//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: 
//
//===========================================================================//

#ifndef MATH_LIB_H
#define MATH_LIB_H

#include "tier0/basetypes.h"
#include "mathlib/vector.h"
#include "mathlib/vector2d.h"
#include "tier0/dbg.h"
#include "mathlib/math_pfns.h"
#include "mathlib/fltx4.h"

#ifndef ALIGN8_POST
#define ALIGN8_POST
#endif

#if defined(_PS3)

#if defined(__SPU__)
#include <spu_intrinsics.h>
#include <vmx2spu.h>
#include <vectormath/c/vectormath_soa.h>
#else
#include <ppu_intrinsics.h>
#include <altivec.h>
#include <vectormath/c/vectormath_soa.h>
#endif
#include <mathlib/ssemath.h>

#endif

// plane_t structure
// !!! if this is changed, it must be changed in asm code too !!!
// FIXME: does the asm code even exist anymore?
// FIXME: this should move to a different file
struct cplane_t
{
	Vector3D	normal;
	float	dist;
	byte	type;			// for fast side tests
	byte	signbits;		// signx + (signy<<1) + (signz<<1)
	byte	pad[2];

#ifdef VECTOR_NO_SLOW_OPERATIONS
	cplane_t() {}

private:
	// No copy constructors allowed if we're in optimal mode
	cplane_t(const cplane_t& vOther);
#endif
};

// structure offset for asm code
#define CPLANE_NORMAL_X			0
#define CPLANE_NORMAL_Y			4
#define CPLANE_NORMAL_Z			8
#define CPLANE_DIST				12
#define CPLANE_TYPE				16
#define CPLANE_SIGNBITS			17
#define CPLANE_PAD0				18
#define CPLANE_PAD1				19

// 0-2 are axial planes
#define	PLANE_X			0
#define	PLANE_Y			1
#define	PLANE_Z			2

// 3-5 are non-axial planes snapped to the nearest
#define	PLANE_ANYX		3
#define	PLANE_ANYY		4
#define	PLANE_ANYZ		5


//-----------------------------------------------------------------------------
// Frustum plane indices.
// WARNING: there is code that depends on these values
//-----------------------------------------------------------------------------

enum
{
	FRUSTUM_RIGHT = 0,
	FRUSTUM_LEFT = 1,
	FRUSTUM_TOP = 2,
	FRUSTUM_BOTTOM = 3,
	FRUSTUM_NEARZ = 4,
	FRUSTUM_FARZ = 5,
	FRUSTUM_NUMPLANES = 6
};

extern int SignbitsForPlane(cplane_t* out);
class Frustum_t;

// Computes Y fov from an X fov and a screen aspect ratio + X from Y
float CalcFovY(float flFovX, float flScreenAspect);
float CalcFovX(float flFovY, float flScreenAspect);

// Generate a frustum based on perspective view parameters
// NOTE: FOV is specified in degrees, as the *full* view angle (not half-angle)
class VPlane;
void GeneratePerspectiveFrustum(const Vector3D& origin, const QAngle& angles, float flZNear, float flZFar, float flFovX, float flAspectRatio, Frustum_t& frustum);
void GeneratePerspectiveFrustum(const Vector3D& origin, const Vector3D& forward, const Vector3D& right, const Vector3D& up, float flZNear, float flZFar, float flFovX, float flFovY, VPlane* pPlanesOut);
// Cull the world-space bounding box to the specified frustum.
// bool R_CullBox( const Vector& mins, const Vector& maxs, const Frustum_t &frustum );
// bool R_CullBoxSkipNear( const Vector& mins, const Vector& maxs, const Frustum_t &frustum );
void GenerateOrthoFrustum(const Vector3D& origin, const Vector3D& forward, const Vector3D& right, const Vector3D& up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar, VPlane* pPlanesOut);

class CTransform;
class matrix3x4a_t;

struct matrix3x4_t
{
	matrix3x4_t() {}
	matrix3x4_t(
		float m00, float m01, float m02, float m03,
		float m10, float m11, float m12, float m13,
		float m20, float m21, float m22, float m23)
	{
		m_flMatVal[0][0] = m00;	m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03;
		m_flMatVal[1][0] = m10;	m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13;
		m_flMatVal[2][0] = m20;	m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23;
	}

	/// Creates a matrix where the X axis = forward the Y axis = left, and the Z axis = up
	void InitXYZ(const Vector3D& xAxis, const Vector3D& yAxis, const Vector3D& zAxis, const Vector3D& vecOrigin)
	{
		m_flMatVal[0][0] = xAxis.x; m_flMatVal[0][1] = yAxis.x; m_flMatVal[0][2] = zAxis.x; m_flMatVal[0][3] = vecOrigin.x;
		m_flMatVal[1][0] = xAxis.y; m_flMatVal[1][1] = yAxis.y; m_flMatVal[1][2] = zAxis.y; m_flMatVal[1][3] = vecOrigin.y;
		m_flMatVal[2][0] = xAxis.z; m_flMatVal[2][1] = yAxis.z; m_flMatVal[2][2] = zAxis.z; m_flMatVal[2][3] = vecOrigin.z;
	}

	//-----------------------------------------------------------------------------
	// Creates a matrix where the X axis = forward
	// the Y axis = left, and the Z axis = up
	//-----------------------------------------------------------------------------
	void Init(const Vector3D& xAxis, const Vector3D& yAxis, const Vector3D& zAxis, const Vector3D& vecOrigin)
	{
		m_flMatVal[0][0] = xAxis.x; m_flMatVal[0][1] = yAxis.x; m_flMatVal[0][2] = zAxis.x; m_flMatVal[0][3] = vecOrigin.x;
		m_flMatVal[1][0] = xAxis.y; m_flMatVal[1][1] = yAxis.y; m_flMatVal[1][2] = zAxis.y; m_flMatVal[1][3] = vecOrigin.y;
		m_flMatVal[2][0] = xAxis.z; m_flMatVal[2][1] = yAxis.z; m_flMatVal[2][2] = zAxis.z; m_flMatVal[2][3] = vecOrigin.z;
	}

	//-----------------------------------------------------------------------------
	// Creates a matrix where the X axis = forward
	// the Y axis = left, and the Z axis = up
	//-----------------------------------------------------------------------------
	matrix3x4_t(const Vector3D& xAxis, const Vector3D& yAxis, const Vector3D& zAxis, const Vector3D& vecOrigin)
	{
		Init(xAxis, yAxis, zAxis, vecOrigin);
	}

	inline void InitFromQAngles(const QAngle& angles, const Vector3D& vPosition);
	inline void InitFromQAngles(const QAngle& angles);
	inline void InitFromRadianEuler(const RadianEuler& angles, const Vector3D& vPosition);
	inline void InitFromRadianEuler(const RadianEuler& angles);
	inline void InitFromCTransform(const CTransform& transform);
	inline void InitFromQuaternion(const Quaternion& orientation, const Vector3D& vPosition);
	inline void InitFromQuaternion(const Quaternion& orientation);
	inline void InitFromDiagonal(const Vector3D& vDiagonal);

	inline Quaternion ToQuaternion() const;
	inline QAngle ToQAngle() const;
	inline CTransform ToCTransform() const;

	inline void SetToIdentity();

