedIndexChanged();
OnSelectedItemChanged();
break;
case CBN_CLOSEUP:
OnDropDownClosed();
break;
}
}
ComboBox::ComboBoxItemCollection::ComboBoxItemCollection(ComboBox* Owner)
: _Owner(Owner), _Items()
{
}
void ComboBox::ComboBoxItemCollection::Add(const imstring& Value)
{
_Items.EmplaceBack(Value);
if (_Owner->GetState(ControlStates::StateCreated))
_Owner->NativeAdd(Value);
}
void ComboBox::ComboBoxItemCollection::Insert(int32_t Index, const imstring& Value)
{
_Items.Insert(Index, Value);
if (_Owner->GetState(ControlStates::StateCreated))
_Owner->NativeInsert(Index, Value);
}
void ComboBox::ComboBoxItemCollection::Clear()
{
_Items.Clear();
if (_Owner->GetState(ControlStates::StateCreated))
_Owner->NativeClear();
}
bool ComboBox::ComboBoxItemCollection::Contains(const imstring & Value)
{
return (IndexOf(Value) > -1);
}
int32_t ComboBox::ComboBoxItemCollection::IndexOf(const imstring& Value)
{
auto Str = string(Value);
auto Res = _Items.IndexOf(Str);
if (Res == List<string>::InvalidPosition)
return -1;
return Res;
}
void ComboBox::ComboBoxItemCollection::RemoveAt(int32_t Index)
{
if (_Owner->GetState(ControlStates::StateCreated))
_Owner->NativeRemoveAt(Index);
_Items.RemoveAt(Index);
}
void ComboBox::ComboBoxItemCollection::Remove(const imstring& Value)
{
auto Index = IndexOf(Value);
if (Index > -1)
RemoveAt(Index);
}
uint32_t ComboBox::ComboBoxItemCollection::Count()
{
return _Items.Count();
}
string* ComboBox::ComboBoxItemCollection::begin() const
{
return _Items.begin();
}
string* ComboBox::ComboBoxItemCollection::end() const
{
return _Items.end();
}
}

View File

@ -0,0 +1,190 @@
#pragma once
#include <cstdint>
#include "Control.h"
#include "StringBase.h"
#include "ListBase.h"
#include "ImmutableStringBase.h"
#include "DrawMode.h"
#include "FlatStyle.h"
#include "ComboBoxStyle.h"
namespace Forms
{
// Displays an editing field and a list control.
class ComboBox : public Control
{
public:
ComboBox();
virtual ~ComboBox() = default;
// Gets whether the control is drawn by Windows or by the user.
DrawMode GetDrawMode();
// Sets whether the control is drawn by Windows or by the user.
void SetDrawMode(DrawMode Value);
// Gets the width of the drop down box in a combo box.
uint32_t DropDownWidth();
// Sets the width of the drop down box in a combo box.
void SetDropDownWidth(uint32_t Value);
// Gets the Height of the drop down box in a combo box.
uint32_t DropDownHeight();
// Sets the Height of the drop down box in a combo box.
void SetDropDownHeight(uint32_t Value);
// Indicates whether the DropDown of the combo is currently dropped down.
bool DroppedDown();
// Sets whether the DropDown of the combo is currently dropped down.
void SetDroppedDown(bool Value);
// Gets the flat style appearance of the button control.
FlatStyle GetFlatStyle();
// Sets the flat style appearance of the button control.
void SetFlatStyle(FlatStyle Value);
// Gets if the combo should avoid showing partial Items.
bool IntegralHeight();
// Sets if the combo should avoid showing partial Items.
void SetIntegralHeight(bool Value);
// Gets the height of an item in the combo box.
int32_t ItemHeight();
// Sets the height of an item in the combo box.
void SetItemHeight(int32_t Value);
// Gets the maximum number of items to be shown in the dropdown portion
// of the ComboBox. This number can be between 1 and 100.
uint8_t MaxDropDownItems();
// Sets the maximum number of items to be shown in the dropdown portion
// of the ComboBox. This number can be between 1 and 100.
void SetMaxDropDownItems(uint8_t Value);
// Gets the maximum length of the text the user may type into the edit control of a combo box.
uint32_t MaxLength();
// Sets the maximum length of the text the user may type into the edit control of a combo box.
void SetMaxLength(uint32_t Value);
// Gets the [zero based] index of the currently selected item in the combos list.
// Note If the value of index is -1, then the ComboBox is
// set to have no selection.
int32_t SelectedIndex();
// Sets the [zero based] index of the currently selected item in the combos list.
// Note If the value of index is -1, then the ComboBox is
// set to have no selection.
void SetSelectedIndex(int32_t Value);
// Gets the selected text in the edit component of the ComboBox.
string SelectedText();
// Sets the selected text in the edit component of the ComboBox.
void SetSelectedText(const string& Value);
// Gets length, in characters, of the selection in the editbox.
int32_t SelectionLength();
// Sets length, in characters, of the selection in the editbox.
void SetSelectionLength(int32_t Value);
// Gets the [zero-based] index of the first character in the current text selection.
int32_t SelectionStart();
// Sets the [zero-based] index of the first character in the current text selection.
void SetSelectionStart(int32_t Value);
// Gets the type of combo that we are right now.
ComboBoxStyle DropDownStyle();
// Sets the type of combo that we are right now.
void SetDropDownStyle(ComboBoxStyle Value);
// Selects the text in the editable portion of the ComboBox at the
void Select(int32_t Start, int32_t Length);
// The items contained in the combo box.
struct ComboBoxItemCollection
{
ComboBoxItemCollection(ComboBox* Owner);
~ComboBoxItemCollection() = default;
// Adds an item to the combo box.
void Add(const imstring& Value);
// Inserts an item to the combo box.
void Insert(int32_t Index, const imstring& Value);
// Removes all items from the combo box.
void Clear();
// Checks if the combo box contains the value.
bool Contains(const imstring& Value);
// Gets the index of the item, if any.
int32_t IndexOf(const imstring& Value);
// Removes an item at the specified index.
void RemoveAt(int32_t Index);
// Removes an item from the combo box.
void Remove(const imstring& Value);
// Gets the count of items in the combo box.
uint32_t Count();
// Iterater classes
string* begin() const;
string* end() const;
protected:
// Internal references
ComboBox* _Owner;
List<string> _Items;
} Items;
// We must define control event bases here
virtual void OnHandleCreated();
virtual void OnSelectedItemChanged();
virtual void OnSelectedIndexChanged();
virtual void OnDropDownClosed();
// We must define event handlers here
EventBase<void(*)(Control*)> SelectedItemChanged;
EventBase<void(*)(Control*)> SelectedIndexChanged;
EventBase<void(*)(Control*)> DropDownClosed;
// Override WndProc for specific combo box messages.
virtual void WndProc(Message& Msg);
protected:
// Get custom control creation parameters for this instance.
virtual CreateParams GetCreateParams();
// Sets the text and background colors of the DC, and returns the background HBRUSH.
virtual uintptr_t InitializeDCForWmCtlColor(HDC Dc, int32_t Message);
// Internal routine to add an item.
int32_t NativeAdd(const char* Value);
// Internal routine to clear the items.
void NativeClear();
// Internal routine to insert an item.
int32_t NativeInsert(int32_t Index, const char* Value);
// Internal routine to remove an item.
void NativeRemoveAt(int32_t Index);
private:
// Internal cached flags
FlatStyle _FlatStyle;
DrawMode _DrawMode;
ComboBoxStyle _DropDownStyle;
// Internal show partial items
bool _IntegralHeight;
// Internal size of dropdown
int32_t _DropDownWidth;
int32_t _DropDownHeight;
int32_t _SelectedIndex;
// Internal children
HWND _ChildEdit;
HWND _ChildListBox;
// Internal maximum items
uint8_t _MaxDropDownItems;
// Internal maximun length
uint32_t _MaximumLength;
// We must define each window message handler here...
void WmReflectCommand(Message& Msg);
};
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies the ComboBox style.
enum class ComboBoxStyle
{
// The text portion is editable. The list portion is always visible.
Simple = 0,
// The text portion is editable. The user must click the arrow button to display the list portion.
DropDown = 1,
// The user cannot directly edit the text portion. The user must click the arrow button to display the list portion.
DropDownList = 2
};
}

View File

@ -0,0 +1,13 @@
#pragma once
#include <cstdint>
namespace Compression
{
// Which mode of operation we are performing
enum class CompressionMode
{
Compress,
Decompress
};
}

View File

@ -0,0 +1,563 @@
#include "stdafx.h"
#include "Console.h"
#include "ConsoleStream.h"
namespace System
{
// This holds the global std handle for the input stream
__ConsoleInit Console::ConsoleInstance = __ConsoleInit();
enum class ControlKeyState
{
RightAltPressed = 0x0001,
LeftAltPressed = 0x0002,
RightCtrlPressed = 0x0004,
LeftCtrlPressed = 0x0008,
ShiftPressed = 0x0010,
NumLockOn = 0x0020,
ScrollLockOn = 0x0040,
CapsLockOn = 0x0080,
EnhancedKey = 0x0100
};
void Console::Beep()
{
::Beep(800, 200);
}
void Console::Beep(uint32_t Frequency, uint32_t Duration)
{
::Beep(Frequency, Duration);
}
void Console::Clear()
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
COORD cScreen{};
int conSize = (cSBI.dwSize.X * cSBI.dwSize.Y);
DWORD nCellsWritten = 0;
FillConsoleOutputCharacterA(hStdOut, ' ', conSize, cScreen, &nCellsWritten);
nCellsWritten = 0;
FillConsoleOutputAttribute(hStdOut, FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED, conSize, cScreen, &nCellsWritten);
SetConsoleCursorPosition(hStdOut, cScreen);
}
void Console::ClearLine()
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
cSBI.dwCursorPosition.X = 0;
DWORD nCellsWritten = 0;
FillConsoleOutputCharacterA(hStdOut, ' ', cSBI.dwSize.X, cSBI.dwCursorPosition, &nCellsWritten);
SetConsoleCursorPosition(hStdOut, cSBI.dwCursorPosition);
}
void Console::ResetColor()
{
Console::SetColors(ConsoleColor::Gray, ConsoleColor::Black);
}
void Console::SetForegroundColor(ConsoleColor Color)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
auto nColor = Console::ConsoleColorToColorAttribute(Color, false);
int16_t Attrs = cSBI.wAttributes;
Attrs &= ~((int16_t)Console::ForegroundMask);
Attrs = (int16_t)(((uint32_t)(uint16_t)Attrs) | ((uint32_t)(uint16_t)nColor));
SetConsoleTextAttribute(hStdOut, Attrs);
}
void Console::SetBackgroundColor(ConsoleColor Color)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
auto nColor = Console::ConsoleColorToColorAttribute(Color, true);
int16_t Attrs = cSBI.wAttributes;
Attrs &= ~((int16_t)Console::BackgroundMask);
Attrs = (int16_t)(((uint32_t)(uint16_t)Attrs) | ((uint32_t)(uint16_t)nColor));
SetConsoleTextAttribute(hStdOut, Attrs);
}
void Console::SetColors(ConsoleColor Foreground, ConsoleColor Background)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
auto nColor = Console::ConsoleColorToColorAttribute(Foreground, false);
auto nColor2 = Console::ConsoleColorToColorAttribute(Background, true);
int16_t Attrs = cSBI.wAttributes;
Attrs &= ~((int16_t)Console::ForegroundMask);
Attrs = (int16_t)(((uint32_t)(uint16_t)Attrs) | ((uint32_t)(uint16_t)nColor));
Attrs &= ~((int16_t)Console::BackgroundMask);
Attrs = (int16_t)(((uint32_t)(uint16_t)Attrs) | ((uint32_t)(uint16_t)nColor2));
SetConsoleTextAttribute(hStdOut, Attrs);
}
void Console::SetBufferSize(uint32_t Width, uint32_t Height)
{
COORD cScreen;
cScreen.X = (SHORT)Width;
cScreen.Y = (SHORT)Height;
SetConsoleScreenBufferSize(((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle(), cScreen);
}
void Console::SetCursorPosition(uint32_t Left, uint32_t Right)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
COORD cScreen;
cScreen.X = (SHORT)Left;
cScreen.Y = (SHORT)Right;
SetConsoleCursorPosition(hStdOut, cScreen);
}
void Console::SetWindowSize(uint32_t Width, uint32_t Height)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
COORD cScreen;
cScreen.X = cSBI.dwSize.X;
cScreen.Y = cSBI.dwSize.Y;
bool nBufferResize = false;
if (cSBI.dwSize.X < (SHORT)(cSBI.srWindow.Left + Width))
{
cScreen.X = (SHORT)(cSBI.srWindow.Left + Width);
nBufferResize = true;
}
if (cSBI.dwSize.Y < (SHORT)(cSBI.srWindow.Top + Height))
{
cScreen.Y = (SHORT)(cSBI.srWindow.Top + Height);
nBufferResize = true;
}
if (nBufferResize)
SetConsoleScreenBufferSize(hStdOut, cScreen);
SMALL_RECT srWindow = cSBI.srWindow;
srWindow.Bottom = (SHORT)(srWindow.Top + Height - 1);
srWindow.Right = (SHORT)(srWindow.Left + Width - 1);
auto hResult = SetConsoleWindowInfo(hStdOut, true, &srWindow);
if (!hResult)
SetConsoleScreenBufferSize(hStdOut, cSBI.dwSize);
}
void Console::SetWindowPosition(uint32_t Left, uint32_t Top)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
SMALL_RECT srWindow = cSBI.srWindow;
srWindow.Bottom -= (SHORT)(srWindow.Top - Top);
srWindow.Right -= (SHORT)(srWindow.Left - Left);
srWindow.Left = (SHORT)Left;
srWindow.Top = (SHORT)Top;
SetConsoleWindowInfo(hStdOut, TRUE, &srWindow);
}
void Console::SetFontSize(uint32_t Width, uint32_t Height, uint32_t Weight)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_FONT_INFOEX cFont;
cFont.cbSize = sizeof(cFont);
GetCurrentConsoleFontEx(hStdOut, false, &cFont);
cFont.dwFontSize.X = Width;
cFont.dwFontSize.Y = Height;
cFont.FontWeight = Weight;
SetCurrentConsoleFontEx(hStdOut, false, &cFont);
}
void Console::SetTitle(const string& Value)
{
SetConsoleTitleA((const char*)Value);
}
void Console::SetTitle(const char* Value)
{
SetConsoleTitleA(Value);
}
void Console::SetCursorVisible(bool Visible)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_CURSOR_INFO cCI{};
GetConsoleCursorInfo(hStdOut, &cCI);
cCI.bVisible = Visible;
SetConsoleCursorInfo(hStdOut, &cCI);
}
void Console::MoveBufferArea(uint32_t SourceLeft, uint32_t SourceTop, uint32_t SourceWidth, uint32_t SourceHeight, uint32_t TargetLeft, uint32_t TargetTop, char SourceChar, ConsoleColor SourceForeColor, ConsoleColor SourceBackColor)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
COORD BufferSize = cSBI.dwSize;
COORD BufferCoord{};
SMALL_RECT ReadRegion{};
if (SourceWidth == 0 || SourceHeight == 0)
return;
auto CharBuffer = std::make_unique<CHAR_INFO[]>(SourceWidth * SourceHeight);
BufferSize.X = (SHORT)SourceWidth;
BufferSize.Y = (SHORT)SourceHeight;
ReadRegion.Left = (SHORT)SourceLeft;
ReadRegion.Right = (SHORT)(SourceLeft + SourceWidth - 1);
ReadRegion.Top = (SHORT)SourceTop;
ReadRegion.Bottom = (SHORT)(SourceTop + SourceHeight - 1);
ReadConsoleOutput(hStdOut, CharBuffer.get(), BufferSize, BufferCoord, &ReadRegion);
COLORREF NativeColor = (Console::ConsoleColorToColorAttribute(SourceBackColor, true) | Console::ConsoleColorToColorAttribute(SourceForeColor, false));
DWORD nWrite = 0;
COORD WriteCoord{};
WriteCoord.X = (SHORT)SourceLeft;
SHORT Attr = (SHORT)NativeColor;
for (uint32_t i = SourceTop; i < (SourceTop + SourceHeight); i++)
{
WriteCoord.Y = (SHORT)i;
FillConsoleOutputCharacterA(hStdOut, SourceChar, SourceWidth, WriteCoord, &nWrite);
FillConsoleOutputAttribute(hStdOut, Attr, SourceWidth, WriteCoord, &nWrite);
}
SMALL_RECT WriteRegion{};
WriteRegion.Left = (SHORT)TargetLeft;
WriteRegion.Right = (SHORT)(TargetLeft + SourceWidth);
WriteRegion.Top = (SHORT)TargetTop;
WriteRegion.Bottom = (SHORT)(TargetTop + SourceHeight);
WriteConsoleOutput(hStdOut, CharBuffer.get(), BufferSize, BufferCoord, &WriteRegion);
}
void Console::SetMaximizeBoxVisible(bool Visible)
{
auto hConsole = GetConsoleWindow();
auto Style = GetWindowLong(hConsole, GWL_STYLE);
if (Visible)
Style |= WS_MAXIMIZEBOX;
else
Style &= ~WS_MAXIMIZEBOX;
SetWindowLong(hConsole, GWL_STYLE, Style);
}
void Console::SetMinimizeBoxVisible(bool Visible)
{
auto hConsole = GetConsoleWindow();
auto Style = GetWindowLong(hConsole, GWL_STYLE);
if (Visible)
Style |= WS_MINIMIZEBOX;
else
Style &= ~WS_MINIMIZEBOX;
SetWindowLong(hConsole, GWL_STYLE, Style);
}
void Console::SetWindowResizable(bool Resizable)
{
auto hConsole = GetConsoleWindow();
auto Style = GetWindowLong(hConsole, GWL_STYLE);
if (Resizable)
Style |= WS_SIZEBOX;
else
Style &= ~WS_SIZEBOX;
SetWindowLong(hConsole, GWL_STYLE, Style);
}
void Console::CenterWindow()
{
auto hConsole = GetConsoleWindow();
auto hMonitor = MonitorFromWindow(hConsole, MONITOR_DEFAULTTONEAREST);
if (hMonitor)
{
MONITORINFO Info;
Info.cbSize = sizeof(Info);
if (GetMonitorInfo(hMonitor, &Info))
{
RECT cRect{};
GetWindowRect(hConsole, &cRect);
auto Width = (cRect.right - cRect.left);
auto Height = (cRect.bottom - cRect.top);
auto X = (Info.rcWork.left + Info.rcWork.right) / 2 - Width / 2;
auto Y = (Info.rcWork.top + Info.rcWork.bottom) / 2 - Height / 2;
SetWindowPos(hConsole, NULL, X, Y, 0, 0, SWP_NOZORDER | SWP_NOOWNERZORDER | SWP_NOSIZE);
}
}
}
void Console::RemapConsoleColor(ConsoleColor Source, uint8_t R, uint8_t G, uint8_t B)
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFOEX cBuffer;
cBuffer.cbSize = sizeof(cBuffer);
GetConsoleScreenBufferInfoEx(hStdOut, &cBuffer);
// GetConsoleScreenBufferInfoEx returns one short here, so we keep resizing each time...
cBuffer.srWindow.Bottom++;
cBuffer.srWindow.Right++;
cBuffer.ColorTable[(int8_t)Source] = RGB(R, G, B);
SetConsoleScreenBufferInfoEx(hStdOut, &cBuffer);
}
void Console::RemapAllConsoleColors(std::initializer_list<System::ConsoleColor> Colors)
{
static_assert(sizeof(Colors) == 16, "You must specify all 16 colors");
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFOEX cBuffer;
cBuffer.cbSize = sizeof(cBuffer);
GetConsoleScreenBufferInfoEx(hStdOut, &cBuffer);
// GetConsoleScreenBufferInfoEx returns one short here, so we keep resizing each time...
cBuffer.srWindow.Bottom++;
cBuffer.srWindow.Right++;
std::memcpy(cBuffer.ColorTable, Colors.begin(), sizeof(uint32_t) * 16);
SetConsoleScreenBufferInfoEx(hStdOut, &cBuffer);
}
string Console::GetTitle()
{
char Buffer[2048]{};
GetConsoleTitleA(Buffer, 2048); // Honestly it would be too big at 256...
return string(Buffer);
}
bool Console::GetCursorVisible()
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_CURSOR_INFO cCI{};
GetConsoleCursorInfo(hStdOut, &cCI);
return cCI.bVisible;
}
ConsoleColor Console::GetForegroundColor()
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
return Console::ColorAttributeToConsoleColor((int16_t)(cSBI.wAttributes & Console::ForegroundMask));
}
ConsoleColor Console::GetBackgroundColor()
{
auto hStdOut = ((IO::ConsoleStream*)ConsoleInstance.Out.GetBaseStream())->GetStreamHandle();
CONSOLE_SCREEN_BUFFER_INFO cSBI{};
GetConsoleScreenBufferInfo(hStdOut, &cSBI);
return Console::ColorAttributeToConsoleColor((int16_t)(cSBI.wAttributes & Console::BackgroundMask));
}
void Console::Header(const char* Heading, ConsoleColor Color)
{
Console::SetColors(Color, ConsoleColor::DarkGray);
auto sLen = strlen(Heading);
char HeaderBuffer[21];
std::memset(HeaderBuffer + 1, ' ', 19);
HeaderBuffer[0] = '[';
HeaderBuffer[20] = (char)0;
HeaderBuffer[sLen + 1] = ']';
std::memcpy(HeaderBuffer + 1, Heading, sLen);
ConsoleInstance.Out.Write((const char*)HeaderBuffer);
Console::ResetColor();
ConsoleInstance.Out.Write(": ");
}
void Console::Progress(const char* Heading, ConsoleColor Color, uint32_t Width, uint32_t Progress)
{
Progress = min(Progress, 100);
ConsoleInstance.Out.Write("\r");
Console::Header(Heading, Color);
string Buffer(Width + 2, '\0', false);
Buffer.Append("[");
uint32_t Blocks = min((uint32_t)((Progress / 100.f) * Width), Width);
for (uint32_t i = 0; i < Width; i++)
{
if (i < Blocks)
Buffer.Append("=");
else if (i == Blocks)
Buffer.Append(">");
else
Buffer.Append(" ");
}
Buffer.Append("]");
ConsoleInstance.Out.Write(Buffer);
}
int32_t Console::Read()
{
return ConsoleInstance.In.Read();
}
ConsoleKeyInfo Console::ReadKey(bool Intercept)
{
INPUT_RECORD iRecord{};
DWORD rRead = 0;
auto hStdIn = ((IO::ConsoleStream*)ConsoleInstance.In.GetBaseStream())->GetStreamHandle();
while (true)
{
ReadConsoleInputA(hStdIn, &iRecord, 1, &rRead);
int16_t kCode = iRecord.Event.KeyEvent.wVirtualKeyCode;
if (!IsKeyDownEvent(iRecord))
if (kCode != AltVKCode)
continue;
char Ch = (char)iRecord.Event.KeyEvent.uChar.AsciiChar;
if (Ch == 0)
if (IsModKey(iRecord))
continue;
ConsoleKey key = (ConsoleKey)kCode;
if (IsAltKeyDown(iRecord) && ((key >= ConsoleKey::NumPad0 && key <= ConsoleKey::NumPad9) || (key == ConsoleKey::Clear) || (key == ConsoleKey::Insert) || (key >= ConsoleKey::PageUp && key <= ConsoleKey::DownArrow)))
continue;
// We passed all checks
break;
}
// Calculate key status
auto State = iRecord.Event.KeyEvent.dwControlKeyState;
bool Shift = (State & (uint32_t)ControlKeyState::ShiftPressed) != 0;
bool Alt = (State & ((uint32_t)ControlKeyState::LeftAltPressed | (uint32_t)ControlKeyState::RightAltPressed)) != 0;
bool Control = (State & ((uint32_t)ControlKeyState::LeftCtrlPressed | (uint32_t)ControlKeyState::RightCtrlPressed)) != 0;
if (!Intercept)
{
char iBuffer[] = { iRecord.Event.KeyEvent.uChar.AsciiChar, 0 };
Console::Write(iBuffer);
}
return ConsoleKeyInfo((char)iRecord.Event.KeyEvent.uChar.AsciiChar, (ConsoleKey)iRecord.Event.KeyEvent.wVirtualKeyCode, Shift, Alt, Control);
}
string Console::ReadLine()
{
return ConsoleInstance.In.ReadLine();
}
bool Console::IsKeyDownEvent(INPUT_RECORD iRecord)
{
return (iRecord.EventType == KEY_EVENT && iRecord.Event.KeyEvent.bKeyDown);
}
bool Console::IsModKey(INPUT_RECORD iRecord)
{
int16_t keyCode = iRecord.Event.KeyEvent.wVirtualKeyCode;
return ((keyCode >= 0x10 && keyCode <= 0x12) || keyCode == 0x14 || keyCode == 0x90 || keyCode == 0x91);
}
bool Console::IsAltKeyDown(INPUT_RECORD iRecord)
{
return ((iRecord.Event.KeyEvent.dwControlKeyState) & ((uint32_t)ControlKeyState::LeftAltPressed | (uint32_t)ControlKeyState::RightAltPressed)) != 0;
}
ConsoleColor Console::ColorAttributeToConsoleColor(int16_t Attribute)
{
if ((Attribute & Console::BackgroundMask) != 0)
Attribute = (int32_t)(((int32_t)Attribute) >> 4);
return ConsoleColor(Attribute);
}
int16_t Console::ConsoleColorToColorAttribute(ConsoleColor Color, bool isBackground)
{
auto Result = (int16_t)Color;
if (isBackground)
Result = (int16_t)((int32_t)Result << 4);
return Result;
}
}