	/// multiply the scale/rot part of the matrix by a constant. This doesn't init the matrix ,
	/// just scale in place. So if you want to construct a scaling matrix, init to identity and
	/// then call this.
	FORCEINLINE void ScaleUpper3x3Matrix(float flScale);

	/// modify the origin
	inline void SetOrigin(Vector3D const& p)
	{
		m_flMatVal[0][3] = p.x;
		m_flMatVal[1][3] = p.y;
		m_flMatVal[2][3] = p.z;
	}

	/// return the origin
	inline Vector3D GetOrigin(void) const
	{
		Vector3D vecRet(m_flMatVal[0][3], m_flMatVal[1][3], m_flMatVal[2][3]);
		return vecRet;
	}

	inline void Invalidate(void)
	{
		for (int i = 0; i < 3; i++)
		{
			for (int j = 0; j < 4; j++)
			{
				m_flMatVal[i][j] = VEC_T_NAN;
			}
		}
	}

	/// check all components for invalid floating point values
	inline bool IsValid(void) const
	{
		for (int i = 0; i < 3; i++)
		{
			for (int j = 0; j < 4; j++)
			{
				if (!IsFinite(m_flMatVal[i][j]))
					return false;
			}
		}
		return true;
	}

	bool operator==(const matrix3x4_t& other) const
	{
		return memcmp(this, &other, sizeof(matrix3x4_t)) == 0;
	}

	bool operator!=(const matrix3x4_t& other) const
	{
		return memcmp(this, &other, sizeof(matrix3x4_t)) != 0;
	}

	inline bool IsEqualTo(const matrix3x4_t& other, float flTolerance = 1e-5f) const;

	inline void GetBasisVectorsFLU(Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp) const;
	inline Vector3D TransformVector(const Vector3D& v0) const;
	inline Vector3D RotateVector(const Vector3D& v0) const;
	inline Vector3D TransformVectorByInverse(const Vector3D& v0) const;
	inline Vector3D RotateVectorByInverse(const Vector3D& v0) const;
	inline Vector3D RotateExtents(const Vector3D& vBoxExtents) const; // these are extents and must remain positive/symmetric after rotation
	inline void TransformAABB(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const;
	inline void TransformAABBByInverse(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const;
	inline void RotateAABB(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const;
	inline void RotateAABBByInverse(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const;
	inline void TransformPlane(const cplane_t& inPlane, cplane_t& outPlane) const;
	inline void TransformPlaneByInverse(const cplane_t& inPlane, cplane_t& outPlane) const;
	inline float GetOrthogonalityError() const;
	inline float GetDeterminant()const;
	inline float GetSylvestersCriterion()const; // for symmetrical matrices only: should be >0 iff it's a positive definite matrix

	inline Vector3D GetColumn(MatrixAxisType_t nColumn) const;
	inline void SetColumn(const Vector3D& vColumn, MatrixAxisType_t nColumn);
	inline Vector3D GetForward() const { return GetColumn(FORWARD_AXIS); }
	inline Vector3D GetLeft() const { return GetColumn(LEFT_AXIS); }
	inline Vector3D GetUp() const { return GetColumn(UP_AXIS); }
	inline Vector3D GetRow(int nRow) const { return *(Vector3D*)(m_flMatVal[nRow]); }
	inline void SetRow(int nRow, const Vector3D& vRow) { m_flMatVal[nRow][0] = vRow.x; m_flMatVal[nRow][1] = vRow.y; m_flMatVal[nRow][2] = vRow.z; }

	inline void InverseTR(matrix3x4_t& out) const;
	inline matrix3x4_t InverseTR() const;


	float* operator[](int i) { Assert((i >= 0) && (i < 3)); return m_flMatVal[i]; }
	const float* operator[](int i) const { Assert((i >= 0) && (i < 3)); return m_flMatVal[i]; }
	float* Base() { return &m_flMatVal[0][0]; }
	const float* Base() const { return &m_flMatVal[0][0]; }

	float m_flMatVal[3][4];
};

class ALIGN16 matrix3x4a_t : public matrix3x4_t
{
public:
	/*
	matrix3x4a_t() { if (((size_t)Base()) % 16 != 0) { Error( "matrix3x4a_t missaligned" ); } }
	*/
	matrix3x4a_t(const matrix3x4_t& src) { *this = src; };
	matrix3x4a_t& operator=(const matrix3x4_t& src) { memcpy(Base(), src.Base(), sizeof(float) * 3 * 4); return *this; };

	matrix3x4a_t(
		float m00, float m01, float m02, float m03,
		float m10, float m11, float m12, float m13,
		float m20, float m21, float m22, float m23)
	{
		AssertDbg(((size_t)Base() & 0xf) == 0);
		m_flMatVal[0][0] = m00;	m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03;
		m_flMatVal[1][0] = m10;	m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13;
		m_flMatVal[2][0] = m20;	m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23;
	}
	matrix3x4a_t() {}

	static FORCEINLINE bool TypeIsAlignedForSIMD(void) { return true; }


	// raw data simd accessor
	FORCEINLINE fltx4& SIMDRow(uint nIdx) { AssertDbg(nIdx < 3); return *((fltx4*)(&(m_flMatVal[nIdx]))); }
	FORCEINLINE const fltx4& SIMDRow(uint nIdx) const { AssertDbg(nIdx < 3); return *((const fltx4*)(&(m_flMatVal[nIdx]))); }

} ALIGN16_POST;


FORCEINLINE void matrix3x4_t::ScaleUpper3x3Matrix(float flScale)
{
	for (int i = 0; i < 3; i++)
	{
		for (int j = 0; j < 3; j++)
		{
			m_flMatVal[i][j] *= flScale;
		}
	}
}


#ifndef M_PI
#define M_PI		3.14159265358979323846	// matches value in gcc v2 math.h
#endif

#ifndef M_PI_F
#define M_PI_F		((float)(M_PI))
#endif

// NJS: Inlined to prevent floats from being autopromoted to doubles, as with the old system.
#ifndef RAD2DEG
#define RAD2DEG( x  )  ( (float)(x) * (float)(180.f / M_PI_F) )
#endif

#ifndef DEG2RAD
#define DEG2RAD( x  )  ( (float)(x) * (float)(M_PI_F / 180.f) )
#endif

// Used to represent sides of things like planes.
#define	SIDE_FRONT	0
#define	SIDE_BACK	1
#define	SIDE_ON		2
#define SIDE_CROSS  -2      // necessary for polylib.c

// Use different side values (1, 2, 4) instead of (0, 1, 2) so we can '|' and '&' them, and quickly determine overall clipping
// without having to maintain counters and read / write memory.
enum Sides
{
	OR_SIDE_FRONT = 1,
	OR_SIDE_BACK = 2,
	OR_SIDE_ON = 4,
};

#define ON_VIS_EPSILON  0.01    // necessary for vvis (flow.c) -- again look into moving later!
#define	EQUAL_EPSILON	0.001   // necessary for vbsp (faces.c) -- should look into moving it there?

extern bool s_bMathlibInitialized;

extern const matrix3x4a_t g_MatrixIdentity;
extern  const Vector3D vec3_origin;
extern  const QAngle vec3_angle;
extern	const Quaternion quat_identity;
extern const Vector3D vec3_invalid;
extern	const int nanmask;

#define	IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask)