View File

@ -0,0 +1,133 @@
#pragma once
#include <cstdint>
#include <cstdio>
#include "StringBase.h"
#include "ConsoleKey.h"
#include "ConsoleColor.h"
#include "__ConsoleInit.h"
#include "ConsoleKeyInfo.h"
namespace System
{
class Console
{
public:
// Trigger a standard console beep sound
static void Beep();
// Trigger a custom console beep sound
static void Beep(uint32_t Frequency, uint32_t Duration);
// Clears the console window
static void Clear();
// Clears the current console line
static void ClearLine();
// Resets the colors
static void ResetColor();
// Sets the foreground color
static void SetForegroundColor(ConsoleColor Color);
// Sets the background color
static void SetBackgroundColor(ConsoleColor Color);
// Sets both colors
static void SetColors(ConsoleColor Foreground, ConsoleColor Background);
// Sets the console buffer size
static void SetBufferSize(uint32_t Width, uint32_t Height);
// Moves the cursor to the specified position
static void SetCursorPosition(uint32_t Left, uint32_t Right);
// Changes the size of the console window
static void SetWindowSize(uint32_t Width, uint32_t Height);
// Changes the position of the console window
static void SetWindowPosition(uint32_t Left, uint32_t Top);
// Changes the font of the console window
static void SetFontSize(uint32_t Width, uint32_t Height, uint32_t Weight);
// Sets the window title
static void SetTitle(const string& Value);
// Sets the window title
static void SetTitle(const char* Value);
// Sets whether or not the cursor is visible
static void SetCursorVisible(bool Visible);
// Moves the specified area in the buffer to another location
static void MoveBufferArea(uint32_t SourceLeft, uint32_t SourceTop, uint32_t SourceWidth, uint32_t SourceHeight, uint32_t TargetLeft, uint32_t TargetTop, char SourceChar, ConsoleColor SourceForeColor = ConsoleColor::Gray, ConsoleColor SourceBackColor = ConsoleColor::Black);
// Sets whether or not the maximize box is visible
static void SetMaximizeBoxVisible(bool Visible);
// Sets whether or not the minimize box is visible
static void SetMinimizeBoxVisible(bool Visible);
// Make the window resizable
static void SetWindowResizable(bool Resizable);
// Centers the console window on the current screen
static void CenterWindow();
// Reassign an existing console color
static void RemapConsoleColor(ConsoleColor Source, uint8_t R, uint8_t G, uint8_t B);
// Reassign all existing console colors
static void RemapAllConsoleColors(std::initializer_list<System::ConsoleColor> Colors);
// Gets the window title
static string GetTitle();
// Gets whether or not the cursor is visible
static bool GetCursorVisible();
// Gets the current foreground color
static ConsoleColor GetForegroundColor();
// Gets the current background color
static ConsoleColor GetBackgroundColor();
// Writes text to the console
template<class... TArgs>
static void Write(const char* Format, TArgs&&... Args);
// Writes a line to the console
template<class... TArgs>
static void WriteLine(const char* Format = nullptr, TArgs&&... Args);
// Writes a heading to the console
static void Header(const char* Heading, ConsoleColor Color);
// Generates a progress bar in the console
static void Progress(const char* Heading, ConsoleColor Color, uint32_t Width, uint32_t Progress);
// Read a character
static int32_t Read();
// Reads a key
static ConsoleKeyInfo ReadKey(bool Intercept = false);
// Reads a line from the console
static string ReadLine();
private:
// Internal routine for IsKeyDown event
static bool IsKeyDownEvent(INPUT_RECORD iRecord);
// Internal routine for IsModKey event
static bool IsModKey(INPUT_RECORD iRecord);
// Internal routine for IsAltKeyDown event
static bool IsAltKeyDown(INPUT_RECORD iRecord);
// Internal routine to convert an internal console color to a ConsoleColor
static ConsoleColor ColorAttributeToConsoleColor(int16_t Attribute);
// Internal routine to convert a ConsoleColor to an internal console color
static int16_t ConsoleColorToColorAttribute(ConsoleColor Color, bool isBackground);
// Internal console handle
static __ConsoleInit ConsoleInstance;
// The alternate virtual key code
static constexpr int16_t AltVKCode = 0x12;
// Masks for internal data
static constexpr int16_t ForegroundMask = 0xf;
static constexpr int16_t BackgroundMask = 0xf0;
};
template<class... TArgs>
inline void Console::Write(const char* Format, TArgs&&... Args)
{
ConsoleInstance.Out.WriteFmt(Format, std::forward<TArgs>(Args)...);
}
template<class... TArgs>
inline void Console::WriteLine(const char* Format, TArgs&&... Args)
{
ConsoleInstance.Out.WriteLineFmt(Format, std::forward<TArgs>(Args)...);
}
}

View File

@ -0,0 +1,23 @@
#include "stdafx.h"
#include "ConsoleColor.h"
namespace System
{
// Predefine the existing colors
ConsoleColor ConsoleColor::Black = ConsoleColor(0);
ConsoleColor ConsoleColor::DarkBlue = ConsoleColor(1);
ConsoleColor ConsoleColor::DarkGreen = ConsoleColor(2);
ConsoleColor ConsoleColor::DarkCyan = ConsoleColor(3);
ConsoleColor ConsoleColor::DarkRed = ConsoleColor(4);
ConsoleColor ConsoleColor::DarkMagenta = ConsoleColor(5);
ConsoleColor ConsoleColor::DarkYellow = ConsoleColor(6);
ConsoleColor ConsoleColor::Gray = ConsoleColor(7);
ConsoleColor ConsoleColor::DarkGray = ConsoleColor(8);
ConsoleColor ConsoleColor::Blue = ConsoleColor(9);
ConsoleColor ConsoleColor::Green = ConsoleColor(10);
ConsoleColor ConsoleColor::Cyan = ConsoleColor(11);
ConsoleColor ConsoleColor::Red = ConsoleColor(12);
ConsoleColor ConsoleColor::Magenta = ConsoleColor(13);
ConsoleColor ConsoleColor::Yellow = ConsoleColor(14);
ConsoleColor ConsoleColor::White = ConsoleColor(15);
}

View File

@ -0,0 +1,69 @@
#pragma once
#include <cstdint>
namespace System
{
// This represents the colors that can be used for console text foreground and background colors.
struct ConsoleColor
{
union
{
uint32_t NativeIndex;
uint32_t Color;
};
constexpr ConsoleColor()
: NativeIndex(0)
{
}
// Construct a ConsoleColor from the built-in index
constexpr ConsoleColor(uint32_t Index)
: NativeIndex(Index)
{
}
// Construct a new ConsoleColor from the given RGB
constexpr ConsoleColor(uint8_t R, uint8_t G, uint8_t B)
: Color(((uint32_t)(((uint8_t)(R) | ((uint16_t)((uint8_t)(G)) << 8)) | (((uint32_t)(uint8_t)(B)) << 16))))
{
}
constexpr operator const uint32_t(void) const
{
return (uint32_t)NativeIndex;
}
constexpr operator const int32_t(void) const
{
return (int32_t)NativeIndex;
}
constexpr operator const int8_t(void) const
{
return (int8_t)NativeIndex;
}
constexpr operator const int16_t(void) const
{
return (int16_t)NativeIndex;
}
static ConsoleColor Black;
static ConsoleColor DarkBlue;
static ConsoleColor DarkGreen;
static ConsoleColor DarkCyan;
static ConsoleColor DarkRed;
static ConsoleColor DarkMagenta;
static ConsoleColor DarkYellow;
static ConsoleColor Gray;
static ConsoleColor DarkGray;
static ConsoleColor Blue;
static ConsoleColor Green;
static ConsoleColor Cyan;
static ConsoleColor Red;
static ConsoleColor Magenta;
static ConsoleColor Yellow;
static ConsoleColor White;
};
static_assert(sizeof(ConsoleColor) == 4, "System::ConsoleColor size mismatch, expected 4!");
}

View File

@ -0,0 +1,196 @@
#pragma once
#include <cstdint>
namespace System
{
// This enumeration represents characters returned from a keyboard.
enum class ConsoleKey : int16_t
{
Backspace = 0x8,
Tab = 0x9,
// 0xA, // Reserved
// 0xB, // Reserved
Clear = 0xC,
Enter = 0xD,
// 0E-0F, // Undefined
// SHIFT = 0x10,
// CONTROL = 0x11,
// Alt = 0x12,
Pause = 0x13,
// CAPSLOCK = 0x14,
// Kana = 0x15, // Ime Mode
// Hangul = 0x15, // Ime Mode
// 0x16, // Undefined
// Junja = 0x17, // Ime Mode
// Final = 0x18, // Ime Mode
// Hanja = 0x19, // Ime Mode
// Kanji = 0x19, // Ime Mode
// 0x1A, // Undefined
Escape = 0x1B,
// Convert = 0x1C, // Ime Mode
// NonConvert = 0x1D, // Ime Mode
// Accept = 0x1E, // Ime Mode
// ModeChange = 0x1F, // Ime Mode
Spacebar = 0x20,
PageUp = 0x21,
PageDown = 0x22,
End = 0x23,
Home = 0x24,
LeftArrow = 0x25,
UpArrow = 0x26,
RightArrow = 0x27,
DownArrow = 0x28,
Select = 0x29,
Print = 0x2A,
Execute = 0x2B,
PrintScreen = 0x2C,
Insert = 0x2D,
Delete = 0x2E,
Help = 0x2F,
D0 = 0x30, // 0 through 9
D1 = 0x31,
D2 = 0x32,
D3 = 0x33,
D4 = 0x34,
D5 = 0x35,
D6 = 0x36,
D7 = 0x37,
D8 = 0x38,
D9 = 0x39,
// 3A-40 , // Undefined
A = 0x41,
B = 0x42,
C = 0x43,
D = 0x44,
E = 0x45,
F = 0x46,
G = 0x47,
H = 0x48,
I = 0x49,
J = 0x4A,
K = 0x4B,
L = 0x4C,
M = 0x4D,
N = 0x4E,
O = 0x4F,
P = 0x50,
Q = 0x51,
R = 0x52,
S = 0x53,
T = 0x54,
U = 0x55,
V = 0x56,
W = 0x57,
X = 0x58,
Y = 0x59,
Z = 0x5A,
LeftWindows = 0x5B, // Microsoft Natural keyboard
RightWindows = 0x5C, // Microsoft Natural keyboard
Applications = 0x5D, // Microsoft Natural keyboard
// 5E , // Reserved
Sleep = 0x5F, // Computer Sleep Key
NumPad0 = 0x60,
NumPad1 = 0x61,
NumPad2 = 0x62,
NumPad3 = 0x63,
NumPad4 = 0x64,
NumPad5 = 0x65,
NumPad6 = 0x66,
NumPad7 = 0x67,
NumPad8 = 0x68,
NumPad9 = 0x69,
Multiply = 0x6A,
Add = 0x6B,
Separator = 0x6C,
Subtract = 0x6D,
Decimal = 0x6E,
Divide = 0x6F,
F1 = 0x70,
F2 = 0x71,
F3 = 0x72,
F4 = 0x73,
F5 = 0x74,
F6 = 0x75,
F7 = 0x76,
F8 = 0x77,
F9 = 0x78,
F10 = 0x79,
F11 = 0x7A,
F12 = 0x7B,
F13 = 0x7C,
F14 = 0x7D,
F15 = 0x7E,
F16 = 0x7F,
F17 = 0x80,
F18 = 0x81,
F19 = 0x82,
F20 = 0x83,
F21 = 0x84,
F22 = 0x85,
F23 = 0x86,
F24 = 0x87,
// 88-8F, // Undefined
// NumberLock = 0x90,
// ScrollLock = 0x91,
// 0x92, // OEM Specific
// 97-9F , // Undefined
// LeftShift = 0xA0,
// RightShift = 0xA1,
// LeftControl = 0xA2,
// RightControl = 0xA3,
// LeftAlt = 0xA4,
// RightAlt = 0xA5,
BrowserBack = 0xA6, // Windows 2000/XP
BrowserForward = 0xA7, // Windows 2000/XP
BrowserRefresh = 0xA8, // Windows 2000/XP
BrowserStop = 0xA9, // Windows 2000/XP
BrowserSearch = 0xAA, // Windows 2000/XP
BrowserFavorites = 0xAB, // Windows 2000/XP
BrowserHome = 0xAC, // Windows 2000/XP
VolumeMute = 0xAD, // Windows 2000/XP
VolumeDown = 0xAE, // Windows 2000/XP
VolumeUp = 0xAF, // Windows 2000/XP
MediaNext = 0xB0, // Windows 2000/XP
MediaPrevious = 0xB1, // Windows 2000/XP
MediaStop = 0xB2, // Windows 2000/XP
MediaPlay = 0xB3, // Windows 2000/XP
LaunchMail = 0xB4, // Windows 2000/XP
LaunchMediaSelect = 0xB5, // Windows 2000/XP
LaunchApp1 = 0xB6, // Windows 2000/XP
LaunchApp2 = 0xB7, // Windows 2000/XP
// B8-B9, // Reserved
Oem1 = 0xBA, // Misc characters, varies by keyboard. For US standard, ;:
OemPlus = 0xBB, // Misc characters, varies by keyboard. For US standard, +
OemComma = 0xBC, // Misc characters, varies by keyboard. For US standard, ,
OemMinus = 0xBD, // Misc characters, varies by keyboard. For US standard, -
OemPeriod = 0xBE, // Misc characters, varies by keyboard. For US standard, .
Oem2 = 0xBF, // Misc characters, varies by keyboard. For US standard, /?
Oem3 = 0xC0, // Misc characters, varies by keyboard. For US standard, `~
// 0xC1, // Reserved
// D8-DA, // Unassigned
Oem4 = 0xDB, // Misc characters, varies by keyboard. For US standard, [{
Oem5 = 0xDC, // Misc characters, varies by keyboard. For US standard, \|
Oem6 = 0xDD, // Misc characters, varies by keyboard. For US standard, ]}
Oem7 = 0xDE, // Misc characters, varies by keyboard. For US standard,
Oem8 = 0xDF, // Used for miscellaneous characters; it can vary by keyboard
// 0xE0, // Reserved
// 0xE1, // OEM specific
Oem102 = 0xE2, // Win2K/XP: Either angle or backslash on RT 102-key keyboard
// 0xE3, // OEM specific
Process = 0xE5, // Windows: IME Process Key
// 0xE6, // OEM specific
Packet = 0xE7, // Win2K/XP: Used to pass Unicode chars as if keystrokes
// 0xE8, // Unassigned
// 0xE9, // OEM specific
Attention = 0xF6,
CrSel = 0xF7,
ExSel = 0xF8,
EraseEndOfFile = 0xF9,
Play = 0xFA,
Zoom = 0xFB,
NoName = 0xFC, // Reserved
Pa1 = 0xFD,
OemClear = 0xFE,
};
}