FORCEINLINE vec_t DotProduct(const vec_t* v1, const vec_t* v2)
{
	return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
FORCEINLINE void VectorSubtract(const vec_t* a, const vec_t* b, vec_t* c)
{
	c[0] = a[0] - b[0];
	c[1] = a[1] - b[1];
	c[2] = a[2] - b[2];
}
FORCEINLINE void VectorAdd(const vec_t* a, const vec_t* b, vec_t* c)
{
	c[0] = a[0] + b[0];
	c[1] = a[1] + b[1];
	c[2] = a[2] + b[2];
}
FORCEINLINE void VectorCopy(const vec_t* a, vec_t* b)
{
	b[0] = a[0];
	b[1] = a[1];
	b[2] = a[2];
}
FORCEINLINE void VectorClear(vec_t* a)
{
	a[0] = a[1] = a[2] = 0;
}

FORCEINLINE float VectorMaximum(const vec_t* v)
{
	return MAX(v[0], MAX(v[1], v[2]));
}

FORCEINLINE float VectorMaximum(const Vector3D& v)
{
	return MAX(v.x, MAX(v.y, v.z));
}

FORCEINLINE void VectorScale(const float* in, vec_t scale, float* out)
{
	out[0] = in[0] * scale;
	out[1] = in[1] * scale;
	out[2] = in[2] * scale;
}


// Cannot be forceinline as they have overloads:
inline void VectorFill(vec_t* a, float b)
{
	a[0] = a[1] = a[2] = b;
}

inline void VectorNegate(vec_t* a)
{
	a[0] = -a[0];
	a[1] = -a[1];
	a[2] = -a[2];
}


//#define VectorMaximum(a)		( max( (a)[0], max( (a)[1], (a)[2] ) ) )
#define Vector2Clear(x)			{(x)[0]=(x)[1]=0;}
#define Vector2Negate(x)		{(x)[0]=-((x)[0]);(x)[1]=-((x)[1]);}
#define Vector2Copy(a,b)		{(b)[0]=(a)[0];(b)[1]=(a)[1];}
#define Vector2Subtract(a,b,c)	{(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];}
#define Vector2Add(a,b,c)		{(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];}
#define Vector2Scale(a,b,c)		{(c)[0]=(b)*(a)[0];(c)[1]=(b)*(a)[1];}

// NJS: Some functions in VBSP still need to use these for dealing with mixing vec4's and shorts with vec_t's.
// remove when no longer needed.
#define VECTOR_COPY( A, B ) do { (B)[0] = (A)[0]; (B)[1] = (A)[1]; (B)[2]=(A)[2]; } while(0)
#define DOT_PRODUCT( A, B ) ( (A)[0]*(B)[0] + (A)[1]*(B)[1] + (A)[2]*(B)[2] )

FORCEINLINE void VectorMAInline(const float* start, float scale, const float* direction, float* dest)
{
	dest[0] = start[0] + direction[0] * scale;
	dest[1] = start[1] + direction[1] * scale;
	dest[2] = start[2] + direction[2] * scale;
}

FORCEINLINE void VectorMAInline(const Vector3D& start, float scale, const Vector3D& direction, Vector3D& dest)
{
	dest.x = start.x + direction.x * scale;
	dest.y = start.y + direction.y * scale;
	dest.z = start.z + direction.z * scale;
}

FORCEINLINE void VectorMA(const Vector3D& start, float scale, const Vector3D& direction, Vector3D& dest)
{
	VectorMAInline(start, scale, direction, dest);
}

FORCEINLINE void VectorMA(const float* start, float scale, const float* direction, float* dest)
{
	VectorMAInline(start, scale, direction, dest);
}


int VectorCompare(const float* v1, const float* v2);

inline float VectorLength(const float* v)
{
	return FastSqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + FLT_EPSILON);
}

void CrossProduct(const float* v1, const float* v2, float* cross);

inline float CrossProductX(const Vector3D& v1, const Vector3D& v2)
{
	return v1.y * v2.z - v1.z * v2.y;
}

inline float CrossProductY(const Vector3D& v1, const Vector3D& v2)
{
	return v1.z * v2.x - v1.x * v2.z;
}

inline float CrossProductZ(const Vector3D& v1, const Vector3D& v2)
{
	return v1.x * v2.y - v1.y * v2.x;
}

qboolean VectorsEqual(const float* v1, const float* v2);

inline vec_t RoundInt(vec_t in)
{
	return floor(in + 0.5f);
}

size_t Q_log2(unsigned int val);

// Math routines done in optimized assembly math package routines
void inline SinCos(float radians, float* RESTRICT sine, float* RESTRICT cosine)
{
#if defined( _X360 )
	XMScalarSinCos(sine, cosine, radians);
#elif defined( _PS3 )
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
	vector_float_union s;
	vector_float_union c;

	vec_float4 rad = vec_splats(radians);
	vec_float4 sin;
	vec_float4 cos;

	sincosf4(rad, &sin, &cos);

	vec_st(sin, 0, s.f);
	vec_st(cos, 0, c.f);

	*sine = s.f[0];
	*cosine = c.f[0];
#else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
	vector_float_union r;
	vector_float_union s;
	vector_float_union c;

	vec_float4 rad;
	vec_float4 sin;
	vec_float4 cos;

	r.f[0] = radians;
	rad = vec_ld(0, r.f);

	sincosf4(rad, &sin, &cos);

	vec_st(sin, 0, s.f);
	vec_st(cos, 0, c.f);

	*sine = s.f[0];
	*cosine = c.f[0];
#endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
#elif defined( COMPILER_MSVC32 )
	_asm
	{
		fld		DWORD PTR[radians]
		fsincos

		mov edx, DWORD PTR[cosine]
		mov eax, DWORD PTR[sine]

		fstp DWORD PTR[edx]
		fstp DWORD PTR[eax]
	}
#elif defined( GNUC )
	register double __cosr, __sinr;
	__asm __volatile__("fsincos" : "=t" (__cosr), "=u" (__sinr) : "0" (radians));

	*sine = __sinr;
	*cosine = __cosr;
#else
	* sine = sinf(radians);
	*cosine = cosf(radians);
#endif
}

#define SIN_TABLE_SIZE	256
#define FTOIBIAS		12582912.f
extern float SinCosTable[SIN_TABLE_SIZE];

inline float TableCos(float theta)
{
#if defined( LINUX )
	return cos(theta); // under the GCC compiler the float-represented-as-an-int causes an internal compiler error
#else

	union
	{
		int i;
		float f;
	} ftmp;

	// ideally, the following should compile down to: theta * constant + constant, changing any of these constants from defines sometimes fubars this.
	ftmp.f = theta * (float)(SIN_TABLE_SIZE / (2.0f * M_PI)) + (FTOIBIAS + (SIN_TABLE_SIZE / 4));
	return SinCosTable[ftmp.i & (SIN_TABLE_SIZE - 1)];
#endif
}

inline float TableSin(float theta)
{
#if defined( LINUX )
	return sin(theta); // under the GCC compiler the float-represented-as-an-int causes an internal compiler error
#else
	union
	{
		int i;
		float f;
	} ftmp;

	// ideally, the following should compile down to: theta * constant + constant
	ftmp.f = theta * (float)(SIN_TABLE_SIZE / (2.0f * M_PI)) + FTOIBIAS;
	return SinCosTable[ftmp.i & (SIN_TABLE_SIZE - 1)];
#endif
}

template<class T>
FORCEINLINE T Square(T const& a)
{
	return a * a;
}

FORCEINLINE bool IsPowerOfTwo(uint x)
{
	return (x & (x - 1)) == 0;
}

// return the smallest power of two >= x.
// returns 0 if x == 0 or x > 0x80000000 (ie numbers that would be negative if x was signed)
// NOTE: the old code took an int, and if you pass in an int of 0x80000000 casted to a uint,
//       you'll get 0x80000000, which is correct for uints, instead of 0, which was correct for ints
FORCEINLINE uint SmallestPowerOfTwoGreaterOrEqual(uint x)
{
	x -= 1;
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;
	return x + 1;
}

// return the largest power of two <= x. Will return 0 if passed 0
FORCEINLINE uint LargestPowerOfTwoLessThanOrEqual(uint x)
{
	if (x >= 0x80000000)
		return 0x80000000;

	return SmallestPowerOfTwoGreaterOrEqual(x + 1) >> 1;
}


// Math routines for optimizing division
void FloorDivMod(double numer, double denom, int* quotient, int* rem);
int GreatestCommonDivisor(int i1, int i2);

// Test for FPU denormal mode
bool IsDenormal(const float& val);

// MOVEMENT INFO
enum
{
	PITCH = 0,	// up / down
	YAW,		// left / right
	ROLL		// fall over
};

void MatrixVectorsFLU(const matrix3x4_t& matrix, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp);
void MatrixAngles(const matrix3x4_t& matrix, float* angles); // !!!!
void MatrixVectors(const matrix3x4_t& matrix, Vector3D* pForward, Vector3D* pRight, Vector3D* pUp);
void VectorTransform(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out);
void VectorITransform(const float* in1, const matrix3x4_t& in2, float* out);
void VectorRotate(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out);
void VectorRotate(const Vector3D& in1, const QAngle& in2, Vector3D& out);
void VectorRotate(const Vector3D& in1, const Quaternion& in2, Vector3D& out);
void VectorIRotate(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out);

inline const Vector3D VectorRotate(const Vector3D& vIn1, const Quaternion& qIn2)
{
	Vector3D out;
	VectorRotate(vIn1, qIn2, out);
	return out;
}


#ifndef VECTOR_NO_SLOW_OPERATIONS

QAngle TransformAnglesToLocalSpace(const QAngle& angles, const matrix3x4_t& parentMatrix);
QAngle TransformAnglesToWorldSpace(const QAngle& angles, const matrix3x4_t& parentMatrix);

#endif

void MatrixInitialize(matrix3x4_t& mat, const Vector3D& vecOrigin, const Vector3D& vecXAxis, const Vector3D& vecYAxis, const Vector3D& vecZAxis);
void MatrixCopy(const matrix3x4_t& in, matrix3x4_t& out);
void MatrixInvert(const matrix3x4_t& in, matrix3x4_t& out);

// Matrix equality test
bool MatricesAreEqual(const matrix3x4_t& src1, const matrix3x4_t& src2, float flTolerance = 1e-5);

void MatrixGetColumn(const matrix3x4_t& in, int column, Vector3D& out);
void MatrixSetColumn(const Vector3D& in, int column, matrix3x4_t& out);

//void DecomposeRotation( const matrix3x4_t &mat, float *out );
void ConcatRotations(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out);
void ConcatTransforms(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out);
// faster version assumes m0, m1, out are 16-byte aligned addresses
void ConcatTransforms_Aligned(const matrix3x4a_t& m0, const matrix3x4a_t& m1, matrix3x4a_t& out);

// For identical interface w/ VMatrix
inline void MatrixMultiply(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out)
{
	ConcatTransforms(in1, in2, out);
}

void QuaternionExp(const Quaternion& p, Quaternion& q);
void QuaternionLn(const Quaternion& p, Quaternion& q);
void QuaternionAverageExponential(Quaternion& q, int nCount, const Quaternion* pQuaternions, const float* pflWeights = NULL);
void QuaternionLookAt(const Vector3D& vecForward, const Vector3D& referenceUp, Quaternion& q);
void QuaternionSlerp(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionSlerpNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionBlend(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionBlendNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionIdentityBlend(const Quaternion& p, float t, Quaternion& qt);
float QuaternionAngleDiff(const Quaternion& p, const Quaternion& q);
void QuaternionScale(const Quaternion& p, float t, Quaternion& q);
void QuaternionAlign(const Quaternion& p, const Quaternion& q, Quaternion& qt);
float QuaternionDotProduct(const Quaternion& p, const Quaternion& q);
void QuaternionConjugate(const Quaternion& p, Quaternion& q);
void QuaternionInvert(const Quaternion& p, Quaternion& q);
float QuaternionNormalize(Quaternion& q);
void QuaternionMultiply(const Quaternion& q, const Vector3D& v, Vector3D& result);
void QuaternionAdd(const Quaternion& p, const Quaternion& q, Quaternion& qt);
void QuaternionMult(const Quaternion& p, const Quaternion& q, Quaternion& qt);
void QuaternionMatrix(const Quaternion& q, matrix3x4_t& matrix);
void QuaternionMatrix(const Quaternion& q, const Vector3D& pos, matrix3x4_t& matrix);
void QuaternionMatrix(const Quaternion& q, const Vector3D& pos, const Vector3D& vScale, matrix3x4_t& mat);
void QuaternionAngles(const Quaternion& q, QAngle& angles);
void AngleQuaternion(const QAngle& angles, Quaternion& qt);
void QuaternionAngles(const Quaternion& q, RadianEuler& angles);
void QuaternionVectorsFLU(Quaternion const& q, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp);
void QuaternionVectorsForward(const Quaternion& q, Vector3D* pForward);
void AngleQuaternion(RadianEuler const& angles, Quaternion& qt);
void QuaternionAxisAngle(const Quaternion& q, Vector3D& axis, float& angle);
void AxisAngleQuaternion(const Vector3D& axis, float angle, Quaternion& q);
void BasisToQuaternion(const Vector3D& vecForward, const Vector3D& vecRight, const Vector3D& vecUp, Quaternion& q);
void MatrixQuaternion(const matrix3x4_t& mat, Quaternion& q);


void MatrixQuaternionFast(const matrix3x4_t& mat, Quaternion& q);
void MatrixPosition(const matrix3x4_t& matrix, Vector3D& position);
Vector3D MatrixNormalize(const matrix3x4_t& in, matrix3x4_t& out);

inline void MatrixQuaternion(const matrix3x4_t& mat, Quaternion& q, Vector3D& o)
{
	MatrixQuaternion(mat, q);
	MatrixPosition(mat, o);
}



float MatrixQuaternionTest(uint);
float MatrixQuaternionTest2(uint);

/// qt = p + s * q
void QuaternionAccumulate(const Quaternion& p, float s, const Quaternion& q, Quaternion& qt);

/// qt = ( s * p ) * q
void QuaternionSM(float s, const Quaternion& p, const Quaternion& q, Quaternion& qt);

/// qt = p * ( s * q )
void QuaternionMA(const Quaternion& p, float s, const Quaternion& q, Quaternion& qt);