View File

@ -0,0 +1,35 @@
#pragma once
#include <cstdint>
#include "ConsoleKey.h"
namespace System
{
// Control key modifiers
enum class ConsoleModifiers : uint8_t
{
None = 0,
Alt = 1,
Shift = 2,
Control = 4
};
// Information about the current keystroke
struct ConsoleKeyInfo
{
char KeyChar;
ConsoleKey Key;
ConsoleModifiers Modifiers;
ConsoleKeyInfo(char kChar, ConsoleKey Key, bool Shift, bool Alt, bool Control)
: KeyChar(kChar), Key(Key), Modifiers(ConsoleModifiers::None)
{
if (Shift)
*(uint8_t*)&Modifiers |= (uint8_t)ConsoleModifiers::Shift;
if (Alt)
*(uint8_t*)&Modifiers |= (uint8_t)ConsoleModifiers::Alt;
if (Control)
*(uint8_t*)&Modifiers |= (uint8_t)ConsoleModifiers::Control;
}
};
}

View File

@ -0,0 +1,131 @@
#include "stdafx.h"
#include "ConsoleStream.h"
namespace IO
{
ConsoleStream::ConsoleStream(HANDLE StreamHandle, FileAccess Access)
: _Handle(StreamHandle)
{
this->_CanRead = (((uint8_t)Access & (uint8_t)FileAccess::Read) == (uint8_t)FileAccess::Read);
this->_CanRead = (((uint8_t)Access & (uint8_t)FileAccess::Write) == (uint8_t)FileAccess::Write);
this->_IsPipe = (GetFileType(StreamHandle) == FILE_TYPE_PIPE);
}
ConsoleStream::~ConsoleStream()
{
this->Close();
}
void ConsoleStream::Seek(uint64_t Offset, SeekOrigin Origin)
{
IOError::StreamNoSeekSupport();
}
uint64_t ConsoleStream::Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count)
{
// Wait for available input...
ConsoleStream::WaitForAvailableConsoleInput(this->_Handle, this->_IsPipe);
DWORD bRead = 0;
ReadFile(this->_Handle, Buffer + Offset, (DWORD)Count, &bRead, NULL);
return bRead;
}
uint64_t ConsoleStream::Read(uint8_t * Buffer, uint64_t Offset, uint64_t Count, uint64_t Position)
{
IOError::StreamNoSeekSupport();
return 0;
}
void ConsoleStream::Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count)
{
DWORD bWrite = 0;
WriteFile(this->_Handle, Buffer + Offset, (DWORD)Count, &bWrite, NULL);
}
void ConsoleStream::Write(uint8_t * Buffer, uint64_t Offset, uint64_t Count, uint64_t Position)
{
IOError::StreamNoSeekSupport();
}
HANDLE ConsoleStream::GetStreamHandle() const
{
return this->_Handle;
}
void ConsoleStream::Close()
{
this->_Handle = nullptr;
this->_CanRead = false;
this->_CanWrite = false;
}
void ConsoleStream::Flush()
{
}
bool ConsoleStream::CanRead()
{
return this->_CanRead;
}
bool ConsoleStream::CanWrite()
{
return this->_CanWrite;
}
bool ConsoleStream::CanSeek()
{
return false;
}
bool ConsoleStream::GetIsEndOfFile()
{
return false;
}
uint64_t ConsoleStream::GetLength()
{
return 0;
}
uint64_t ConsoleStream::GetPosition()
{
return 0;
}
void ConsoleStream::SetLength(uint64_t Length)
{
IOError::StreamNoSeekSupport();
}
void ConsoleStream::SetPosition(uint64_t Position)
{
IOError::StreamNoSeekSupport();
}
void ConsoleStream::WaitForAvailableConsoleInput(HANDLE hHandle, bool IsPipe)
{
bool sWait = false;
if (IsPipe)
{
DWORD cBytesRead, cTotalBytesAvailable, cBytesLeftThisMessage;
auto Result = PeekNamedPipe(hHandle, NULL, 0, &cBytesRead, &cTotalBytesAvailable, &cBytesLeftThisMessage);
if (Result != 0)
{
sWait = (cTotalBytesAvailable > 0);
}
else
{
auto eCode = GetLastError();
sWait = eCode == ERROR_BROKEN_PIPE || eCode == ERROR_NO_DATA || eCode == ERROR_PIPE_NOT_CONNECTED;
}
}
if (!sWait)
WaitForSingleObjectEx(hHandle, INFINITE, TRUE);
}
}

View File

@ -0,0 +1,52 @@
#pragma once
#include "Stream.h"
#include "FileMode.h"
#include "FileAccess.h"
#include "FileShare.h"
#include <Windows.h>
namespace IO
{
// ConsoleStream supports reading and writing from stdin/out
class ConsoleStream : public Stream
{
public:
ConsoleStream(HANDLE StreamHandle, FileAccess Access);
virtual ~ConsoleStream();
// Implement Getters and Setters
virtual bool CanRead();
virtual bool CanWrite();
virtual bool CanSeek();
virtual bool GetIsEndOfFile();
virtual uint64_t GetLength();
virtual uint64_t GetPosition();
virtual void SetLength(uint64_t Length);
virtual void SetPosition(uint64_t Position);
// Implement functions
virtual void Close();
virtual void Flush();
virtual void Seek(uint64_t Offset, SeekOrigin Origin);
virtual uint64_t Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count);
virtual uint64_t Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position);
virtual void Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count);
virtual void Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position);
// Retreive the internal stream handle
virtual HANDLE GetStreamHandle() const;
private:
// FileMode flags cached
bool _CanRead;
bool _CanWrite;
bool _IsPipe;
// Internal routine to wait for input
static void WaitForAvailableConsoleInput(HANDLE hHandle, bool IsPipe);
// The handle
HANDLE _Handle;
};
}

View File

@ -0,0 +1,452 @@
#include "stdafx.h"
#include "ContainerControl.h"
#include "Form.h"
namespace Forms
{
ContainerControl::ContainerControl()
: Control(), _ActiveControl(nullptr), _FocusedControl(nullptr), _AutoScaleDimensions{}, _CurrentAutoScaleDimensions{}, _AutoScaleMode(AutoScaleMode::Inherit), _ScalingNeededOnLayout(false)
{
SetStyle(ControlStyles::AllPaintingInWmPaint, false);
}
Control* ContainerControl::ActiveControl()
{
return this->_ActiveControl;
}
void ContainerControl::SetActiveControl(Control* Value)
{
SetActiveControlInternal(Value);
}
bool ContainerControl::ActivateControl(Control* Value)
{
return ActivateControlInternal(Value, true);
}
Drawing::SizeF ContainerControl::AutoScaleDimensions()
{
return this->_AutoScaleDimensions;
}
void ContainerControl::SetAutoScaleDimensions(Drawing::SizeF Size)
{
this->_AutoScaleDimensions = Size;
if (!this->_AutoScaleDimensions.Empty())
{
this->LayoutScalingNeeded();
}
}
Drawing::SizeF ContainerControl::CurrentAutoScaleDimensions()
{
if (this->_CurrentAutoScaleDimensions.Empty())
{
switch (this->_AutoScaleMode)
{
case AutoScaleMode::Font:
this->_CurrentAutoScaleDimensions = this->GetFontAutoScaleDimensions();
break;
case AutoScaleMode::Dpi:
// TODO: Handle dpi related scaling values...
break;
default:
this->_CurrentAutoScaleDimensions = this->AutoScaleDimensions();
break;
}
}
return this->_CurrentAutoScaleDimensions;
}
AutoScaleMode ContainerControl::AutoScaleMode()
{
return this->_AutoScaleMode;
}
void ContainerControl::SetAutoScaleMode(Forms::AutoScaleMode Mode)
{
bool ScalingRequired = false;
if (Mode != this->_AutoScaleMode)
{
if (_AutoScaleMode != Forms::AutoScaleMode::Inherit)
{
this->_AutoScaleDimensions = Drawing::SizeF{};
}
this->_AutoScaleMode = Mode;
ScalingRequired = true;
}
// TODO: OnAutoScaleModeChanged();
if (ScalingRequired)
this->LayoutScalingNeeded();
}
void ContainerControl::WndProc(Message& Msg)
{
switch (Msg.Msg)
{
case WM_SETFOCUS:
WmSetFocus(Msg);
break;
default:
Control::WndProc(Msg);
break;
}
}
CreateParams ContainerControl::GetCreateParams()
{
auto Cp = Control::GetCreateParams();
Cp.ExStyle |= WS_EX_CONTROLPARENT;
return Cp;
}
bool ContainerControl::IsContainerControl()
{
return true;
}
void ContainerControl::WmSetFocus(Message& Msg)
{
if (_ActiveControl != nullptr)
{
if (!_ActiveControl->Visible())
this->OnGotFocus();
FocusActiveControlInternal();
}
else
{
if (_Parent != nullptr)
{
ContainerControl* C = (ContainerControl*)_Parent->GetContainerControl();
if (C != nullptr)
{
if (!C->ActivateControlInternal(this, true))
return;
}
}
Control::WndProc(Msg);
}
}
void ContainerControl::LayoutScalingNeeded()
{
this->EnableRequiredScaling(this, true);
this->_ScalingNeededOnLayout = true;
}
void ContainerControl::EnableRequiredScaling(Control *Ctrl, bool Enable)
{
Ctrl->SetRequiredScalingEnabled(Enable);
if (!Ctrl->GetStyle(ControlStyles::ContainerControl) || Ctrl->Controls() == nullptr)
return;
uint32_t ControlCount = Ctrl->Controls()->Count();
auto& ControlList = *Ctrl->Controls().get();
for (uint32_t i = 0; i < ControlCount; i++)
{
EnableRequiredScaling(ControlList[i], Enable);
}
}
void ContainerControl::PerformNeededAutoScaleOnLayout()
{
if (this->_ScalingNeededOnLayout)
{
this->PerformAutoScale(this->_ScalingNeededOnLayout, false);
}
}
void ContainerControl::PerformAutoScale(bool IncludeBounds, bool ExcludeBounds)
{
bool Suspended = false;
if (this->_AutoScaleMode != AutoScaleMode::None && this->_AutoScaleMode != AutoScaleMode::Inherit)
{
// TODO: SuspendAllLayout(this)
Suspended = true;
Drawing::SizeF Included{};
Drawing::SizeF Excluded{};
if (IncludeBounds)
Included = this->AutoScaleFactor();
if (ExcludeBounds)
Excluded = this->AutoScaleFactor();
this->Scale(Included, Excluded, this);
this->_AutoScaleDimensions = this->CurrentAutoScaleDimensions();
}
if (IncludeBounds)
{
this->_ScalingNeededOnLayout = false;
this->EnableRequiredScaling(this, false);
}
if (Suspended)
{
// TODO: ResumeAllLayout(this, false);
}
}
Drawing::SizeF ContainerControl::GetFontAutoScaleDimensions()
{
Drawing::SizeF Result{};
auto hDC = CreateCompatibleDC(nullptr);
auto CurrentFont = this->GetFont();
auto OldFont = SelectObject(hDC, CurrentFont->GetFontHandle());
TEXTMETRICA Tm{};
GetTextMetricsA(hDC, &Tm);
Result.Height = (float)Tm.tmHeight;
if ((Tm.tmPitchAndFamily & TMPF_FIXED_PITCH) != 0)
{
constexpr const char* FontMeasureString = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
const uint32_t FontMeasureSize = (uint32_t)strlen(FontMeasureString);
SIZE Sz{};
GetTextExtentPoint32A(hDC, FontMeasureString, FontMeasureSize, &Sz);
Result.Width = (float)(int)std::roundf(((float)Sz.cx) / ((float)FontMeasureSize));
}
else
{
Result.Width = (float)Tm.tmAveCharWidth;
}
SelectObject(hDC, OldFont);
DeleteDC(hDC);
return Result;
}
bool ContainerControl::ActivateControlInternal(Control* Ctrl, bool Originator)
{
bool Result = true;
bool UpdateContainerActiveControl = false;
ContainerControl* Cc = nullptr;
Control* Parent = this->_Parent;
if (Parent != nullptr)
{
Cc = (ContainerControl*)Parent->GetContainerControl();
if (Cc != nullptr)
{
UpdateContainerActiveControl = (Cc->ActiveControl() != this);
}
}
if (Ctrl != _ActiveControl || UpdateContainerActiveControl)
{
if (UpdateContainerActiveControl)
{
if (!Cc->ActivateControlInternal(this, false))
return false;
}
Result = AssignActiveControlInternal((Ctrl == this) ? nullptr : Ctrl);
}
if (Originator)
{
// TODO: ScrollActiveControlIntoView();
}
return Result;
}
bool ContainerControl::AssignActiveControlInternal(Control* Ctrl)
{
if (_ActiveControl != Ctrl)
{
_ActiveControl = Ctrl;
// TODO: UpdateFocusedControl();
if (_ActiveControl == Ctrl)
{
auto FormCtrl = (Form*)FindForm();
if (FormCtrl != nullptr)
FormCtrl->UpdateDefaultButton();
}
}
else
{
_FocusedControl = _ActiveControl;
}
return (_ActiveControl == Ctrl);
}
void ContainerControl::Select(bool Directed, bool Forward)
{
bool CorrectParentActiveControl = true;
if (this->_Parent != nullptr)
{
auto C = (ContainerControl*)this->_Parent->GetContainerControl();
if (C != nullptr)
{
C->SetActiveControl(this);
CorrectParentActiveControl = (C->ActiveControl() == this);
}
}
if (Directed && CorrectParentActiveControl)
SelectNextControl(nullptr, Forward, true, true, false);
}
void ContainerControl::Scale(Drawing::SizeF IncludedFactor, Drawing::SizeF ExcludedFactor, Control* Ctrl)
{
if (this->_AutoScaleMode == AutoScaleMode::Inherit)
{
Control::Scale(IncludedFactor, ExcludedFactor, Ctrl);
}
else
{
Drawing::SizeF OurExcludedFactor = ExcludedFactor;
Drawing::SizeF ChildIncludedFactor = IncludedFactor;
if (!OurExcludedFactor.Empty())
OurExcludedFactor = this->AutoScaleFactor();
// If we're not supposed to be scaling, don't scale the internal ones either.
if (this->AutoScaleMode() == AutoScaleMode::None)
ChildIncludedFactor = this->AutoScaleFactor();
Drawing::SizeF OurExternalContainerFactor = OurExcludedFactor;
if (!ExcludedFactor.Empty() && this->_Parent != nullptr)
{
OurExternalContainerFactor = Drawing::SizeF{};
if ((Ctrl != this))
{
OurExternalContainerFactor = ExcludedFactor;
}
}
ScaleControl(IncludedFactor, OurExternalContainerFactor, Ctrl);
ScaleChildControls(ChildIncludedFactor, OurExcludedFactor, Ctrl);
}
}
void ContainerControl::OnLayoutResuming(bool PerformLayout)
{
this->PerformNeededAutoScaleOnLayout();
Control::OnLayoutResuming(PerformLayout);
}
void ContainerControl::OnChildLayoutResuming(Control* Child, bool PerformLayout)
{
Control::OnChildLayoutResuming(Child, PerformLayout);
// Do not scale children if AutoScaleMode is set to Dpi
if (/*DpiHelper.EnableSinglePassScalingOfDpiForms &&*/ (this->_AutoScaleMode == AutoScaleMode::Dpi))
{
return;
}
// Perform scaling of the child control
if (!PerformLayout && this->_AutoScaleMode != AutoScaleMode::None && this->_AutoScaleMode != AutoScaleMode::Inherit && this->_ScalingNeededOnLayout)
{
Child->Scale(this->AutoScaleFactor(), Drawing::SizeF{}, this);
}
}
void ContainerControl::FocusActiveControlInternal()
{
if (_ActiveControl != nullptr && _ActiveControl->Visible())
{
auto FocusHandle = GetFocus();
if (FocusHandle == NULL || FocusHandle != _ActiveControl->GetHandle())
SetFocus(_ActiveControl->GetHandle());
}
else
{
ContainerControl* Cc = this;
while (Cc != nullptr && !Cc->Visible())
{
auto Parent = Cc->Parent();
if (Parent != nullptr)
Cc = (ContainerControl*)Parent->GetContainerControl();
else
break;
}
if (Cc != nullptr && Cc->Visible())
SetFocus(Cc->GetHandle());
}
}
void ContainerControl::SetActiveControlInternal(Control* Value)
{
if (_ActiveControl != Value || (Value != nullptr && !Value->Focused()))
{
bool Result = false;
ContainerControl* Cc = nullptr;
if (Value != nullptr && Value->Parent() != nullptr)
{
Cc = (ContainerControl*)Value->Parent()->GetContainerControl();
}
if (Cc != nullptr)
{
Result = ActivateControlInternal(Value, false);
}
else
{
Result = AssignActiveControlInternal(Value);
}
if (Cc != nullptr && Result)
{
ContainerControl* CcAncestor = this;
while (CcAncestor->_Parent != nullptr && CcAncestor->_Parent->GetContainerControl() != nullptr)
CcAncestor = (ContainerControl*)CcAncestor->_Parent->GetContainerControl();
if (CcAncestor->ContainsFocus() /*&& Value is NOT USERCONTROL!!*/)
Cc->FocusActiveControlInternal();
}
}
}
Control* ContainerControl::ParentFormInternal()
{
if (this->_Parent != nullptr)
return this->_Parent->FindForm();
if (this->_RTTI == ControlTypes::Form)
return nullptr;
return FindForm();
}
Drawing::SizeF ContainerControl::AutoScaleFactor()
{
auto Current = this->CurrentAutoScaleDimensions();
auto Saved = this->AutoScaleDimensions();
if (Saved.Empty())
{
return Drawing::SizeF(1.f, 1.f);
}
return Drawing::SizeF(Current.Width / Saved.Width, Current.Height / Saved.Height);
}
}