/*
//-----------------------------------------------------------------------------
// Quaternion equality with tolerance
//-----------------------------------------------------------------------------
inline bool QuaternionsAreEqualInternal( const Quaternion& src1, const Quaternion& src2, float flTolerance )
{
	if ( !FloatsAreEqual( src1.x, src2.x, flTolerance ) )
		return false;

	if ( !FloatsAreEqual( src1.y, src2.y, flTolerance ) )
		return false;

	if ( !FloatsAreEqual( src1.z, src2.z, flTolerance ) )
		return false;

	return FloatsAreEqual( src1.w, src2.w, flTolerance );
}

inline bool QuaternionsAreEqual( const Quaternion& src1, const Quaternion& src2, float flTolerance )
{
	if ( QuaternionsAreEqualInternal( src1, src2, flTolerance ) )
		return true;

	// negated quaternions are also 'equal'
	Quaternion src2neg( -src2.x, -src2.y, -src2.z, -src2.w );
	return QuaternionsAreEqualInternal( src1, src2neg, flTolerance );
}
*/
inline const Quaternion GetNormalized(const Quaternion& q)
{
	float flInv = 1.0f / sqrtf(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w);
	return Quaternion(q.x * flInv, q.y * flInv, q.z * flInv, q.w * flInv);
}

inline const Quaternion AngleQuaternion(const QAngle& angles)
{
	Quaternion qt;
	AngleQuaternion(angles, qt);
	return qt;
}


inline const Quaternion AngleQuaternion(RadianEuler const& angles)
{
	Quaternion qt;
	AngleQuaternion(angles, qt);
	return qt;
}



inline Quaternion QuaternionFromPitchYawRoll(float flPitch, float flYaw, float flRoll)
{
	QAngle ang(flPitch, flYaw, flRoll);

	Quaternion q;
	AngleQuaternion(ang, q);
	return q;
}

inline Quaternion QuaternionAddPitch(const Quaternion& q, float flPitch)
{
	// FIXME: I know this can be made *tons* faster, but I just want to get something working quickly
	// that matches being able to add to the pitch of a QAngles so I can expose Quats to script/game code
	QAngle ang;
	QuaternionAngles(q, ang);
	ang[PITCH] += flPitch;

	Quaternion res;
	AngleQuaternion(ang, res);
	return res;
}

inline Quaternion QuaternionAddYaw(const Quaternion& q, float flYaw)
{
	// FIXME: I know this can be made *tons* faster, but I just want to get something working quickly
	// that matches being able to add to the yaw of a QAngles so I can expose Quats to script/game code
	QAngle ang;
	QuaternionAngles(q, ang);
	ang[YAW] += flYaw;

	Quaternion res;
	AngleQuaternion(ang, res);
	return res;
}

inline Quaternion QuaternionAddRoll(const Quaternion& q, float flRoll)
{
	// FIXME: I know this can be made *tons* faster, but I just want to get something working quickly
	// that matches being able to add to the roll of a QAngles so I can expose Quats to script/game code
	QAngle ang;
	QuaternionAngles(q, ang);
	ang[ROLL] += flRoll;

	Quaternion res;
	AngleQuaternion(ang, res);
	return res;
}

inline const Quaternion MatrixQuaternion(const matrix3x4_t& mat)
{
	Quaternion tmp;
	MatrixQuaternion(mat, tmp);
	return tmp;
}

inline const Quaternion MatrixQuaternionFast(const matrix3x4_t& mat)
{
	Quaternion tmp;
	MatrixQuaternionFast(mat, tmp);
	return tmp;
}

inline const matrix3x4_t QuaternionMatrix(const Quaternion& q)
{
	matrix3x4_t mat;
	QuaternionMatrix(q, mat);
	return mat;
}

inline const matrix3x4_t QuaternionMatrix(const Quaternion& q, const Vector3D& pos)
{
	matrix3x4_t mat;
	QuaternionMatrix(q, pos, mat);
	return mat;
}

//! Shortest-arc quaternion that rotates vector v1 into vector v2
const Quaternion RotateBetween(const Vector3D& v1, const Vector3D& v2);

inline const Quaternion QuaternionConjugate(const Quaternion& p)
{
	Quaternion q;
	QuaternionConjugate(p, q);
	return q;
}

inline const Quaternion QuaternionInvert(const Quaternion& p)
{
	Quaternion q;
	QuaternionInvert(p, q);
	return q;
}





/// Actual quaternion multiplication; NOTE: QuaternionMult aligns quaternions first, so that q *
/// conjugate(q) may be -1 instead of 1!
inline const Quaternion operator * (const Quaternion& p, const Quaternion& q)
{
	Quaternion qt;
	qt.x = p.x * q.w + p.y * q.z - p.z * q.y + p.w * q.x;
	qt.y = -p.x * q.z + p.y * q.w + p.z * q.x + p.w * q.y;
	qt.z = p.x * q.y - p.y * q.x + p.z * q.w + p.w * q.z;
	qt.w = -p.x * q.x - p.y * q.y - p.z * q.z + p.w * q.w;
	return qt;
}

inline Quaternion& operator *= (Quaternion& p, const Quaternion& q)
{
	QuaternionMult(p, q, p);
	return p;
}

inline const matrix3x4_t ConcatTransforms(const matrix3x4_t& in1, const matrix3x4_t& in2)
{
	matrix3x4_t out;
	ConcatTransforms(in1, in2, out);
	return out;
}

inline const matrix3x4_t operator *(const matrix3x4_t& in1, const matrix3x4_t& in2)
{
	matrix3x4_t out;
	ConcatTransforms(in1, in2, out);
	return out;
}


inline const matrix3x4_t MatrixInvert(const matrix3x4_t& in)
{
	matrix3x4_t out;
	::MatrixInvert(in, out);
	return out;
}

inline const Vector3D MatrixGetColumn(const matrix3x4_t& in, MatrixAxisType_t nColumn)
{
	return in.GetColumn(nColumn);
}

// A couple methods to find the dot product of a vector with a matrix row or column...
inline float MatrixRowDotProduct(const matrix3x4_t& in1, int row, const Vector3D& in2)
{
	Assert((row >= 0) && (row < 3));
	return DotProduct(in1[row], in2.Base());
}

inline float MatrixColumnDotProduct(const matrix3x4_t& in1, int col, const Vector3D& in2)
{
	Assert((col >= 0) && (col < 4));
	return in1[0][col] * in2[0] + in1[1][col] * in2[1] + in1[2][col] * in2[2];
}

int __cdecl BoxOnPlaneSide(const float* emins, const float* emaxs, const cplane_t* plane);

inline float anglemod(float a)
{
	a = (360.f / 65536) * ((int)(a * (65536.f / 360.0f)) & 65535);
	return a;
}

//// CLAMP
#if defined(__cplusplus) && defined(PLATFORM_PPC)

#ifdef _X360
#define __fsels __fsel
#endif

template< >
inline double clamp(double const& val, double const& minVal, double const& maxVal)
{
	float diffmin = val - minVal;
	float diffmax = maxVal - val;
	float r;
	r = __fsel(diffmin, val, minVal);
	r = __fsel(diffmax, r, maxVal);
	return r;
}

template< >
inline double clamp(double const& val, float const& minVal, float const& maxVal)
{
	// these typecasts are actually free since all FPU regs are 64 bit on PPC anyway
	return clamp(val, (double)minVal, (double)maxVal);
}
template< >
inline double clamp(double const& val, float const& minVal, double const& maxVal)
{
	return clamp(val, (double)minVal, (double)maxVal);
}
template< >
inline double clamp(double const& val, double const& minVal, float const& maxVal)
{
	return clamp(val, (double)minVal, (double)maxVal);
}

template< >
inline float clamp(float const& val, float const& minVal, float const& maxVal)
{
	float diffmin = val - minVal;
	float diffmax = maxVal - val;
	float r;
	r = __fsels(diffmin, val, minVal);
	r = __fsels(diffmax, r, maxVal);
	return r;
}

template< >
inline float clamp(float const& val, double const& minVal, double const& maxVal)
{
	float diffmin = val - minVal;
	float diffmax = maxVal - val;
	float r;
	r = __fsels(diffmin, val, minVal);
	r = __fsels(diffmax, r, maxVal);
	return r;
}
template< >
inline float clamp(float const& val, double const& minVal, float const& maxVal)
{
	return clamp(val, (float)minVal, maxVal);
}
template< >
inline float clamp(float const& val, float const& minVal, double const& maxVal)
{
	return clamp(val, minVal, (float)maxVal);
}

#endif

// Remap a value in the range [A,B] to [C,D].
inline float RemapVal(float val, float A, float B, float C, float D)
{
	if (A == B)
		return fsel(val - B, D, C);
	return C + (D - C) * (val - A) / (B - A);
}

inline float RemapValClamped(float val, float A, float B, float C, float D)
{
	if (A == B)
		return fsel(val - B, D, C);
	float cVal = (val - A) / (B - A);
	cVal = clamp<float>(cVal, 0.0f, 1.0f);

	return C + (D - C) * cVal;
}

// Returns A + (B-A)*flPercent.
// float Lerp( float flPercent, float A, float B );
template <class T>
FORCEINLINE T Lerp(float flPercent, T const& A, T const& B)
{
	return A + (B - A) * flPercent;
}

FORCEINLINE float Sqr(float f)
{
	return f * f;
}

// 5-argument floating point linear interpolation.
// FLerp(f1,f2,i1,i2,x)=
//    f1 at x=i1
//    f2 at x=i2
//   smooth lerp between f1 and f2 at x>i1 and x<i2
//   extrapolation for x<i1 or x>i2
//
//   If you know a function f(x)'s value (f1) at position i1, and its value (f2) at position i2,
//   the function can be linearly interpolated with FLerp(f1,f2,i1,i2,x)
//    i2=i1 will cause a divide by zero.
static inline float FLerp(float f1, float f2, float i1, float i2, float x)
{
	return f1 + (f2 - f1) * (x - i1) / (i2 - i1);
}


#ifndef VECTOR_NO_SLOW_OPERATIONS

// YWB:  Specialization for interpolating euler angles via quaternions...
template<> FORCEINLINE QAngle Lerp<QAngle>(float flPercent, const QAngle& q1, const QAngle& q2)
{
	// Avoid precision errors
	if (q1 == q2)
		return q1;

	Quaternion src, dest;

	// Convert to quaternions
	AngleQuaternion(q1, src);
	AngleQuaternion(q2, dest);

	Quaternion result;

	// Slerp
	QuaternionSlerp(src, dest, flPercent, result);

	// Convert to euler
	QAngle output;
	QuaternionAngles(result, output);
	return output;
}

#else

#pragma error

// NOTE NOTE: I haven't tested this!! It may not work! Check out interpolatedvar.cpp in the client dll to try it
template<> FORCEINLINE QAngleByValue Lerp<QAngleByValue>(float flPercent, const QAngleByValue& q1, const QAngleByValue& q2)
{
	// Avoid precision errors
	if (q1 == q2)
		return q1;

	Quaternion src, dest;

	// Convert to quaternions
	AngleQuaternion(q1, src);
	AngleQuaternion(q2, dest);

	Quaternion result;

	// Slerp
	QuaternionSlerp(src, dest, flPercent, result);

	// Convert to euler
	QAngleByValue output;
	QuaternionAngles(result, output);
	return output;
}

#endif // VECTOR_NO_SLOW_OPERATIONS


// Swap two of anything.
template <class T>
FORCEINLINE void V_swap(T& x, T& y)
{
	T temp = x;
	x = y;
	y = temp;
}

template <class T> FORCEINLINE T AVG(T a, T b)
{
	return (a + b) / 2;
}

// number of elements in an array of static size
#define NELEMS(x) ((sizeof(x))/sizeof(x[0]))

// XYZ macro, for printf type functions - ex printf("%f %f %f",XYZ(myvector));
#define XYZ(v) (v).x,(v).y,(v).z




inline float Sign(float x)
{
	return fsel(x, 1.0f, -1.0f); // x >= 0 ? 1.0f : -1.0f
	//return (x <0.0f) ? -1.0f : 1.0f;
}

//
// Clamps the input integer to the given array bounds.
// Equivalent to the following, but without using any branches:
//
// if( n < 0 ) return 0;
// else if ( n > maxindex ) return maxindex;
// else return n;
//
// This is not always a clear performance win, but when you have situations where a clamped 
// value is thrashing against a boundary this is a big win. (ie, valid, invalid, valid, invalid, ...)
//
// Note: This code has been run against all possible integers.
//
inline int ClampArrayBounds(int n, unsigned maxindex)
{
	// mask is 0 if less than 4096, 0xFFFFFFFF if greater than
	unsigned int inrangemask = 0xFFFFFFFF + (((unsigned)n) > maxindex);
	unsigned int lessthan0mask = 0xFFFFFFFF + (n >= 0);

	// If the result was valid, set the result, (otherwise sets zero)
	int result = (inrangemask & n);

	// if the result was out of range or zero.
	result |= ((~inrangemask) & (~lessthan0mask)) & maxindex;

	return result;
}



// Turn a number "inside out". 
// See Recording Animation in Binary Order for Progressive Temporal Refinement
// by Paul Heckbert from "Graphics Gems".
//
// If you want to iterate something from 0 to n, you can use this to iterate non-sequentially, in
// such a way that you will start with widely separated values and then refine the gaps between
// them, as you would for progressive refinement. This works with non-power of two ranges.
int InsideOut(int nTotal, int nCounter);

#define BOX_ON_PLANE_SIDE(emins, emaxs, p)	\
	(((p)->type < 3)?						\
	(										\
		((p)->dist <= (emins)[(p)->type])?	\
			1								\
		:									\
		(									\
			((p)->dist >= (emaxs)[(p)->type])?\
				2							\
			:								\
				3							\
		)									\
	)										\
	:										\
		BoxOnPlaneSide( (emins), (emaxs), (p)))