View File

@ -0,0 +1,100 @@
#pragma once
#include "Control.h"
#include "AutoScaleMode.h"
namespace Forms
{
// TODO: Process [*] Key functions, virtual...
class ContainerControl : public Control
{
public:
ContainerControl();
virtual ~ContainerControl() = default;
// Indicates the current active control on the container control.
Control* ActiveControl();
// Indicates the current active control on the container control.
void SetActiveControl(Control* Value);
// Activates a control
bool ActivateControl(Control* Value);
// Represents the DPI or Font setting that the control has been scaled to or designed at.
Drawing::SizeF AutoScaleDimensions();
// Represents the DPI or Font setting that the control has been scaled to or designed at.
void SetAutoScaleDimensions(Drawing::SizeF Size);
// Gets the current auto scale ratio.
Drawing::SizeF CurrentAutoScaleDimensions();
// Determines the scaling mode of this control.
AutoScaleMode AutoScaleMode();
// Determines the scaling mode of this control.
void SetAutoScaleMode(Forms::AutoScaleMode Mode);
// Override WndProc for specific form messages.
virtual void WndProc(Message& Msg);
protected:
// Get custom control creation parameters for this instance.
virtual CreateParams GetCreateParams();
// Make sure we set this so we know if we are a container.
virtual bool IsContainerControl();
// Internal routine to active a control.
bool ActivateControlInternal(Control* Ctrl, bool Originator);
// Internal routine to set active control.
bool AssignActiveControlInternal(Control* Ctrl);
// Internal selection routine
virtual void Select(bool Directed, bool Forward);
// Internal routine to scale a control
virtual void Scale(Drawing::SizeF IncludedFactor, Drawing::SizeF ExcludedFactor, Control* Ctrl);
// Internal layout resuming routine
virtual void OnLayoutResuming(bool PerformLayout);
// Internal child layout resuming routine
virtual void OnChildLayoutResuming(Control* Child, bool PerformLayout);
// Sets focus to the active control.
void FocusActiveControlInternal();
// Internal routine to set a control as active.
void SetActiveControlInternal(Control* Value);
// Gets the parent form, if any.
Control* ParentFormInternal();
// Fetches the auto scale ratio for the given settings.
Drawing::SizeF AutoScaleFactor();
private:
// Internal cached flags
Control* _ActiveControl;
Control* _FocusedControl;
Drawing::SizeF _AutoScaleDimensions;
Drawing::SizeF _CurrentAutoScaleDimensions;
Forms::AutoScaleMode _AutoScaleMode;
bool _ScalingNeededOnLayout;
// We must define each window message handler here...
void WmSetFocus(Message& Msg);
// Internal routine to enable scaling on child controls.
void LayoutScalingNeeded();
// Internal routine to set scaling flag.
void EnableRequiredScaling(Control* Ctrl, bool Enable);
// Internal routine to determinalistically perform scaling.
void PerformNeededAutoScaleOnLayout();
// Performs scaling of this control. Scaling works by scaling all children of this control.
void PerformAutoScale(bool IncludeBounds, bool ExcludeBounds);
// Internal routine to calculate the font scale ratio.
Drawing::SizeF GetFontAutoScaleDimensions();
};
}

View File

@ -0,0 +1,56 @@
#pragma once
#include <cstdint>
namespace Drawing
{
// Specifies alignment of content on the drawing surface.
enum class ContentAlignment
{
// Content is vertically aligned at the top, and horizontally
// aligned on the left.
TopLeft = 0x001,
// Content is vertically aligned at the top, and
// horizontally aligned at the center.
TopCenter = 0x002,
// Content is vertically aligned at the top, and
// horizontally aligned on the right.
TopRight = 0x004,
// Content is vertically aligned in the middle, and
// horizontally aligned on the left.
MiddleLeft = 0x010,
// Content is vertically aligned in the middle, and
// horizontally aligned at the center.
MiddleCenter = 0x020,
// Content is vertically aligned in the middle, and horizontally aligned on the
// right.
MiddleRight = 0x040,
// Content is vertically aligned at the bottom, and horizontally aligned on the
// left.
BottomLeft = 0x100,
// Content is vertically aligned at the bottom, and horizontally aligned at the
// center.
BottomCenter = 0x200,
// Content is vertically aligned at the bottom, and horizontally aligned on the right.
BottomRight = 0x400,
};
//
// Allow bitwise operations on this enumeration
//
constexpr ContentAlignment operator|(ContentAlignment Lhs, ContentAlignment Rhs)
{
return static_cast<ContentAlignment>(static_cast<std::underlying_type<ContentAlignment>::type>(Lhs) | static_cast<std::underlying_type<ContentAlignment>::type>(Rhs));
};
//
// Content alignment masks
//
constexpr static ContentAlignment AnyRightAlign = ContentAlignment::TopRight | ContentAlignment::MiddleRight | ContentAlignment::BottomRight;
constexpr static ContentAlignment AnyLeftAlign = ContentAlignment::TopLeft | ContentAlignment::MiddleLeft | ContentAlignment::BottomLeft;
constexpr static ContentAlignment AnyTopAlign = ContentAlignment::TopLeft | ContentAlignment::TopCenter | ContentAlignment::TopRight;
constexpr static ContentAlignment AnyBottomAlign = ContentAlignment::BottomLeft | ContentAlignment::BottomCenter | ContentAlignment::BottomRight;
constexpr static ContentAlignment AnyMiddleAlign = ContentAlignment::MiddleLeft | ContentAlignment::MiddleCenter | ContentAlignment::MiddleRight;
constexpr static ContentAlignment AnyCenterAlign = ContentAlignment::TopCenter | ContentAlignment::MiddleCenter | ContentAlignment::BottomCenter;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,574 @@
#pragma once
#include <cstdint>
#include <memory>
#include <Windows.h>
#include <CommCtrl.h>
#include "Keys.h"
#include "Font.h"
#include "Action.h"
#include "Message.h"
#include "DropTarget.h"
#include "EventBase.h"
#include "StringBase.h"
#include "ControlTypes.h"
#include "AnchorStyles.h"
#include "CreateParams.h"
#include "MouseButtons.h"
#include "ControlStyles.h"
#include "ControlStates.h"
#include "KeyEventArgs.h"
#include "PaintEventArgs.h"
#include "MouseEventArgs.h"
#include "ControlCollection.h"
#include "BoundsSpecified.h"
#include "InvalidateEventArgs.h"
#include "DragEventArgs.h"
#include "KeyPressEventArgs.h"
#include "HandledMouseEventArgs.h"
// Used for reflection messages
#define WM_REFLECT (WM_USER + 0x1C00)
// Undocumented flags
#define DCX_USESTYLE 0x00010000
#define DCX_NODELETERGN 0x00040000
// Remove built-in macros
#undef SetWindowText
#undef DrawText
namespace Forms
{
// Defines the base class for controls, which are components
// with visual representation.
class Control
{
public:
Control();
virtual ~Control();
// Makes the control display by setting the visible property to true.
virtual void Show();
// Hides the control by setting the visible property to false.
virtual void Hide();
// Creates a new instance of the specified control with the given parent.
virtual void CreateControl(Control* Parent = nullptr);
// Attempts to set focus to this control.
bool Focus();
// Indicates whether the control has focus.
bool Focused();
// Indicates whether the control can receive focus.
bool CanFocus();
// Indicates whether the control can be selected.
bool CanSelect();
// Indicates whether the control or one of it's children currently has focus.
bool ContainsFocus();
// Suspends the control layout functionality.
void SuspendLayout();
// Resumes layout functionality.
void ResumeLayout(bool PerformLayout = true);
// Indicates whether the control is currently enabled.
bool Enabled();
// Indicates whether the control is currently enabled.
void SetEnabled(bool Value);
// The AllowDrop property. If AllowDrop is set to true then
// this control will allow drag and drop operations and events to be used.
bool AllowDrop();
// The AllowDrop property. If AllowDrop is set to true then
// this control will allow drag and drop operations and events to be used.
void SetAllowDrop(bool Value);
// Indicates whether the control is visible.
bool Visible();
// Indicates whether the control is visible.
void SetVisible(bool Value);
// This will enable or disable double buffering.
bool DoubleBuffered();
// This will enable or disable double buffering.
void SetDoubleBuffered(bool Value);
// Indicates whether the control has captured the mouse.
bool Capture();
// Indicates whether the control has captured the mouse.
void SetCapture(bool Value);
// The current value of the anchor property. The anchor property
// determines which edges of the control are anchored to the container's
// edges.
AnchorStyles Anchor();
// The current value of the anchor property. The anchor property
// determines which edges of the control are anchored to the container's
// edges.
void SetAnchor(AnchorStyles Value);
// The tab index of this control.
uint32_t TabIndex();
// The tab index of this control.
void SetTabIndex(uint32_t Value);
// The location of this control.
Drawing::Point Location();
// The location of this control.
void SetLocation(Drawing::Point Value);
// The size of the control.
Drawing::Size Size();
// The size of the control.
void SetSize(Drawing::Size Value);
// The maximum size of the control.
Drawing::Size MaximumSize();
// The maximum size of the control.
void SetMaximumSize(Drawing::Size Value);
// The minimum size of the control.
Drawing::Size MinimumSize();
// The minimum size of the control.
void SetMinimumSize(Drawing::Size Value);
// The background color of this control.
Drawing::Color BackColor();
// The background color of this control.
void SetBackColor(Drawing::Color Color);
// The foreground color of the control.
Drawing::Color ForeColor();
// The foreground color of the control.
void SetForeColor(Drawing::Color Color);
// Retrieves the current font for this control.
Drawing::Font* GetFont();
// Retrieves the current font for this control.
void SetFont(Drawing::Font* Font);
// The parent of this control.
Control* Parent();
// The parent of this control.
void SetParent(Control* Value);
// The client rect of the control.
Drawing::Rectangle ClientRectangle();
// The size of the clientRect.
Drawing::Size ClientSize();
// The size of the clientRect.
void SetClientSize(Drawing::Size Value);
// Computes the location of the client point in screen coords.
Drawing::Point PointToScreen(const Drawing::Point& Point);
// Computes the location of the screen point in client coords.
Drawing::Point PointToClient(const Drawing::Point& Point);
// Computes the location of the client rectangle in screen coords.
Drawing::Rectangle RectangleToScreen(const Drawing::Rectangle& Rect);
// Computes the location of the screen rectangle in client coords.
Drawing::Rectangle RectangleToClient(const Drawing::Rectangle& Rect);
// Gets the current text associated with this control.
virtual string Text();
// Sets the current text associated with this control.
virtual void SetText(const string& Value);
// Brings this control to the front of the z-order.
void BringToFront();
// Sends this control to the back of the z-order.
void SendToBack();
// Style flags attached to this control.
bool GetStyle(ControlStyles Flag);
// Style flags attached to this control.
void SetStyle(ControlStyles Flags, bool Value);
// State flags attached to this control.
bool GetState(ControlStates Flag);
// State flags attached to this control.
void SetState(ControlStates Flags, bool Value);
// Invalidates the control and causes a paint message to be sent to the control.
void Invalidate(bool InvalidateChildren = false);
// Executes a delegate on the thread that owns the control's underlying window handle.
void Invoke(Action Method);
// Gets whether or not an invoke is required.
bool InvokeRequired();
// Forces the control to paint any currently invalid areas.
void Update();
// Forces the control to invalidate and immediately repaint itself and children.
void Refresh();
// Returns the native handle of this control
HWND GetHandle();
// Returns the type of this control
ControlTypes GetType();
// Retrieves the form that the control is on.
Control* FindForm();
// Retrieves the container control that we have, if any.
Control* GetContainerControl();
// Retrieves the next control in the tab order of child controls.
Control* GetNextControl(Control* Ctrl, bool Forward);
// Verifies if a control is a child of this control.
bool Contains(Control* Ctrl);
// Returns a reference to this controls child collection, if available
const std::unique_ptr<ControlCollection>& Controls();
// Activates this control.
void Select();
// Selects the next control following Ctrl.
bool SelectNextControl(Control* Ctrl, bool Forward, bool TabStopOnly, bool Nested, bool Wrap);
// Updates this control in it's parent's z-order.
void UpdateZOrder();
// Invokes the default window procedure associated with this Window. It is
// an error to call this method when the Handle property is zero.
void DefWndProc(Message& Msg);
// We must define control event bases here
virtual void OnPaint(const std::unique_ptr<PaintEventArgs>& EventArgs);
virtual void OnPaintBackground(const std::unique_ptr<PaintEventArgs>& EventArgs);
virtual void OnMouseClick(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseDoubleClick(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseUp(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseDown(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnMouseMove(const std::unique_ptr<MouseEventArgs>& EventArgs);
virtual void OnInvalidated(const std::unique_ptr<InvalidateEventArgs>& EventArgs);
virtual void OnMouseWheel(const std::unique_ptr<HandledMouseEventArgs>& EventArgs);
virtual void OnKeyPress(const std::unique_ptr<KeyPressEventArgs>& EventArgs);
virtual void OnKeyUp(const std::unique_ptr<KeyEventArgs>& EventArgs);
virtual void OnKeyDown(const std::unique_ptr<KeyEventArgs>& EventArgs);
virtual void OnDragEnter(const std::unique_ptr<DragEventArgs>& EventArgs);
virtual void OnDragOver(const std::unique_ptr<DragEventArgs>& EventArgs);
virtual void OnDragDrop(const std::unique_ptr<DragEventArgs>& EventArgs);
virtual void OnDragLeave();
virtual void OnFontChanged();
virtual void OnVisibleChanged();
virtual void OnHandleCreated();
virtual void OnHandleDestroyed();
virtual void OnTextChanged();
virtual void OnMouseEnter();
virtual void OnMouseLeave();
virtual void OnMouseHover();
virtual void OnLostFocus();
virtual void OnGotFocus();
virtual void OnStyleChanged();
virtual void OnLocationChanged();
virtual void OnSizeChanged();
virtual void OnResize();
virtual void OnClientSizeChanged();
virtual void OnMouseCaptureChanged();
virtual void OnBackColorChanged();
virtual void OnForeColorChanged();
virtual void OnClick();
virtual void OnDoubleClick();
virtual void OnEnabledChanged();
// We must define event handlers here
EventBase<void(*)(Control*)> Click;
EventBase<void(*)(Control*)> DoubleClick;
EventBase<void(*)(Control*)> MouseEnter;
EventBase<void(*)(Control*)> MouseLeave;
EventBase<void(*)(Control*)> MouseHover;
EventBase<void(*)(Control*)> SizeChanged;
EventBase<void(*)(Control*)> Resize;
EventBase<void(*)(Control*)> LostFocus;
EventBase<void(*)(Control*)> GotFocus;
EventBase<void(*)(Control*)> TextChanged;
EventBase<void(*)(Control*)> FontChanged;
EventBase<void(*)(Control*)> HandleCreated;
EventBase<void(*)(Control*)> HandleDestroyed;
EventBase<void(*)(Control*)> EnabledChanged;
EventBase<void(*)(Control*)> VisibleChanged;
EventBase<void(*)(Control*)> LocationChanged;
EventBase<void(*)(Control*)> BackColorChanged;
EventBase<void(*)(Control*)> ForeColorChanged;
EventBase<void(*)(Control*)> StyleChanged;
EventBase<void(*)(Control*)> ClientSizeChanged;
EventBase<void(*)(Control*)> MouseCaptureChanged;
EventBase<void(*)(Control*)> DragLeave;
EventBase<void(*)(const std::unique_ptr<DragEventArgs>&, Control*)> DragEnter;
EventBase<void(*)(const std::unique_ptr<DragEventArgs>&, Control*)> DragDrop;
EventBase<void(*)(const std::unique_ptr<DragEventArgs>&, Control*)> DragOver;
EventBase<void(*)(const std::unique_ptr<KeyEventArgs>&, Control*)> KeyUp;
EventBase<void(*)(const std::unique_ptr<KeyEventArgs>&, Control*)> KeyDown;
EventBase<void(*)(const std::unique_ptr<KeyPressEventArgs>&, Control*)> KeyPress;
EventBase<void(*)(const std::unique_ptr<PaintEventArgs>&, Control*)> Paint;
EventBase<void(*)(const std::unique_ptr<MouseEventArgs>&, Control*)> MouseUp;
EventBase<void(*)(const std::unique_ptr<MouseEventArgs>&, Control*)> MouseDown;
EventBase<void(*)(const std::unique_ptr<MouseEventArgs>&, Control*)> MouseMove;
EventBase<void(*)(const std::unique_ptr<MouseEventArgs>&, Control*)> MouseClick;
EventBase<void(*)(const std::unique_ptr<MouseEventArgs>&, Control*)> MouseDoubleClick;
EventBase<void(*)(const std::unique_ptr<InvalidateEventArgs>&, Control*)> Invalidated;
EventBase<void(*)(const std::unique_ptr<HandledMouseEventArgs>&, Control*)> MouseWheel;
// The standard windows message pump for this control.
virtual void WndProc(Message& Msg);
// Routine to get the default GDI+ palette for a control.
static HPALETTE SetUpPalette(HDC Dc, bool Force, bool RealizePalette);
// Gets the current state of the mouse buttons.
static MouseButtons GetMouseButtons();
// Gets the current position of the mouse in screen coordinates.
static Drawing::Point GetMousePosition();
// Retrieves the current state of the modifier keys.
static Keys GetModifierKeys();
// Determines if the required scaling property is enabled
bool RequiredScalingEnabled();
// Determines if the required scaling property is enabled
void SetRequiredScalingEnabled(bool Value);
// Routine to scale a control
virtual void Scale(Drawing::SizeF IncludedFactor, Drawing::SizeF ExcludedFactor, Control* Ctrl);
protected:
// The control handle
HWND _Handle;
// The control base windows proc
LONG_PTR _WndProcBase;
// The RTTI type of this control
ControlTypes _RTTI;
// The parent control if any
Control* _Parent;
// A collection of children controls, if we are a container control
std::unique_ptr<ControlCollection> _Controls;
// Internal size caching
uint32_t _X;
uint32_t _Y;
uint32_t _Width;
uint32_t _Height;
uint32_t _ClientWidth;
uint32_t _ClientHeight;
// Internal tab index caching
uint32_t _TabIndex;
// Internal min/max size caching
uint32_t _MaximumWidth;
uint32_t _MaximumHeight;
uint32_t _MinimumWidth;
uint32_t _MinimumHeight;
// Internal text caching
string _Text;
// Contains the anchor information...
struct AnchorDeltasCache
{
float XMoveFrac;
float YMoveFrac;
float XSizeFrac;
float YSizeFrac;
RECT InitialRect;
bool InitialRectSet;
} _AnchorDeltas;
// Internal layout anchor
AnchorStyles _Anchor;
// Control base colors
Drawing::Color _BackColor;
Drawing::Color _ForeColor;
// Control brush, if any
uintptr_t _BackColorBrush;
// Control base font
std::unique_ptr<Drawing::Font> _Font;
// Updates the bounds of the control based on the handle the control is bound to.
void UpdateBounds();
// Updates the bounds of the control based on the bounds passed in.
void UpdateBounds(uint32_t X, uint32_t Y, uint32_t Width, uint32_t Height, uint32_t ClientWidth, uint32_t ClientHeight);
// Updates the bounds of the control based on the bounds passed in.
void UpdateBounds(uint32_t X, uint32_t Y, uint32_t Width, uint32_t Height);
// Sets the bounds of the control.
void SetBounds(uint32_t X, uint32_t Y, uint32_t Width, uint32_t Height);
// Updates the deltas of the control based on the anchor
void UpdateDeltas();
// Updates the initial position based on anchor
void UpdateInitialPos();
// Internal selection routine
virtual void Select(bool Directed, bool Forward);
// Internal layout resuming routine
virtual void OnLayoutResuming(bool PerformLayout);
// Internal child layout resuming routine
virtual void OnChildLayoutResuming(Control* Child, bool PerformLayout);
// Gets the current control window style
uint32_t WindowStyle();
// Sets the current controls window style
void SetWindowStyle(uint32_t Value);
// Gets the current control extended style
uint32_t WindowExStyle();
// Sets the current controls extended style
void SetWindowExStyle(uint32_t Value);
// Internal routine to calculate client size into size
Drawing::Size SizeFromClientSize(int32_t Width, int32_t Height);
// Internal routine to scale a size, based on control limitations
Drawing::Size ScaleSize(Drawing::Size Start, float X, float Y);
// Internal routine to scale a control, calculating bounds
void ScaleControl(Drawing::SizeF IncludedFactor, Drawing::SizeF ExcludedFactor, Control* Ctrl);
// Internal routine to scale child controls, calculating bounds
void ScaleChildControls(Drawing::SizeF IncludedFactor, Drawing::SizeF ExcludedFactor, Control* Ctrl);
// Internal routine to scale a control by factor
virtual void ScaleControl(Drawing::SizeF Factor, BoundsSpecified Specified);
// Internal routine to scale a bounds by a factor
virtual Drawing::Rectangle GetScaledBounds(Drawing::Rectangle Bounds, Drawing::SizeF Factor, BoundsSpecified Specified);
// The GDI brush for our background color.
uintptr_t BackColorBrush();
// Gets the current text of the Window
virtual string WindowText();
// Sets the current text of the Window
virtual void SetWindowText(const string& Value);
// Updates the control styles...
void UpdateStyles();
// Registers the control drop target.
void SetAcceptDrops(bool Accept);
// Resets the mouse leave listeners.
void ResetMouseEventArgs();
// Destroys the window handle
void DestroyHandle();
// Performs layout of child controls based on their anchors.
virtual void PerformLayout();
// Processes a key message.
virtual bool ProcessKeyMessage(Message& Msg);
// Previews a key message.
virtual bool ProcessKeyPreview(Message& Msg);
// Processes a key message and properly generates key events.
virtual bool ProcessKeyEventArgs(Message& Msg);
// Internal routine to get control visibility.
virtual bool GetVisibleCore();
// Internal routine to change control visibility.
virtual void SetVisibleCore(bool Value);
// Gets the CreateParams for this control instance.
virtual CreateParams GetCreateParams();
// An internal routine that is the root window message processor.
static LRESULT CALLBACK InternalWndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);
// Used when the control can house other controls.
virtual void AddControl(Control* Ctrl);
// Used to properly clean up the control.
virtual void Dispose();
// Sets the text and background colors of the DC, and returns the background HBRUSH.
virtual uintptr_t InitializeDCForWmCtlColor(HDC Dc, int32_t Message);
// Custom message index cache
static uint32_t WM_MOUSEENTER;
static uint32_t WM_INVOKEUI;
// GDI+ palette for rendering
static HPALETTE HalftonePalette;
// Whether or not we are a container
virtual bool IsContainerControl();
// GDI region copying
static HRGN CreateCopyOfRgn(HRGN InRgn);
// Constructs a control from a handle
static Control* FromHandle(HWND hWnd);
// Constructs a control from a child handle
static Control* FromChildHandle(HWND hWnd);
private:
// The control styles
ControlStyles _ControlStyles;
// The control states
ControlStates _ControlStates;
// Total count of suspended layout transactions
uint8_t _LayoutSuspendCount;
// Whether or not DPI/Font scaling is required
bool _RequiredScalingEnabled;
// Required scaling mode
BoundsSpecified _RequiredScaling;
// The control drag drop interface
std::unique_ptr<DropTarget> _DropTarget;
// We must define each window message handler here...
void WmMouseDown(Message& Msg, MouseButtons Button, uint32_t Clicks);
void WmMouseUp(Message& Msg, MouseButtons Button, uint32_t Clicks);
void WmMouseEnter(Message& Msg);
void WmMouseLeave(Message& Msg);
void WmMouseHover(Message& Msg);
void WmClose(Message& Msg);
void WmEraseBkgnd(Message& Msg);
void WmPaint(Message& Msg);
void WmCreate(Message& Msg);
void WmShowWindow(Message& Msg);
void WmMove(Message& Msg);
void WmParentNotify(Message& Msg);
void WmCommand(Message& Msg);
void WmQueryNewPalette(Message& Msg);
void WmNotify(Message& Msg);
void WmNotifyFormat(Message& Msg);
void WmCaptureChanged(Message& Msg);
void WmCtlColorControl(Message& Msg);
void WmKillFocus(Message& Msg);
void WmSetFocus(Message& Msg);
void WmMouseMove(Message& Msg);
void WmSetCursor(Message& Msg);
void WmMouseWheel(Message& Msg);
void WmKeyChar(Message& Msg);
void WmWindowPosChanged(Message& Msg);
void WmInvokeOnUIThread(Message& Msg);
// Removes pending messages from the message queue.
void RemovePendingMessages(uint32_t MsgMin, uint32_t MsgMax);
// Internal routine to update a child's z-order.
void UpdateChildZOrder(Control* Ctrl);
// Internal routine to update a childs index in the control array.
void UpdateChildControlIndex(Control* Ctrl);
// This is called recursively when visibility is changed for a control.
void SelectNextIfFocused();
// Internal routine to find the next available control.
Control* GetNextSelectableControl(Control* Ctrl, bool Forward, bool TabStopOnly, bool Nested, bool Wrap);
// Internal routine to get the first child in tab order.
Control* GetFirstChildcontrolInTabOrder(bool Forward);
// Internal routine used to reflect messages up from a top level control.
static bool ReflectMessageInternal(HWND hWnd, Message& Msg);
// Internal routine to check for a container control
static bool IsFocusManagingContainerControl(Control* Ctrl);
// Internal routine to make sure a class is registered
static string RegisterWndClass(const char* ClassName, DWORD ClassStyle, bool& Subclass);
};
}

View File

@ -0,0 +1,143 @@
#include "stdafx.h"
#include "ControlCollection.h"
#include "Control.h"
namespace Forms
{
ControlCollection::~ControlCollection()
{
// We own the control as soon as the collection takes ahold of it...
for (auto& Ctrl : this->_Controls)
delete Ctrl;
}
void ControlCollection::Add(Control* Ctrl)
{
this->_Controls.Add(Ctrl);
}
void ControlCollection::Remove(Control* Ctrl)
{
if (Ctrl == nullptr)
return;
this->_Controls.Remove(Ctrl);
delete Ctrl;
}
void ControlCollection::RemoveAt(uint32_t Index)
{
if (Index < this->_Controls.Count())
{
auto Ptr = this->_Controls[Index];
this->_Controls.RemoveAt(Index);
delete Ptr;
}
}
int32_t ControlCollection::IndexOf(Control* Ctrl)
{
auto Result = this->_Controls.IndexOf(Ctrl);
return (Result == List<Control*>::InvalidPosition) ? -1 : (int32_t)Result;
}
bool ControlCollection::Contains(Control* Ctrl)
{
return IndexOf(Ctrl) > -1;
}
void ControlCollection::SetChildIndex(Control* Ctrl, int32_t Index)
{
auto CurrentIndex = IndexOf(Ctrl);
if (CurrentIndex == Index || CurrentIndex == -1)
return;
if (Index >= (int32_t)Count() || Index == -1)
{
Index = Count() - 1;
}
MoveElement(Ctrl, CurrentIndex, Index);
Ctrl->UpdateZOrder();
}
uint32_t ControlCollection::Count()
{
return this->_Controls.Count();
}
Control* ControlCollection::operator[](size_t Index)
{
return (Control*)this->_Controls[Index];
}
Control* ControlCollection::begin() const noexcept
{
return (Control*)this->_Controls.begin();
}
Control* ControlCollection::end() const noexcept
{
return (Control*)this->_Controls.end();
}
void ControlCollection::MoveElement(Control* Ctrl, int32_t CurrentIndex, int32_t NewIndex)
{
int32_t Delta = NewIndex - CurrentIndex;
switch (Delta)
{
case -1:
case 1:
this->_Controls[CurrentIndex] = this->_Controls[NewIndex];
break;
default:
{
int32_t Start = 0;
int32_t Dest = 0;
if (Delta > 0)
{
Start = CurrentIndex + 1;
Dest = NewIndex;
}
else
{
Start = NewIndex;
Dest = NewIndex + 1;
Delta = -Delta;
}
CopyElement(Start, Dest, Delta);
}
break;
}
this->_Controls[NewIndex] = Ctrl;
}
void ControlCollection::CopyElement(int32_t SourceIndex, int32_t DestinationIndex, uint32_t Length)
{
if (SourceIndex < DestinationIndex)
{
SourceIndex = SourceIndex + Length;
DestinationIndex = DestinationIndex + Length;
for (; Length > 0; Length--)
{
this->_Controls[--DestinationIndex] = this->_Controls[--SourceIndex];
}
}
else
{
for (; Length > 0; Length--)
{
this->_Controls[DestinationIndex++] = this->_Controls[SourceIndex++];
}
}
}
}

View File

@ -0,0 +1,54 @@
#pragma once
#include <memory>
#include <cstdint>
#include "ListBase.h"
namespace Forms
{
// We can't create a circle dependency here, so we define an empty class for use later...
class Control;
// Contains a collection of child controls for a ContainerControl
class ControlCollection
{
public:
ControlCollection() = default;
~ControlCollection();
// Adds the specified control to the collection.
void Add(Control* Ctrl);
// Removes the specified control from the collection.
void Remove(Control* Ctrl);
// Removes the specified control by index from the collection.
void RemoveAt(uint32_t Index);
// Gets the index of the control in the collection.
int32_t IndexOf(Control* Ctrl);
// Checks if this collection contains the control.
bool Contains(Control* Ctrl);
// Sets the index of the specified child control.
void SetChildIndex(Control* Ctrl, int32_t Index);
// Returns the count of controls
uint32_t Count();
// Array index operator
Control* operator[](size_t Index);
// Iterator definitions, for for(& :) loop
Control* begin() const noexcept;
Control* end() const noexcept;
private:
// An internal pointer list of controls
List<Control*> _Controls;
// Internal routine to move a control
void MoveElement(Control* Ctrl, int32_t CurrentIndex, int32_t NewIndex);
// Internal routine to copy controls
void CopyElement(int32_t SourceIndex, int32_t DestinationIndex, uint32_t Length);
};
}

View File

@ -0,0 +1,51 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// Specifies control states.
enum class ControlStates
{
StateCreated = 0x00000001,
StateVisible = 0x00000002,
StateEnabled = 0x00000004,
StateTabstop = 0x00000008,
StateRecreate = 0x00000010,
StateModal = 0x00000020,
StateAllowDrop = 0x00000040,
StateDropTarget = 0x00000080,
StateNoZOrder = 0x00000100,
StateLayoutDeferred = 0x00000200,
StateUseWaitCursor = 0x00000400,
StateDisposed = 0x00000800,
StateDisposing = 0x00001000,
StateMouseEnterPending = 0x00002000,
StateTrackingMouseEvent = 0x00004000,
StateThreadMarshallPending = 0x00008000,
StateSizeLockedByOS = 0x00010000,
StateCausesValidation = 0x00020000,
StateCreatingHandle = 0x00040000,
StateTopLevel = 0x00080000,
StateISACCESSIBLE = 0x00100000,
StateOwnCtlBrush = 0x00200000,
StateExceptionWhilePainting = 0x00400000,
StateLayoutIsDirty = 0x00800000,
StateCheckedHost = 0x01000000,
StateHostedInDialog = 0x02000000,
StateDoubleClickFired = 0x04000000,
StateMousePressed = 0x08000000,
StateValidationCancelled = 0x10000000,
StateParentRecreating = 0x20000000,
StateMirrored = 0x40000000,
};
//
// Allow bitwise operations on this enumeration
//
constexpr ControlStates operator|(ControlStates Lhs, ControlStates Rhs)
{
return static_cast<ControlStates>(static_cast<std::underlying_type<ControlStates>::type>(Lhs) | static_cast<std::underlying_type<ControlStates>::type>(Rhs));
};
}

View File

@ -0,0 +1,75 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// Specifies control functionality.
enum class ControlStyles
{
// Indicates whether the control is a container-like control.
ContainerControl = 0x00000001,
// The control paints itself; WM_PAINT and WM_ERASEBKGND messages are not passed
// on to the underlying NativeWindow.
UserPaint = 0x00000002,
// If specified, a PaintBackground event will not be raised, OnPaintBackground will not be called,
// and Invalidate() will not invalidate the background of the HWND.
Opaque = 0x00000004,
// The control is completely redrawn when it is resized.
ResizeRedraw = 0x00000010,
// The control has a fixed width.
FixedWidth = 0x00000020,
// The control has a fixed height.
FixedHeight = 0x00000040,
// If set, windows forms calls OnClick and raises the Click event when the control is clicked
// (unless it's the second click of a double-click and StandardDoubleClick is specified).
// Regardless of this style, the control may call OnClick directly.
StandardClick = 0x00000100,
// The control can get the focus.
Selectable = 0x00000200,
// The control does its own mouse processing; WM_MOUSEDOWN, WM_MOUSEMOVE, and WM_MOUSEUP messages are not passed
// on to the underlying NativeWindow.
UserMouse = 0x00000400,
// If the BackColor is set to a color whose alpha component is
// less than 255 (i.e., BackColor.A &lt; 255), OnPaintBackground will simulate transparency
// by asking its parent control to paint our background. This is not true transparency --
// if there is another control between us and our parent, we will not show the control in the middle.
SupportsTransparentBackColor = 0x00000800,
// If set, windows forms calls OnDoubleClick and raises the DoubleClick event when the control is double clicked.
// Regardless of whether it is set, the control may call OnDoubleClick directly.
// This style is ignored if StandardClick is not set.
StandardDoubleClick = 0x00001000,
// If true, WM_ERASEBKGND is ignored, and both OnPaintBackground and OnPaint are called directly from
// WM_PAINT. This generally reduces flicker, but can cause problems if other controls
// send WM_ERASEBKGND messages to us. (This is sometimes done to achieve a pseudo-transparent effect similar to
// ControlStyles.SupportsTransparentBackColor; for instance, ToolBar with flat appearance does this).
// This style only makes sense if UserPaint is true.
AllPaintingInWmPaint = 0x00002000,
// If true, the control keeps a copy of the text rather than going to the hWnd for the
// text every time. This improves performance but makes it difficult to keep the control
// and hWnd's text synchronized.
// This style defaults to false.
CacheText = 0x00004000,
// If true, the OnNotifyMessage method will be called for every message sent to
// the control's WndProc.
// This style defaults to false.
EnableNotifyMessage = 0x00008000,
// If set, control painting is double buffered (OBSOLETE, Use OptimizedDoubleBuffer).
DoubleBuffer = 0x00010000,
// If set, all control painting will be double buffered.
OptimizedDoubleBuffer = 0x00020000,
// If this style is set, and there is a value in the control's Text property, that value will be
// used to determine the control's default Active Accessibility name and shortcut key. Otherwise,
// the text of the preceding Label control will be used instead.
UseTextForAccessibility = 0x00040000,
};
//
// Allow bitwise operations on this enumeration
//
constexpr ControlStyles operator|(ControlStyles Lhs, ControlStyles Rhs)
{
return static_cast<ControlStyles>(static_cast<std::underlying_type<ControlStyles>::type>(Lhs) | static_cast<std::underlying_type<ControlStyles>::type>(Rhs));
};
}

View File

@ -0,0 +1,23 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Represents the internal RTTI classes for the Forms controls
enum class ControlTypes : uint8_t
{
Control = 0,
Button = 1,
Label = 2,
CheckBox = 3,
RadioButton = 4,
GroupBox = 5,
Form = 6,
Panel = 7,
ListView = 8,
ComboBox = 9,
ToolTip = 10,
TextBox = 11,
};
}