//-----------------------------------------------------------------------------
// FIXME: Vector versions.... the float versions will go away hopefully soon!
//-----------------------------------------------------------------------------

void AngleCompose(const QAngle& a1, const QAngle& a2, QAngle& out);
void AngleLerp(const QAngle& a1, const QAngle& a2, float t, QAngle& out);
void AngleInverse(const QAngle& angles, QAngle& out);
void AngleVectors(const QAngle& angles, Vector3D* forward);
void AngleVectors(const QAngle& angles, Vector3D* forward, Vector3D* right, Vector3D* up);
void AngleVectorsTranspose(const QAngle& angles, Vector3D* forward, Vector3D* right, Vector3D* up);
void AngleVectorsFLU(const QAngle& angles, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp);
void AngleMatrix(const QAngle& angles, matrix3x4_t& mat);
void AngleMatrix(const QAngle& angles, const Vector3D& position, matrix3x4_t& mat);
void AngleMatrix(const RadianEuler& angles, matrix3x4_t& mat);
void AngleMatrix(RadianEuler const& angles, const Vector3D& position, matrix3x4_t& mat);
void AngleIMatrix(const QAngle& angles, matrix3x4_t& mat);
void AngleIMatrix(const QAngle& angles, const Vector3D& position, matrix3x4_t& mat);
void AngleIMatrix(const RadianEuler& angles, matrix3x4_t& mat);
void VectorAngles(const Vector3D& forward, QAngle& angles);
void VectorAngles(const Vector3D& forward, const Vector3D& pseudoup, QAngle& angles);
void VectorMatrix(const Vector3D& forward, matrix3x4_t& mat);
void VectorVectors(const Vector3D& forward, Vector3D& right, Vector3D& up);
void SetIdentityMatrix(matrix3x4_t& mat);
void SetScaleMatrix(float x, float y, float z, matrix3x4_t& dst);
void MatrixBuildRotationAboutAxis(const Vector3D& vAxisOfRot, float angleDegrees, matrix3x4_t& dst);

inline bool MatrixIsIdentity(const matrix3x4_t& m)
{
	return
		m.m_flMatVal[0][0] == 1.0f && m.m_flMatVal[0][1] == 0.0f && m.m_flMatVal[0][2] == 0.0f && m.m_flMatVal[0][3] == 0.0f &&
		m.m_flMatVal[1][0] == 0.0f && m.m_flMatVal[1][1] == 1.0f && m.m_flMatVal[1][2] == 0.0f && m.m_flMatVal[1][3] == 0.0f &&
		m.m_flMatVal[2][0] == 0.0f && m.m_flMatVal[2][1] == 0.0f && m.m_flMatVal[2][2] == 1.0f && m.m_flMatVal[2][3] == 0.0f;
}


inline void SetScaleMatrix(float flScale, matrix3x4_t& dst)
{
	SetScaleMatrix(flScale, flScale, flScale, dst);
}

inline void SetScaleMatrix(const Vector3D& scale, matrix3x4_t& dst)
{
	SetScaleMatrix(scale.x, scale.y, scale.z, dst);
}

// Computes the inverse transpose
void MatrixTranspose(matrix3x4_t& mat);
void MatrixTranspose(const matrix3x4_t& src, matrix3x4_t& dst);
void MatrixInverseTranspose(const matrix3x4_t& src, matrix3x4_t& dst);

inline void PositionMatrix(const Vector3D& position, matrix3x4_t& mat)
{
	MatrixSetColumn(position, 3, mat);
}

inline void MatrixPosition(const matrix3x4_t& matrix, Vector3D& position)
{
	position[0] = matrix[0][3];
	position[1] = matrix[1][3];
	position[2] = matrix[2][3];
}

inline void VectorRotate(const Vector3D& in1, const matrix3x4_t& in2, Vector3D& out)
{
	VectorRotate(&in1.x, in2, &out.x);
}

inline void VectorIRotate(const Vector3D& in1, const matrix3x4_t& in2, Vector3D& out)
{
	VectorIRotate(&in1.x, in2, &out.x);
}

inline void MatrixAngles(const matrix3x4_t& matrix, QAngle& angles)
{
	MatrixAngles(matrix, &angles.x);
}

inline void MatrixAngles(const matrix3x4_t& matrix, QAngle& angles, Vector3D& position)
{
	MatrixAngles(matrix, angles);
	MatrixPosition(matrix, position);
}

inline void MatrixAngles(const matrix3x4_t& matrix, RadianEuler& angles)
{
	MatrixAngles(matrix, &angles.x);

	angles.Init(DEG2RAD(angles.z), DEG2RAD(angles.x), DEG2RAD(angles.y));
}

void MatrixAngles(const matrix3x4_t& mat, RadianEuler& angles, Vector3D& position);

void MatrixAngles(const matrix3x4_t& mat, Quaternion& q, Vector3D& position);

inline int VectorCompare(const Vector3D& v1, const Vector3D& v2)
{
	return v1 == v2;
}

inline void VectorTransform(const Vector3D& in1, const matrix3x4_t& in2, Vector3D& out)
{
	VectorTransform(&in1.x, in2, &out.x);
}

// MSVC folds the return value nicely and creates no temporaries on the stack,
//    we need more experiments with different compilers and in different circumstances
inline const Vector3D VectorTransform(const Vector3D& in1, const matrix3x4_t& in2)
{
	Vector3D out;
	VectorTransform(in1, in2, out);
	return out;
}

inline const Vector3D VectorRotate(const Vector3D& in1, const matrix3x4_t& in2)
{
	Vector3D out;
	VectorRotate(in1, in2, out);
	return out;
}



inline void VectorITransform(const Vector3D& in1, const matrix3x4_t& in2, Vector3D& out)
{
	VectorITransform(&in1.x, in2, &out.x);
}

inline const Vector3D VectorITransform(const Vector3D& in1, const matrix3x4_t& in2)
{
	Vector3D out;
	VectorITransform(in1, in2, out);
	return out;
}

/*
inline void DecomposeRotation( const matrix3x4_t &mat, Vector &out )
{
	DecomposeRotation( mat, &out.x );
}
*/

inline int BoxOnPlaneSide(const Vector3D& emins, const Vector3D& emaxs, const cplane_t* plane)
{
	return BoxOnPlaneSide(&emins.x, &emaxs.x, plane);
}

inline void VectorFill(Vector3D& a, float b)
{
	a[0] = a[1] = a[2] = b;
}

inline void VectorNegate(Vector3D& a)
{
	a[0] = -a[0];
	a[1] = -a[1];
	a[2] = -a[2];
}

inline vec_t VectorAvg(Vector3D& a)
{
	return (a[0] + a[1] + a[2]) / 3;
}

//-----------------------------------------------------------------------------
// Box/plane test (slow version)
//-----------------------------------------------------------------------------
inline int FASTCALL BoxOnPlaneSide2(const Vector3D& emins, const Vector3D& emaxs, const cplane_t* p, float tolerance = 0.f)
{
	Vector3D	corners[2];

	if (p->normal[0] < 0)
	{
		corners[0][0] = emins[0];
		corners[1][0] = emaxs[0];
	}
	else
	{
		corners[1][0] = emins[0];
		corners[0][0] = emaxs[0];
	}

	if (p->normal[1] < 0)
	{
		corners[0][1] = emins[1];
		corners[1][1] = emaxs[1];
	}
	else
	{
		corners[1][1] = emins[1];
		corners[0][1] = emaxs[1];
	}

	if (p->normal[2] < 0)
	{
		corners[0][2] = emins[2];
		corners[1][2] = emaxs[2];
	}
	else
	{
		corners[1][2] = emins[2];
		corners[0][2] = emaxs[2];
	}

	int sides = 0;

	float dist1 = DotProduct(p->normal, corners[0]) - p->dist;
	if (dist1 >= tolerance)
		sides = 1;

	float dist2 = DotProduct(p->normal, corners[1]) - p->dist;
	if (dist2 < -tolerance)
		sides |= 2;

	return sides;
}

//-----------------------------------------------------------------------------
// Helpers for bounding box construction
//-----------------------------------------------------------------------------

void ClearBounds(Vector3D& mins, Vector3D& maxs);
void AddPointToBounds(const Vector3D& v, Vector3D& mins, Vector3D& maxs);