View File

@ -0,0 +1,42 @@
<?xml version="1.0" encoding="utf-8"?>
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="List&lt;*&gt;">
<Expand>
<Item Name="[size]">_StoreSize</Item>
<Item Name="[capacity]">_BufferSize</Item>
<ArrayItems>
<Size>_StoreSize</Size>
<ValuePointer>_Buffer</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<Type Name="StringBase&lt;*&gt;">
<DisplayString Condition="_Buffer == nullptr">empty</DisplayString>
<DisplayString>{_Buffer}</DisplayString>
<Expand>
<Item Name="[size]" ExcludeView="simple">_StoreSize</Item>
<Item Name="[capacity]" ExcludeView="simple">_BufferSize</Item>
<Item Name="[value]">_Buffer</Item>
</Expand>
</Type>
<Type Name="Dictionary&lt;*&gt;">
<Expand>
<Item Name="[size]">_Count</Item>
<Item Name="[capacity]">_BucketLength</Item>
<ArrayItems>
<Size>_Count</Size>
<ValuePointer>_Entries._Mypair._Myval2</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<Type Name="Assets::Texture">
<Expand>
<Item Name="Width">((DirectX::ScratchImage*)DirectXImage)->m_metadata.width</Item>
<Item Name="Height">((DirectX::ScratchImage*)DirectXImage)->m_metadata.height</Item>
<Item Name="MipLevels">((DirectX::ScratchImage*)DirectXImage)->m_metadata.mipLevels</Item>
<Item Name="Format">((DirectX::ScratchImage*)DirectXImage)->m_metadata.format</Item>
<Item Name="Dimensions">((DirectX::ScratchImage*)DirectXImage)->m_metadata.dimension</Item>
<Item Name="DirectX Image">((DirectX::ScratchImage*)DirectXImage)</Item>
</Expand>
</Type>
</AutoVisualizer>

View File

@ -0,0 +1,26 @@
#pragma once
#include <cstdint>
#include "StringBase.h"
namespace Forms
{
// A structure that contains the CreateWindow parameters for this control.
struct CreateParams
{
string ClassName;
string Caption;
uint32_t Style;
uint32_t ExStyle;
uint32_t ClassStyle;
uint32_t X;
uint32_t Y;
uint32_t Width;
uint32_t Height;
uintptr_t Parent;
uintptr_t Param;
};
}

View File

@ -0,0 +1,96 @@
#include "stdafx.h"
#include "Curve.h"
namespace Assets
{
Curve::Curve()
: Curve("", CurveProperty::Extra, AnimationCurveMode::Absolute)
{
}
Curve::Curve(const string& Name, CurveProperty Property)
: Curve(Name, Property, AnimationCurveMode::Absolute)
{
}
Curve::Curve(const string& Name, CurveProperty Property, AnimationCurveMode Mode)
: Name(Name), Property(Property), Mode(Mode), _IsFrameIntegral(true)
{
}
bool Curve::IsFrameIntegral() const
{
return this->_IsFrameIntegral;
}
void Curve::SetFrameIntegral(bool Value)
{
if (this->_IsFrameIntegral != Value)
{
this->_IsFrameIntegral = Value;
for (auto& Key : Keyframes)
{
if (Value)
Key.Frame.Integer32 = (uint32_t)Key.Frame.Float;
else
Key.Frame.Float = (float)Key.Frame.Integer32;
}
}
}
CurveValue::CurveValue(uint8_t Value)
: Byte(Value)
{
}
CurveValue::CurveValue(uint32_t Value)
: Integer32(Value)
{
}
CurveValue::CurveValue(float Value)
: Float(Value)
{
}
CurveValue::CurveValue(Math::Quaternion Value)
: Vector4(Value)
{
}
CurveFrame::CurveFrame(uint32_t Value)
: Integer32(Value)
{
}
CurveFrame::CurveFrame(float Value)
: Float(Value)
{
}
CurveKeyframe::CurveKeyframe()
: Frame(0u), Value({0, 0, 0, 0})
{
}
CurveKeyframe::CurveKeyframe(uint32_t Frame, float Value)
: Frame(Frame), Value(Value)
{
}
CurveKeyframe::CurveKeyframe(float Frame, float Value)
: Frame(Frame), Value(Value)
{
}
CurveKeyframe::CurveKeyframe(uint32_t Frame, Math::Quaternion Value)
: Frame(Frame), Value(Value)
{
}
CurveKeyframe::CurveKeyframe(float Frame, Math::Quaternion Value)
: Frame(Frame), Value(Value)
{
}
}

91
r5dev/thirdparty/cppnet/cppkore/Curve.h vendored Normal file
View File

@ -0,0 +1,91 @@
#pragma once
#include <cstdint>
#include "StringBase.h"
#include "ListBase.h"
#include "Vector3.h"
#include "Quaternion.h"
#include "AnimationTypes.h"
namespace Assets
{
// The property of the node being animated
enum class CurveProperty
{
Extra,
RotateQuaternion,
RotateX,
RotateY,
RotateZ,
TranslateX,
TranslateY,
TranslateZ,
ScaleX,
ScaleY,
ScaleZ,
Visibility,
};
union CurveFrame
{
uint32_t Integer32;
float Float;
explicit CurveFrame(uint32_t Value);
explicit CurveFrame(float Value);
};
union CurveValue
{
uint8_t Byte;
uint32_t Integer32;
float Float;
Math::Quaternion Vector4;
explicit CurveValue(uint8_t Value);
explicit CurveValue(uint32_t Value);
explicit CurveValue(float Value);
explicit CurveValue(Math::Quaternion Value);
};
// A keyframe is a pair of frame time and value at that specific frame time
struct CurveKeyframe
{
CurveFrame Frame;
CurveValue Value;
CurveKeyframe();
explicit CurveKeyframe(uint32_t Frame, float Value);
explicit CurveKeyframe(float Frame, float Value);
explicit CurveKeyframe(uint32_t Frame, Math::Quaternion Value);
explicit CurveKeyframe(float Frame, Math::Quaternion Value);
};
// Represents a 3D animation curve for a specific node->property.
class Curve
{
public:
Curve();
Curve(const string& Name, CurveProperty Property);
Curve(const string& Name, CurveProperty Property, AnimationCurveMode Mode);
// The node name of this curve.
string Name;
// The property of the node for the curve.
CurveProperty Property;
// Whether or not the frame is an integer, or floating point value. (Default: true)
bool IsFrameIntegral() const;
// Sets whether or not the frame is an integer, or floating point value.
void SetFrameIntegral(bool Value);
// A list of keyframes that make up this curve
List<CurveKeyframe> Keyframes;
// The mode to apply each curve value using (Default: Absolute)
AnimationCurveMode Mode;
private:
// Internal cached values
bool _IsFrameIntegral;
};
}

110
r5dev/thirdparty/cppnet/cppkore/DDS.cpp vendored Normal file
View File

@ -0,0 +1,110 @@
#include "stdafx.h"
#include "DDS.h"
#include "..\cppkore_incl\DirectXTex\DirectXTex.h"
#if _WIN64
#if _DEBUG
#pragma comment(lib, "..\\cppkore_libs\\DirectXTex\\DirectXTex_x64d.lib")
#else
#pragma comment(lib, "..\\cppkore_libs\\DirectXTex\\DirectXTex_x64r.lib")
#endif
#else
#error DirectXTex doesn't support non x64 builds yet
#endif
namespace Assets
{
DDSFormat::DDSFormat()
: MipLevels(1), CubeMap(false), Format(DXGI_FORMAT::DXGI_FORMAT_UNKNOWN), Flags(DDSFormatFlags::None)
{
}
std::unique_ptr<uint8_t[]> DDS::TranscodeRGBToRGBA(const uint8_t* Buffer, uint32_t BufferSize, uint64_t& ResultSize)
{
// Must be divisible by 3
if (BufferSize % 3 != 0)
return nullptr;
ResultSize = (uint64_t)BufferSize + (BufferSize / 3);
auto Result = std::make_unique<uint8_t[]>(ResultSize);
for (uint32_t i = 0; i < ResultSize; i += 4)
{
Result[i] = Buffer[i];
Result[i + 1] = Buffer[i + 1];
Result[i + 2] = Buffer[i + 2];
Result[i + 3] = 0xFF;
}
return std::move(Result);
}
void DDS::WriteDDSHeader(const std::unique_ptr<IO::Stream>& Stream, uint32_t Width, uint32_t Height, const DDSFormat& Format)
{
WriteDDSHeader(Stream.get(), Width, Height, Format);
}
void DDS::WriteDDSHeader(IO::Stream* Stream, uint32_t Width, uint32_t Height, const DDSFormat& Format)
{
// Temporary buffer
char Buffer[0x100]{};
DirectX::TexMetadata MetaData{};
MetaData.width = Width;
MetaData.height = Height;
MetaData.depth = 1;
MetaData.arraySize = (Format.CubeMap) ? 6 : 1;
MetaData.mipLevels = Format.MipLevels;
MetaData.miscFlags = (Format.CubeMap) ? DirectX::TEX_MISC_FLAG::TEX_MISC_TEXTURECUBE : 0;
MetaData.dimension = DirectX::TEX_DIMENSION::TEX_DIMENSION_TEXTURE2D;
MetaData.format = Format.Format;
size_t ResultSize = 0;
DirectX::EncodeDDSHeader(MetaData, 0, Buffer, sizeof(Buffer), ResultSize);
Stream->Write((uint8_t*)Buffer, 0, (uint64_t)ResultSize);
}
void DDS::WriteDDSHeader(uint8_t* Buffer, uint32_t Width, uint32_t Height, const DDSFormat& Format, uint32_t& ResultSize)
{
DirectX::TexMetadata MetaData{};
MetaData.width = Width;
MetaData.height = Height;
MetaData.depth = 1;
MetaData.arraySize = (Format.CubeMap) ? 6 : 1;
MetaData.mipLevels = Format.MipLevels;
MetaData.miscFlags = (Format.CubeMap) ? DirectX::TEX_MISC_FLAG::TEX_MISC_TEXTURECUBE : 0;
MetaData.dimension = DirectX::TEX_DIMENSION::TEX_DIMENSION_TEXTURE2D;
MetaData.format = Format.Format;
size_t Result = 0;
DirectX::EncodeDDSHeader(MetaData, 0, Buffer, sizeof(Buffer), Result);
ResultSize = (uint32_t)Result;
}
const uint32_t DDS::CalculateBlockSize(uint32_t Width, uint32_t Height, const DDSFormat& Format)
{
return (uint32_t)(DirectX::BitsPerPixel(Format.Format) * Width * Height) / 8;
}
const uint32_t DDS::CountMipLevels(uint32_t Width, uint32_t Height)
{
uint32_t Result = 1;
while (Height > 1 || Width > 1)
{
if (Height > 1)
Height >>= 1;
if (Width > 1)
Width >>= 1;
++Result;
}
return Result;
}
}

55
r5dev/thirdparty/cppnet/cppkore/DDS.h vendored Normal file
View File

@ -0,0 +1,55 @@
#pragma once
#include <cstdint>
#include <memory>
#include <dxgiformat.h>
#include "Stream.h"
namespace Assets
{
// Flags used to extend the DDS texture format.
enum class DDSFormatFlags
{
None = 0
};
// Contains information about the DDS texture format.
struct DDSFormat
{
// The count of mip levels in this texture (Default: 1) (>= 1)
uint32_t MipLevels;
// Whether or not this is a cubemapped texture. (Default: false)
bool CubeMap;
// The block compression format for the texture. (Default: DXGI_FORMAT_UNKNOWN)
DXGI_FORMAT Format;
// Flags which extend the format for the texture. (Default: None)
DDSFormatFlags Flags;
DDSFormat();
};
// A utility class for building DDS assets.
class DDS
{
// Don't initialize this class
DDS() = delete;
~DDS() = delete;
public:
// Transcodes a buffer of (legacy) RGB8 data to a DXGI compatible RGBA buffer
static std::unique_ptr<uint8_t[]> TranscodeRGBToRGBA(const uint8_t* Buffer, uint32_t BufferSize, uint64_t& ResultSize);
// Serializes a DDS header to the given stream.
static void WriteDDSHeader(const std::unique_ptr<IO::Stream>& Stream, uint32_t Width, uint32_t Height, const DDSFormat& Format);
// Serializes a DDS header to the given stream.
static void WriteDDSHeader(IO::Stream* Stream, uint32_t Width, uint32_t Height, const DDSFormat& Format);
// Serializes a DDS header to the buffer.
static void WriteDDSHeader(uint8_t* Buffer, uint32_t Width, uint32_t Height, const DDSFormat& Format, uint32_t& ResultSize);
// Calculate a block size for the given format.
static const uint32_t CalculateBlockSize(uint32_t Width, uint32_t Height, const DDSFormat& Format);
// Calculate the maximum level of mips.
static const uint32_t CountMipLevels(uint32_t Width, uint32_t Height);
};
}

View File

@ -0,0 +1,113 @@
#include "stdafx.h"
#include "DeflateCodec.h"
#include "..\cppkore_incl\ZLib\miniz.h"
#if _DEBUG
#pragma comment(lib, "..\\cppkore_libs\\ZLib\\cppkorezlibx64d.lib")
#else
#pragma comment(lib, "..\\cppkore_libs\\ZLib\\cppkorezlibx64r.lib")
#endif
namespace Compression
{
uint64_t DeflateCodec::Compress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint8_t* Output, uint64_t OutputOffset, uint64_t OutputLength)
{
z_stream DeflateStream{};
if (deflateInit2(&DeflateStream, MZ_DEFAULT_LEVEL, MZ_DEFLATED, -MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY) != MZ_OK)
return 0;
DeflateStream.avail_in = (uint32_t)InputLength;
DeflateStream.avail_out = (uint32_t)OutputLength;
DeflateStream.next_in = (const uint8_t*)(Input + InputOffset);
DeflateStream.next_out = (uint8_t*)(Output + OutputOffset);
auto Result = deflate(&DeflateStream, MZ_SYNC_FLUSH);
deflateEnd(&DeflateStream);
if (Result == MZ_OK)
return (uint64_t)DeflateStream.total_out;
return 0;
}
std::unique_ptr<uint8_t[]> DeflateCodec::Compress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint64_t& OutputLength)
{
auto ResultBounds = compressBound((mz_ulong)InputLength);
auto Result = std::make_unique<uint8_t[]>(ResultBounds);
OutputLength = 0;
z_stream DeflateStream{};
if (deflateInit2(&DeflateStream, MZ_DEFAULT_LEVEL, MZ_DEFLATED, -MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY) != MZ_OK)
return nullptr;
DeflateStream.avail_in = (uint32_t)InputLength;
DeflateStream.avail_out = (uint32_t)ResultBounds;
DeflateStream.next_in = (const uint8_t*)(Input + InputOffset);
DeflateStream.next_out = (uint8_t*)Result.get();
auto ResultCode = deflate(&DeflateStream, MZ_SYNC_FLUSH);
deflateEnd(&DeflateStream);
if (ResultCode != MZ_OK)
return nullptr;
OutputLength = (uint64_t)DeflateStream.total_out;
return Result;
}
uint64_t DeflateCodec::Decompress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint8_t* Output, uint64_t OutputOffset, uint64_t OutputLength)
{
z_stream DeflateStream{};
if (inflateInit2(&DeflateStream, -MZ_DEFAULT_WINDOW_BITS) != MZ_OK)
return 0;
DeflateStream.avail_in = (uint32_t)InputLength;
DeflateStream.avail_out = (uint32_t)OutputLength;
DeflateStream.next_in = (const uint8_t*)(Input + InputOffset);
DeflateStream.next_out = (uint8_t*)(Output + OutputOffset);
auto Result = inflate(&DeflateStream, MZ_SYNC_FLUSH);
inflateEnd(&DeflateStream);
if (Result == MZ_OK || (DeflateStream.total_out == OutputLength))
return (uint64_t)DeflateStream.total_out;
return 0;
}
std::unique_ptr<uint8_t[]> DeflateCodec::Decompress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint64_t KnownOutputLength)
{
if (InputLength == 0)
return nullptr;
auto Result = std::make_unique<uint8_t[]>(KnownOutputLength);
z_stream DeflateStream{};
if (inflateInit2(&DeflateStream, -MZ_DEFAULT_WINDOW_BITS) != MZ_OK)
return 0;
DeflateStream.avail_in = (uint32_t)InputLength;
DeflateStream.avail_out = (uint32_t)KnownOutputLength;
DeflateStream.next_in = (const uint8_t*)(Input + InputOffset);
DeflateStream.next_out = (uint8_t*)Result.get();
auto ResultCode = inflate(&DeflateStream, MZ_SYNC_FLUSH);
inflateEnd(&DeflateStream);
if (ResultCode == MZ_OK || (DeflateStream.total_out == KnownOutputLength))
return Result;
return nullptr;
}
}

View File

@ -0,0 +1,23 @@
#pragma once
#include <memory>
#include <cstdint>
namespace Compression
{
// A compression codec that implements the Deflate algo.
class DeflateCodec
{
public:
// Compress the input buffer using the Deflate codec
static uint64_t Compress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint8_t* Output, uint64_t OutputOffset, uint64_t OutputLength);
// Compress the input buffer using the Deflate codec
static std::unique_ptr<uint8_t[]> Compress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint64_t& OutputLength);
// Decompress the input buffer using the Deflate codec
static uint64_t Decompress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint8_t* Output, uint64_t OutputOffset, uint64_t OutputLength);
// Decompress the input buffer using the Deflate codec (With known output length)
static std::unique_ptr<uint8_t[]> Decompress(uint8_t* Input, uint64_t InputOffset, uint64_t InputLength, uint64_t KnownOutputLength);
};
}

View File

@ -0,0 +1,219 @@
#include "stdafx.h"
#include "DeflateStream.h"
#include "..\cppkore_incl\ZLib\miniz.h"
#if _DEBUG
#pragma comment(lib, "..\\cppkore_libs\\ZLib\\cppkorezlibx64d.lib")
#else
#pragma comment(lib, "..\\cppkore_libs\\ZLib\\cppkorezlibx64r.lib")
#endif
namespace Compression
{
DeflateStream::DeflateStream(std::unique_ptr<IO::Stream> Stream, CompressionMode Mode, bool LeaveOpen)
: BaseStream(std::move(Stream)), _Mode(Mode), _LeaveOpen(LeaveOpen), _BufferLength(DeflateStream::DefaultBufferSize), _BufferOffset(0)
{
this->_Buffer = std::make_unique<uint8_t[]>(DeflateStream::DefaultBufferSize);
this->CreateInflatorDeflator();
}
DeflateStream::DeflateStream(IO::Stream* Stream, CompressionMode Mode, bool LeaveOpen)
: BaseStream(Stream), _Mode(Mode), _LeaveOpen(LeaveOpen), _BufferLength(DeflateStream::DefaultBufferSize), _BufferOffset(0)
{
this->_Buffer = std::make_unique<uint8_t[]>(DeflateStream::DefaultBufferSize);
this->CreateInflatorDeflator();
}
DeflateStream::~DeflateStream()
{
this->Close();
}
bool DeflateStream::CanRead()
{
return (this->_Mode == CompressionMode::Decompress);
}
bool DeflateStream::CanWrite()
{
return (this->_Mode == CompressionMode::Compress);
}
bool DeflateStream::CanSeek()
{
return (_Mode == CompressionMode::Decompress);
}
bool DeflateStream::GetIsEndOfFile()
{
return this->BaseStream->GetIsEndOfFile();
}
uint64_t DeflateStream::GetLength()
{
return this->BaseStream->GetLength();
}
uint64_t DeflateStream::GetPosition()
{
return this->BaseStream->GetPosition();
}
void DeflateStream::SetLength(uint64_t Length)
{
IO::IOError::StreamSetLengthSupport();
}
void DeflateStream::SetPosition(uint64_t Position)
{
if (_Mode == CompressionMode::Decompress)
{
this->BaseStream->SetPosition(Position);
mz_inflateReset((mz_streamp)this->_DeflateState);
}
else
IO::IOError::StreamNoSeekSupport();
}
void DeflateStream::Close()
{
if (this->_Mode == CompressionMode::Compress)
this->WriteDeflaterOutput(); // Ensure that all data has been written to the stream...
if (this->_LeaveOpen)
this->BaseStream.release();
else
this->BaseStream.reset();
this->_Buffer.reset();
if (this->_Mode == CompressionMode::Compress)
deflateEnd((mz_streamp)this->_DeflateState);
else
inflateEnd((mz_streamp)this->_DeflateState);
delete (mz_streamp)this->_DeflateState;
}
void DeflateStream::Flush()
{
if (this->CanWrite())
this->BaseStream->Flush();
}
void DeflateStream::Seek(uint64_t Offset, IO::SeekOrigin Origin)
{
if (_Mode == CompressionMode::Decompress)
{
this->BaseStream->Seek(Offset, Origin);
mz_inflateReset((mz_streamp)this->_DeflateState);
}
else
IO::IOError::StreamNoSeekSupport();
}
uint64_t DeflateStream::Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count)
{
uint64_t TotalRead = 0;
uint64_t TotalOutNow = 0;
mz_streamp StreamState = (mz_streamp)this->_DeflateState;
TotalOutNow = StreamState->total_out;
while (true)
{
StreamState->avail_out = (unsigned int)(Count - TotalRead);
StreamState->next_out = (unsigned char*)(Buffer + Offset + TotalRead);
auto Result = inflate(StreamState, MZ_SYNC_FLUSH);
TotalRead = StreamState->total_out - TotalOutNow;
if (TotalRead == Count)
break;
if (Result == MZ_STREAM_END)
break;
auto RequiredRead = (StreamState->avail_in > 0) ? (DeflateStream::DefaultBufferSize - StreamState->avail_in) : DeflateStream::DefaultBufferSize;
//
// We must move the z_stream expected block to the front, and then read expected input after...
//
std::memmove(this->_Buffer.get(), this->_Buffer.get() + RequiredRead, StreamState->avail_in);
auto Bytes = this->BaseStream->Read(this->_Buffer.get(), StreamState->avail_in, RequiredRead);
if (Bytes == 0)
break;
StreamState->next_in = (const unsigned char*)this->_Buffer.get();
StreamState->avail_in = (unsigned int)DeflateStream::DefaultBufferSize;
}
return TotalRead;
}
uint64_t DeflateStream::Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position)
{
return 0;
}
void DeflateStream::Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count)
{
// Continue to write if need be
this->WriteDeflaterOutput();
// Set the new input and size to us
mz_streamp StreamState = (mz_streamp)this->_DeflateState;
StreamState->avail_in = (unsigned int)Count;
StreamState->next_in = (const unsigned char*)(Buffer + Offset);
// Write the last output
this->WriteDeflaterOutput();
}
void DeflateStream::Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position)
{
}
void DeflateStream::CreateInflatorDeflator()
{
this->_DeflateState = new z_stream();
if (_Mode == CompressionMode::Compress)
deflateInit2((mz_streamp)this->_DeflateState, MZ_DEFAULT_LEVEL, MZ_DEFLATED, -MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY);
else if (_Mode == CompressionMode::Decompress)
inflateInit2((mz_streamp)this->_DeflateState, -MZ_DEFAULT_WINDOW_BITS);
mz_streamp StreamState = (mz_streamp)this->_DeflateState;
// Setup default state values...
StreamState->avail_in = 0;
StreamState->avail_out = 0;
StreamState->next_in = nullptr;
StreamState->next_out = nullptr;
}
void DeflateStream::WriteDeflaterOutput()
{
mz_streamp StreamState = (mz_streamp)this->_DeflateState;
// Loop until we need data again...
while (StreamState->avail_in > 0)
{
// Reset the buffers
StreamState->next_out = (unsigned char*)this->_Buffer.get();
StreamState->avail_out = (unsigned int)DeflateStream::DefaultBufferSize;
// Prepare to deflate the data
auto Result = deflate(StreamState, MZ_SYNC_FLUSH);
// Write the data if any
this->BaseStream->Write(this->_Buffer.get(), 0, (DeflateStream::DefaultBufferSize - StreamState->avail_out));
}
}
}

View File

@ -0,0 +1,61 @@
#pragma once
#include <cstdint>
#include <memory>
#include "Stream.h"
#include "CompressionMode.h"
namespace Compression
{
// DeflateStream supports decompressing and compressing Deflate encoded data
class DeflateStream : public IO::Stream
{
public:
DeflateStream(std::unique_ptr<IO::Stream> Stream, CompressionMode Mode, bool LeaveOpen = false);
DeflateStream(IO::Stream* Stream, CompressionMode Mode, bool LeaveOpen = false);
virtual ~DeflateStream();
// Implement Getters and Setters
virtual bool CanRead();
virtual bool CanWrite();
virtual bool CanSeek();
virtual bool GetIsEndOfFile();
virtual uint64_t GetLength();
virtual uint64_t GetPosition();
virtual void SetLength(uint64_t Length);
virtual void SetPosition(uint64_t Position);
// Implement functions
virtual void Close();
virtual void Flush();
virtual void Seek(uint64_t Offset, IO::SeekOrigin Origin);
virtual uint64_t Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count);
virtual uint64_t Read(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position);
virtual void Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count);
virtual void Write(uint8_t* Buffer, uint64_t Offset, uint64_t Count, uint64_t Position);
private:
// Internal cached flags
std::unique_ptr<IO::Stream> BaseStream;
bool _LeaveOpen;
// Internal state
void* _DeflateState;
// Internal buffer
std::unique_ptr<uint8_t[]> _Buffer;
uint32_t _BufferLength;
uint32_t _BufferOffset;
// Mode to use on the data
CompressionMode _Mode;
// An internal routine to setup the deflate state
void CreateInflatorDeflator();
// An internal routine to write deflater output
void WriteDeflaterOutput();
// The default buffer size for deflate streams
constexpr static uint32_t DefaultBufferSize = 8192;
};
}

View File

@ -0,0 +1,35 @@
#pragma once
#include <cstdint>
namespace Forms
{
// Specifies identifiers to indicate the return value of a dialog box.
enum class DialogResult
{
// Nothing is returned from the dialog box. This
// means that the modal dialog continues running.
None = 0,
// The dialog box return value is
// OK (usually sent from a button labeled OK).
OK = 1,
// The dialog box return value is Cancel (usually sent
// from a button labeled Cancel).
Cancel = 2,
// The dialog box return value is
// Abort (usually sent from a button labeled Abort).
Abort = 3,
// The dialog box return value is
// Retry (usually sent from a button labeled Retry).
Retry = 4,
// The dialog box return value is Ignore (usually sent
// from a button labeled Ignore).
Ignore = 5,
// The dialog box return value is
// Yes (usually sent from a button labeled Yes).
Yes = 6,
// The dialog box return value is
// No (usually sent from a button labeled No).
No = 7,
};
}

View File

@ -0,0 +1,573 @@
#pragma once
#include <algorithm>
#include <utility>
#include <memory>
#include "HashHelpers.h"
#include "HashComparer.h"
// A KeyValuePair holds a key and a value from a dictionary.
template<class TKey, class TValue>
struct KeyValuePair : std::pair<TKey, TValue>
{
constexpr TKey& Key()
{
return this->first;
}
constexpr TValue& Value()
{
return this->second;
}
constexpr TKey& Key() const
{
return this->first;
}
constexpr TValue& Value() const
{
return this->second;
}
};
// A container class that holds keys and values.
template<class TKey, class TValue, class THasher = HashComparer<TKey>>
class Dictionary
{
private:
typedef KeyValuePair<TKey, TValue> PairType;
struct Entry
{
uint64_t HashCode; // Lower 63 bits of hash code, -1 if unused
uint32_t Next; // Index of next entry, -1 if last
PairType Kvp;
Entry()
: HashCode(-1), Next(-1)
{
}
};
public:
Dictionary();
Dictionary(uint32_t Capacity);
constexpr Dictionary(const Dictionary& Value);
constexpr Dictionary(Dictionary&& Value);
// Assignment operator
constexpr Dictionary<TKey, TValue, THasher>& operator=(const Dictionary<TKey, TValue, THasher>& Rhs);
~Dictionary() = default;
// Adds the specified key and value to the dictionary (Returns: true if added)
constexpr bool Add(TKey Key, TValue Value);
// Adds the specified key value pair to the dictionary (Returns: true if added)
constexpr bool Add(PairType Kvp);
// Removes a key and value from the dictionary if exists
constexpr bool Remove(TKey Key);
// Clears the entries in the dictionary
constexpr void Clear();
// Checks whether or not the dictionary contains the key
constexpr bool ContainsKey(TKey Key);
// Checks whether or not the dictionary contains the key
constexpr bool ContainsKey(TKey Key) const;
// Checks whether or not the dictionary contains the value
constexpr bool ContainsValue(TValue Value);
// Attempts to get the value from the specified key
constexpr bool TryGetValue(TKey Key, TValue& Value);
// TODO: Keys collection
// TODO: Values collection
// Array index operator
constexpr TValue& operator[](TKey& Key);
constexpr TValue& operator[](const TKey& Key);
constexpr TValue& operator[](TKey& Key) const;
constexpr TValue& operator[](const TKey& Key) const;
// Define custom iterator for loops
class DictionaryIterator : public std::iterator<std::forward_iterator_tag, KeyValuePair<TKey, TValue>>
{
public:
DictionaryIterator(const Dictionary<TKey, TValue, THasher>* Dict, uint32_t Index = -1);
~DictionaryIterator() = default;
// Increment operator
DictionaryIterator& operator++()
{
MoveNext();
return *this;
}
// Dereference operator
KeyValuePair<TKey, TValue>& operator*();
// Const dereference operator
const KeyValuePair<TKey, TValue>& operator*() const;
// Pointer access operator
KeyValuePair<TKey, TValue>* operator->();
// Inequality operator
bool operator!=(const DictionaryIterator& Rhs) const;
protected:
// Internal cached flags
const Dictionary<TKey, TValue, THasher>* Dict;
KeyValuePair<TKey, TValue>* Kvp;
uint32_t Index;
private:
// Move the iterator to the next postion
void MoveNext();
};
// Iterator definitions, for for(& :) loop
DictionaryIterator begin()
{
return DictionaryIterator(this);
}
DictionaryIterator end()
{
return DictionaryIterator(this, this->_Count);
}
// Const iterator definitions, for for(& :) loop
DictionaryIterator begin() const
{
return DictionaryIterator(this);
}
DictionaryIterator end() const
{
return DictionaryIterator(this, this->_Count);
}
// Returns the count of items in the dictionary
constexpr uint32_t Count() const;
private:
// Internal buffers
std::unique_ptr<uint32_t[]> _Buckets;
std::unique_ptr<Entry[]> _Entries;
// Internal routine to add to the dictionary
bool Insert(TKey& Key, TValue& Value, bool Add);
// Internal routine to setup the dictionary
void Initialize(uint32_t Capacity);
// Internal routine to resize the dictionary
void Resize();
// Internal routine to resize the dictionary
void Resize(uint32_t NewSize, bool ForceNewHashCodes);
// Internal routine to find an entry in the dictionary
uint32_t FindEntry(const TKey& Key) const;
// Internal cached counts
uint32_t _Count;
uint32_t _FreeList;
uint32_t _FreeCount;
uint32_t _BucketLength;
};
template<class TKey, class TValue, class THasher>
inline Dictionary<TKey, TValue, THasher>::Dictionary()
: Dictionary(0)
{
}
template<class TKey, class TValue, class THasher>
inline Dictionary<TKey, TValue, THasher>::Dictionary(uint32_t Capacity)
: _Count(0), _FreeList(-1), _FreeCount(0), _BucketLength(0)
{
if (Capacity > 0)
Initialize(Capacity);
}
template<class TKey, class TValue, class THasher>
inline constexpr Dictionary<TKey, TValue, THasher>::Dictionary(const Dictionary& Value)
{
this->_Buckets.reset(new uint32_t[Value._BucketLength]);
std::memcpy(this->_Buckets.get(), Value._Buckets.get(), Value._BucketLength * sizeof(uint32_t));
this->_Entries.reset(new Entry[Value._BucketLength]);
std::copy(Value._Entries.get(), Value._Entries.get() + Value._BucketLength, this->_Entries);
this->_Count = Value._Count;
this->_FreeList = Value._FreeList;
this->_FreeCount = Value._FreeCount;
this->_BucketLength = Value._BucketLength;
}
template<class TKey, class TValue, class THasher>
inline constexpr Dictionary<TKey, TValue, THasher>::Dictionary(Dictionary&& Value)
{
this->_Buckets.reset(Value._Buckets.release());
this->_Entries.reset(Value._Entries.release());
this->_Count = Value._Count;
this->_FreeList = Value._FreeList;
this->_FreeCount = Value._FreeCount;
this->_BucketLength = Value._BucketLength;
Value._Count = 0;
Value._FreeList = -1;
Value._FreeCount = 0;
Value._BucketLength = 0;
}
template<class TKey, class TValue, class THasher>
inline constexpr Dictionary<TKey, TValue, THasher>& Dictionary<TKey, TValue, THasher>::operator=(const Dictionary<TKey, TValue, THasher>& Rhs)
{
if (Rhs._BucketLength != 0)
{
this->_Buckets.reset(new uint32_t[Rhs._BucketLength]());
std::memcpy(this->_Buckets.get(), Rhs._Buckets.get(), Rhs._BucketLength * sizeof(uint32_t));
this->_Entries.reset(new Entry[Rhs._BucketLength]);
std::copy(Rhs._Entries.get(), Rhs._Entries.get() + Rhs._BucketLength, this->_Entries.get());
}
else
{
this->_Buckets.reset();
this->_Entries.reset();
}
this->_Count = Rhs._Count;
this->_FreeList = Rhs._FreeList;
this->_FreeCount = Rhs._FreeCount;
this->_BucketLength = Rhs._BucketLength;
return *this;
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::Add(TKey Key, TValue Value)
{
return Insert(Key, Value, true);
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::Add(PairType Kvp)
{
return Insert(Kvp.Key(), Kvp.Value(), true);
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::Remove(TKey Key)
{
if (this->_Buckets == nullptr)
return false;
auto HashCode = THasher::GetHashCode(Key) & INT64_MAX;
auto Bucket = HashCode % this->_BucketLength;
uint32_t Last = -1;
for (uint32_t i = this->_Buckets[Bucket]; i != -1; Last = i, i = this->_Entries[i].Next)
{
if (this->_Entries[i].HashCode == HashCode && THasher::Equals(this->_Entries[i].Kvp.Key(), Key))
{
if (Last == -1)
this->_Buckets[Bucket] = this->_Entries[i].Next;
else
this->_Entries[Last].Next = this->_Entries[i].Next;
this->_Entries[i].HashCode = -1;
this->_Entries[i].Next = this->_FreeList;
this->_Entries[i].Kvp.Key() = {};
this->_Entries[i].Kvp.Value() = {};
this->_FreeList = i;
this->_FreeCount++;
return true;
}
}
return true;
}
template<class TKey, class TValue, class THasher>
inline constexpr void Dictionary<TKey, TValue, THasher>::Clear()
{
if (this->_Count > 0)
{
this->_Buckets.reset();
this->_Entries.reset();
this->_FreeList = -1;
this->_Count = 0;
this->_FreeCount = 0;
}
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::ContainsKey(TKey Key)
{
return (FindEntry(Key) != -1);
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::ContainsKey(TKey Key) const
{
return (FindEntry(Key) != -1);
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::ContainsValue(TValue Value)
{
for (uint32_t i = 0; i < this->_Count; i++)
if (this->_Entries[i].HashCode != -1 && this->_Entries[i].Value == Value)
return true;
return false;
}
template<class TKey, class TValue, class THasher>
inline constexpr bool Dictionary<TKey, TValue, THasher>::TryGetValue(TKey Key, TValue& Value)
{
auto Index = FindEntry(Key);
if (Index != -1)
{
Value = this->_Entries[Index].Kvp.Value();
return true;
}
Value = {};
return false;
}
template<class TKey, class TValue, class THasher>
inline constexpr TValue& Dictionary<TKey, TValue, THasher>::operator[](TKey& Key)
{
auto Index = FindEntry(Key);
if (Index == -1)
throw std::exception();
return this->_Entries[Index].Kvp.Value();
}
template<class TKey, class TValue, class THasher>
inline constexpr TValue& Dictionary<TKey, TValue, THasher>::operator[](const TKey& Key)
{
auto Index = FindEntry(Key);
if (Index == -1)
throw std::exception();
return this->_Entries[Index].Kvp.Value();
}
template<class TKey, class TValue, class THasher>
inline constexpr TValue& Dictionary<TKey, TValue, THasher>::operator[](TKey& Key) const
{
auto Index = FindEntry(Key);
if (Index == -1)
throw std::exception();
return this->_Entries[Index].Kvp.Value();
}
template<class TKey, class TValue, class THasher>
inline constexpr TValue& Dictionary<TKey, TValue, THasher>::operator[](const TKey& Key) const
{
auto Index = FindEntry(Key);
if (Index == -1)
throw std::exception();
return this->_Entries[Index].Kvp.Value();
}
template<class TKey, class TValue, class THasher>
inline constexpr uint32_t Dictionary<TKey, TValue, THasher>::Count() const
{
return (this->_Count - this->_FreeCount);
}
template<class TKey, class TValue, class THasher>
inline bool Dictionary<TKey, TValue, THasher>::Insert(TKey& Key, TValue& Value, bool Add)
{
if (this->_Buckets == nullptr)
Initialize(0);
auto HashCode = THasher::GetHashCode(Key) & INT64_MAX;
auto TargetBucket = HashCode % this->_BucketLength;
for (uint32_t i = this->_Buckets[TargetBucket]; i != -1; i = this->_Entries[i].Next)
{
if (this->_Entries[i].HashCode == HashCode && THasher::Equals(this->_Entries[i].Kvp.Key(), Key))
{
if (Add)
return false;
this->_Entries[i].Kvp.Value() = Value;
return false;
}
}
uint32_t Index = 0;
if (this->_FreeCount > 0)
{
Index = this->_FreeList;
this->_FreeList = this->_Entries[Index].Next;
this->_FreeCount--;
}
else
{
if (this->_Count == this->_BucketLength)
{
Resize();
TargetBucket = HashCode % this->_BucketLength;
}
Index = this->_Count;
this->_Count++;
}
this->_Entries[Index].HashCode = HashCode;
this->_Entries[Index].Next = this->_Buckets[TargetBucket];
this->_Entries[Index].Kvp.Key() = Key;
this->_Entries[Index].Kvp.Value() = Value;
this->_Buckets[TargetBucket] = Index;
return true;
}
template<class TKey, class TValue, class THasher>
inline void Dictionary<TKey, TValue, THasher>::Initialize(uint32_t Capacity)
{
auto Size = HashHelpers::GetPrime(Capacity);
this->_Buckets.reset(new uint32_t[Size]);
std::memset(this->_Buckets.get(), 0xFF, sizeof(uint32_t) * Size);
this->_Entries.reset(new Entry[Size]);
this->_FreeList = -1;
this->_BucketLength = Size;
}
template<class TKey, class TValue, class THasher>
inline void Dictionary<TKey, TValue, THasher>::Resize()
{
Resize(HashHelpers::ExpandPrime(this->_Count), false);
}
template<class TKey, class TValue, class THasher>
inline void Dictionary<TKey, TValue, THasher>::Resize(uint32_t NewSize, bool ForceNewHashCodes)
{
auto NewBuckets = new uint32_t[NewSize];
std::memset(NewBuckets, 0xFF, NewSize * sizeof(uint32_t));
auto NewEntries = new Entry[NewSize]{};
std::copy(this->_Entries.get(), this->_Entries.get() + this->_Count, NewEntries);
if (ForceNewHashCodes)
{
for (uint32_t i = 0; i < this->_Count; i++)
{
if (NewEntries[i].HashCode != -1)
NewEntries[i].HashCode = (THasher::GetHashCode(NewEntries[i].Kvp.Key()) & INT64_MAX);
}
}
for (uint32_t i = 0; i < this->_Count; i++)
{
if (NewEntries[i].HashCode != -1)
{
auto Bucket = NewEntries[i].HashCode % NewSize;
NewEntries[i].Next = NewBuckets[Bucket];
NewBuckets[Bucket] = i;
}
}
this->_Buckets.reset(NewBuckets);
this->_Entries.reset(NewEntries);
this->_BucketLength = NewSize;
}
template<class TKey, class TValue, class THasher>
inline uint32_t Dictionary<TKey, TValue, THasher>::FindEntry(const TKey& Key) const
{
// Strip const modifiers
TKey& KeyUse = *((TKey*)(&Key));
if (this->_Buckets == nullptr)
return -1;
auto HashCode = THasher::GetHashCode(KeyUse) & INT64_MAX;
for (uint32_t i = this->_Buckets[HashCode % this->_BucketLength]; i != -1; i = this->_Entries[i].Next)
{
if (this->_Entries[i].HashCode == HashCode && THasher::Equals(this->_Entries[i].Kvp.Key(), KeyUse))
return i;
}
return -1;
}
template<class TKey, class TValue, class THasher>
inline Dictionary<TKey, TValue, THasher>::DictionaryIterator::DictionaryIterator(const Dictionary<TKey, TValue, THasher>* Dict, uint32_t Index)
: Dict(Dict), Kvp(nullptr), Index(Index)
{
if (Index == -1)
MoveNext(); // Assigns first kvp
}
template<class TKey, class TValue, class THasher>
inline KeyValuePair<TKey, TValue>& Dictionary<TKey, TValue, THasher>::DictionaryIterator::operator*()
{
return *Kvp;
}
template<class TKey, class TValue, class THasher>
inline const KeyValuePair<TKey, TValue>& Dictionary<TKey, TValue, THasher>::DictionaryIterator::operator*() const
{
return *Kvp;
}
template<class TKey, class TValue, class THasher>
inline KeyValuePair<TKey, TValue>* Dictionary<TKey, TValue, THasher>::DictionaryIterator::operator->()
{
return Kvp;
}
template<class TKey, class TValue, class THasher>
inline bool Dictionary<TKey, TValue, THasher>::DictionaryIterator::operator!=(const DictionaryIterator& Rhs) const
{
if (this->Index != Rhs.Index)
return true;
return false;
}
template<class TKey, class TValue, class THasher>
inline void Dictionary<TKey, TValue, THasher>::DictionaryIterator::MoveNext()
{
Index++;
while (Index < this->Dict->_Count)
{
if (this->Dict->_Entries[Index].HashCode != -1)
{
Kvp = &this->Dict->_Entries[Index].Kvp;
return;
}
Index++;
}
Index = this->Dict->_Count;
}

View File

@ -0,0 +1,299 @@
#include "stdafx.h"
#include "Directory.h"
namespace IO
{
void Directory::CreateDirectory(const string& Path)
{
if (Path.Length() == 0)
return;
if (Directory::Exists(Path))
return;
int32_t fLength = Path.Length();
int32_t rLength = (fLength > 2 && Path[1] == Path::VolumeSeparatorChar && (Path[2] == Path::DirectorySeparatorChar || Path[2] == Path::AltDirectorySeparatorChar)) ? 3 : 0;
// We need to trim the trailing slash or the code will try to create 2 directories of the same name
if (fLength >= 2 && (Path[fLength - 1] == Path::DirectorySeparatorChar || Path[fLength - 1] == Path::AltDirectorySeparatorChar))
fLength--;
// A list of directories to make
auto DirectoryStack = List<string>();
if (fLength > rLength)
{
int32_t i = fLength - 1;
while (i >= rLength)
{
DirectoryStack.EmplaceBack(std::move(Path.Substring(0, i + 1)));
while (i > rLength && Path[i] != Path::DirectorySeparatorChar && Path[1] != Path::AltDirectorySeparatorChar)
i--;
i--;
}
}
// Iteration in stack-based order FILO
for (int32_t i = DirectoryStack.Count() - 1; i >= 0; --i)
CreateDirectoryA((const char*)DirectoryStack[i], NULL);
}
bool Directory::Exists(const string& Path)
{
if (Path.Length() == 0)
return false;
WIN32_FILE_ATTRIBUTE_DATA Data{};
auto Result = GetFileAttributesExA((const char*)Path, GET_FILEEX_INFO_LEVELS::GetFileExInfoStandard, &Data);
if (Result)
{
return (Data.dwFileAttributes != -1) && ((Data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0);
}
return false;
}
List<string> Directory::GetFiles(const string& Path)
{
return Directory::GetFiles(Path, "*");
}
List<string> Directory::GetFiles(const string& Path, const string& SearchPattern)
{
auto Result = List<string>();
auto sQuery = (Path[Path.Length() - 1] == Path::DirectorySeparatorChar || Path[Path.Length() - 1] == Path::AltDirectorySeparatorChar) ? Path + SearchPattern : Path + Path::DirectorySeparatorChar + SearchPattern;
WIN32_FIND_DATAA fInfo;
auto ResultHandle = FindFirstFileA((const char*)sQuery, &fInfo);
if (ResultHandle == INVALID_HANDLE_VALUE)
return Result;
if (_strnicmp(fInfo.cFileName, ".", 1) != 0 && _strnicmp(fInfo.cFileName, "..", 2) != 0)
{
auto isDir = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY));
if (!isDir)
Result.EmplaceBack(std::move(Path::Combine(Path, fInfo.cFileName)));
}
while (FindNextFileA(ResultHandle, &fInfo))
{
if (_strnicmp(fInfo.cFileName, ".", 1) != 0 && _strnicmp(fInfo.cFileName, "..", 2) != 0)
{
auto isDir = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY));
if (!isDir)
Result.EmplaceBack(std::move(Path::Combine(Path, fInfo.cFileName)));
}
}
FindClose(ResultHandle);
return Result;
}
List<string> Directory::GetDirectories(const string& Path)
{
auto Result = List<string>();
auto sQuery = (Path[Path.Length() - 1] == Path::DirectorySeparatorChar || Path[Path.Length() - 1] == Path::AltDirectorySeparatorChar) ? Path + "*" : Path + Path::DirectorySeparatorChar + "*";
WIN32_FIND_DATAA fInfo;
auto ResultHandle = FindFirstFileA((const char*)sQuery, &fInfo);
if (ResultHandle == INVALID_HANDLE_VALUE)
return Result;
if (_strnicmp(fInfo.cFileName, ".", 1) != 0 && _strnicmp(fInfo.cFileName, "..", 2) != 0)
{
auto isDir = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY));
if (isDir)
Result.EmplaceBack(std::move(Path::Combine(Path, fInfo.cFileName)));
}
while (FindNextFileA(ResultHandle, &fInfo))
{
if (_strnicmp(fInfo.cFileName, ".", 1) != 0 && _strnicmp(fInfo.cFileName, "..", 2) != 0)
{
auto isDir = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY));
if (isDir)
Result.EmplaceBack(std::move(Path::Combine(Path, fInfo.cFileName)));
}
}
FindClose(ResultHandle);
return Result;
}
List<string> Directory::GetLogicalDrives()
{
auto Result = List<string>();
auto dCount = ::GetLogicalDrives();
if (dCount == 0)
IOError::StreamAccessDenied();
uint32_t d = (uint32_t)dCount;
char Root[] = { 'A', ':', '\\' };
while (d != 0)
{
if ((d & 1) != 0)
Result.EmplaceBack(std::move(string(Root, 3)));
d >>= 1;
Root[0]++;
}
return Result;
}
string Directory::GetCurrentDirectory()
{
char Buffer[MAX_PATH + 1]{};
if (!GetCurrentDirectoryA(MAX_PATH, (char*)Buffer))
{
auto Error = GetLastError();
switch (Error)
{
case ERROR_ACCESS_DENIED:
IOError::StreamAccessDenied();
break;
default:
IOError::StreamUnknown();
break;
}
}
return Buffer;
}
void Directory::SetCurrentDirectory(const string& Path)
{
auto Result = SetCurrentDirectoryA((const char*)Path);
if (!Result)
{
auto Error = GetLastError();
switch (Error)
{
case ERROR_ACCESS_DENIED:
IOError::StreamAccessDenied();
break;
case ERROR_FILE_NOT_FOUND:
case ERROR_PATH_NOT_FOUND:
IOError::StreamFileNotFound();
break;
default:
IOError::StreamUnknown();
break;
}
}
}
void Directory::Move(const string& SourcePath, const string& DestinationPath)
{
// Ensure that the roots are the same
if (Path::GetPathRoot(SourcePath).ToLower() != Path::GetPathRoot(DestinationPath).ToLower())
IOError::StreamRootMismatch();
auto Result = MoveFileA((const char*)SourcePath, (const char*)DestinationPath);
if (!Result)
{
auto Error = GetLastError();
switch (Error)
{
case ERROR_ACCESS_DENIED:
IOError::StreamAccessDenied();
break;
case ERROR_FILE_NOT_FOUND:
case ERROR_PATH_NOT_FOUND:
IOError::StreamFileNotFound();
break;
default:
IOError::StreamUnknown();
break;
}
}
}
void Directory::Copy(const string& SourcePath, const string& DestinationPath, bool OverWrite)
{
auto Result = CopyFileA((const char*)SourcePath, (const char*)DestinationPath, !OverWrite);
if (!Result)
{
auto Error = GetLastError();
switch (Error)
{
case ERROR_ACCESS_DENIED:
IOError::StreamAccessDenied();
break;
case ERROR_FILE_NOT_FOUND:
case ERROR_PATH_NOT_FOUND:
IOError::StreamFileNotFound();
break;
case ERROR_FILE_EXISTS:
IOError::StreamFileExists();
break;
default:
IOError::StreamUnknown();
break;
}
}
}
bool Directory::Delete(const string& Path, bool Recursive)
{
if (Path.Length() == 0)
return false;
if (!Directory::Exists(Path))
return false;
if (!Recursive)
return (RemoveDirectoryA((const char*)Path) != 0);
//
// We must recursively delete each file and folder in the path, because RemoveDirectory doesn't handle non-empty file paths
// If one of the operations fails, the entire delete operation fails
//
auto sQuery = (Path[Path.Length() - 1] == Path::DirectorySeparatorChar || Path[Path.Length() - 1] == Path::AltDirectorySeparatorChar) ? Path + "*" : Path + Path::DirectorySeparatorChar + "*";
WIN32_FIND_DATAA fInfo;
auto ResultHandle = FindFirstFileA((const char*)sQuery, &fInfo);
if (ResultHandle == INVALID_HANDLE_VALUE)
return false;
do
{
auto bDir = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY));
if (bDir)
{
auto bReparse = (0 != (fInfo.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT));
if (!bReparse)
{
return Directory::Delete(Path::Combine(Path, fInfo.cFileName), true);
}
else if (bReparse && fInfo.dwReserved0 == IO_REPARSE_TAG_MOUNT_POINT)
{
if (!DeleteVolumeMountPointA((const char*)Path::Combine(Path, string(fInfo.cFileName) + Path::DirectorySeparatorChar)))
return false;
}
}
else
{
if (!DeleteFileA((const char*)Path::Combine(Path, fInfo.cFileName)))
return false;
}
} while (FindNextFileA(ResultHandle, &fInfo));
FindClose(ResultHandle);
if (RemoveDirectoryA((const char*)Path))
return true;
return false;
}
}

View File

@ -0,0 +1,45 @@
#pragma once
#include "Path.h"
#include "IOError.h"
#include "ListBase.h"
#include "StringBase.h"
//
// Remove Win32 macros
//
#undef CreateDirectory
#undef GetCurrentDirectory
#undef SetCurrentDirectory
namespace IO
{
class Directory
{
public:
// Checks whether or not the specified path exists
static bool Exists(const string& Path);
// Creates a new directory at the given path
static void CreateDirectory(const string& Path);
// Returns the current directory set
static string GetCurrentDirectory();
// Sets the current directory
static void SetCurrentDirectory(const string& Path);
// Moves the source path to the destination path
static void Move(const string& SourcePath, const string& DestinationPath);
// Copies the source path to the destination path
static void Copy(const string& SourcePath, const string& DestinationPath, bool OverWrite = false);
// Deletes a directory, optionally recursive if it's not empty
static bool Delete(const string& Path, bool Recursive = true);
// Returns an array of files in the current path
static List<string> GetFiles(const string& Path);
// Returns an array of files in the current path matching the search pattern
static List<string> GetFiles(const string& Path, const string& SearchPattern);
// Returns an array of folders in the current path
static List<string> GetDirectories(const string& Path);
// Returns an array of logical drives
static List<string> GetLogicalDrives();
};
}

View File

@ -0,0 +1,26 @@
#pragma once
#include <cstdint>
#include <type_traits>
namespace Forms
{
// Specifies the effects of a drag-and-drop operation.
enum class DragDropEffects
{
None = 0x0,
Copy = 0x1,
Move = 0x2,
Link = 0x4,
Scroll = (int)0x80000000,
All = Copy | Move | Scroll
};
//
// Allow bitwise operations on this enumeration
//
constexpr DragDropEffects operator|(DragDropEffects Lhs, DragDropEffects Rhs)
{
return static_cast<DragDropEffects>(static_cast<std::underlying_type<DragDropEffects>::type>(Lhs) | static_cast<std::underlying_type<DragDropEffects>::type>(Rhs));
};
}

View File

@ -0,0 +1,10 @@
#include "stdafx.h"
#include "DragEventArgs.h"
namespace Forms
{
DragEventArgs::DragEventArgs(IDataObject* Data, const int32_t KeyState, const int32_t X, const int32_t Y, const DragDropEffects AllowedEffect, DragDropEffects Effect)
: Data(Data), KeyState(KeyState), X(X), Y(Y), AllowedEffect(AllowedEffect), Effect(Effect)
{
}
}

View File

@ -0,0 +1,31 @@
#pragma once
#include <cstdint>
#include "DragDropEffects.h"
namespace Forms
{
// Provides data for the DragDrop events.
class DragEventArgs
{
public:
DragEventArgs(IDataObject* Data, const int32_t KeyState, const int32_t X, const int32_t Y, const DragDropEffects AllowedEffect, DragDropEffects Effect);;
~DragEventArgs() = default;
// The data associated with this event.
IDataObject* Data;
// The current statie of the shift, ctrl, and alt keys.
const int32_t KeyState;
// The mouse X location.
const int32_t X;
// The mouse Y location.
const int32_t Y;
// The effect that should be applied to the mouse cursor.
const DragDropEffects AllowedEffect;
// Gets or sets which drag-and-drop operations are allowed by the target of the drag event.
DragDropEffects Effect;
};
}

View File

@ -0,0 +1,10 @@
#include "stdafx.h"
#include "DrawListViewColumnHeaderEventArgs.h"
namespace Forms
{
DrawListViewColumnHeaderEventArgs::DrawListViewColumnHeaderEventArgs(HDC Dc, const ColumnHeader* Header, int32_t ColumnIndex, Drawing::Rectangle Bounds, ListViewItemStates State)
: Header(Header), ColumnIndex(ColumnIndex), Bounds(Bounds), State(State), DrawDefault(false), Graphics(std::make_unique<Drawing::Graphics>(Dc))
{
}
}

View File

@ -0,0 +1,33 @@
#pragma once
#include <cstdint>
#include <memory>
#include "DrawingBase.h"
#include "ColumnHeader.h"
#include "ListViewItemStates.h"
namespace Forms
{
// This class contains the information a user needs to paint ListView headers.
class DrawListViewColumnHeaderEventArgs
{
public:
DrawListViewColumnHeaderEventArgs(HDC Dc, const ColumnHeader* Header, int32_t ColumnIndex, Drawing::Rectangle Bounds, ListViewItemStates State);
~DrawListViewColumnHeaderEventArgs() = default;
// The header object.
const ColumnHeader* Header;
// Gets the state of the header to draw.
const ListViewItemStates State;
// Gets the bounds of the header to draw.
const Drawing::Rectangle Bounds;
// The index of the header to draw.
const int32_t ColumnIndex;
// Whether or not the system draws the header.
bool DrawDefault;
// The graphics instance used to paint this header.
std::unique_ptr<Drawing::Graphics> Graphics;
};
}

View File

@ -0,0 +1,10 @@
#include "stdafx.h"
#include "DrawListViewItemEventArgs.h"
namespace Forms
{
DrawListViewItemEventArgs::DrawListViewItemEventArgs(HDC Dc, const string& Text, const ListViewItemStyle Style, Drawing::Rectangle Bounds, int32_t ItemIndex, ListViewItemStates State)
: Text(Text), Style(Style), Bounds(Bounds), ItemIndex(ItemIndex), DrawDefault(false), Graphics(std::make_unique<Drawing::Graphics>(Dc)), State(State)
{
}
}

Some files were not shown because too many files have changed in this diff Show More