//-----------------------------------------------------------------------------
// Ensures that the min and max bounds values are valid. 
// (ClearBounds() sets min > max, which is clearly invalid.)
//-----------------------------------------------------------------------------
bool AreBoundsValid(const Vector3D& vMin, const Vector3D& vMax);

//-----------------------------------------------------------------------------
// Returns true if the provided point is in the AABB defined by vMin
// at the lower corner and vMax at the upper corner.
//-----------------------------------------------------------------------------
bool IsPointInBounds(const Vector3D& vPoint, const Vector3D& vMin, const Vector3D& vMax);

//
// COLORSPACE/GAMMA CONVERSION STUFF
//
void BuildGammaTable(float gamma, float texGamma, float brightness, int overbright);

// convert texture to linear 0..1 value
inline float TexLightToLinear(int c, int exponent)
{
	// On VS 2013 LTCG builds it is required that the array declaration be annotated with
	// the same alignment requirements as the array definition.
	extern ALIGN128 float power2_n[256];
	Assert(exponent >= -128 && exponent <= 127);
	return (float)c * power2_n[exponent + 128];
}


// convert texture to linear 0..1 value
int LinearToTexture(float f);
// converts 0..1 linear value to screen gamma (0..255)
int LinearToScreenGamma(float f);
float TextureToLinear(int c);

// compressed color format 
struct ColorRGBExp32
{
	byte r, g, b;
	signed char exponent;
};

void ColorRGBExp32ToVector(const ColorRGBExp32& in, Vector3D& out);
void VectorToColorRGBExp32(const Vector3D& v, ColorRGBExp32& c);

// solve for "x" where "a x^2 + b x + c = 0", return true if solution exists
bool SolveQuadratic(float a, float b, float c, float& root1, float& root2);

// solves for "a, b, c" where "a x^2 + b x + c = y", return true if solution exists
bool SolveInverseQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c);

// solves for a,b,c specified as above, except that it always creates a monotonically increasing or
// decreasing curve if the data is monotonically increasing or decreasing. In order to enforce the
// monoticity condition, it is possible that the resulting quadratic will only approximate the data
// instead of interpolating it. This code is not especially fast.
bool SolveInverseQuadraticMonotonic(float x1, float y1, float x2, float y2,
	float x3, float y3, float& a, float& b, float& c);




// solves for "a, b, c" where "1/(a x^2 + b x + c ) = y", return true if solution exists
bool SolveInverseReciprocalQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c);

// rotate a vector around the Z axis (YAW)
void VectorYawRotate(const Vector3D& in, float flYaw, Vector3D& out);


// Bias takes an X value between 0 and 1 and returns another value between 0 and 1
// The curve is biased towards 0 or 1 based on biasAmt, which is between 0 and 1.
// Lower values of biasAmt bias the curve towards 0 and higher values bias it towards 1.
//
// For example, with biasAmt = 0.2, the curve looks like this:
//
// 1
// |				  *
// |				  *
// |			     *
// |			   **
// |			 **
// |	  	 ****
// |*********
// |___________________
// 0                   1
//
//
// With biasAmt = 0.8, the curve looks like this:
//
// 1
// | 	**************
// |  **
// | * 
// | *
// |* 
// |* 
// |*  
// |___________________
// 0                   1
//
// With a biasAmt of 0.5, Bias returns X.
float Bias(float x, float biasAmt);


// Gain is similar to Bias, but biasAmt biases towards or away from 0.5.
// Lower bias values bias towards 0.5 and higher bias values bias away from it.
//
// For example, with biasAmt = 0.2, the curve looks like this:
//
// 1
// | 				  *
// | 				 *
// | 				**
// |  ***************
// | **
// | *
// |*
// |___________________
// 0                   1
//
//
// With biasAmt = 0.8, the curve looks like this:
//
// 1
// |  		    *****
// |  		 ***
// |  		*
// | 		*
// | 		*
// |   	 ***
// |*****
// |___________________
// 0                   1
float Gain(float x, float biasAmt);


// SmoothCurve maps a 0-1 value into another 0-1 value based on a cosine wave
// where the derivatives of the function at 0 and 1 (and 0.5) are 0. This is useful for
// any fadein/fadeout effect where it should start and end smoothly.
//
// The curve looks like this:
//
// 1
// |  		**
// | 	   *  *
// | 	  *	   *
// | 	  *	   *
// | 	 *		*
// |   **		 **
// |***			   ***
// |___________________
// 0                   1
//
float SmoothCurve(float x);


// This works like SmoothCurve, with two changes:
//
// 1. Instead of the curve peaking at 0.5, it will peak at flPeakPos.
//    (So if you specify flPeakPos=0.2, then the peak will slide to the left).
//
// 2. flPeakSharpness is a 0-1 value controlling the sharpness of the peak.
//    Low values blunt the peak and high values sharpen the peak.
float SmoothCurve_Tweak(float x, float flPeakPos = 0.5, float flPeakSharpness = 0.5);


//float ExponentialDecay( float halflife, float dt );
//float ExponentialDecay( float decayTo, float decayTime, float dt );

// halflife is time for value to reach 50%
inline float ExponentialDecay(float halflife, float dt)
{
	// log(0.5) == -0.69314718055994530941723212145818
	return expf(-0.69314718f / halflife * dt);
}

// decayTo is factor the value should decay to in decayTime
inline float ExponentialDecay(float decayTo, float decayTime, float dt)
{
	return expf(logf(decayTo) / decayTime * dt);
}

// Get the integrated distanced traveled
// decayTo is factor the value should decay to in decayTime
// dt is the time relative to the last velocity update
inline float ExponentialDecayIntegral(float decayTo, float decayTime, float dt)
{
	return (powf(decayTo, dt / decayTime) * decayTime - decayTime) / logf(decayTo);
}

// hermite basis function for smooth interpolation
// Similar to Gain() above, but very cheap to call
// value should be between 0 & 1 inclusive
inline float SimpleSpline(float value)
{
	float valueSquared = value * value;

	// Nice little ease-in, ease-out spline-like curve
	return (3 * valueSquared - 2 * valueSquared * value);
}

// remaps a value in [startInterval, startInterval+rangeInterval] from linear to
// spline using SimpleSpline
inline float SimpleSplineRemapVal(float val, float A, float B, float C, float D)
{
	if (A == B)
		return val >= B ? D : C;
	float cVal = (val - A) / (B - A);
	return C + (D - C) * SimpleSpline(cVal);
}

// remaps a value in [startInterval, startInterval+rangeInterval] from linear to
// spline using SimpleSpline
inline float SimpleSplineRemapValClamped(float val, float A, float B, float C, float D)
{
	if (A == B)
		return val >= B ? D : C;
	float cVal = (val - A) / (B - A);
	cVal = clamp(cVal, 0.0f, 1.0f);
	return C + (D - C) * SimpleSpline(cVal);
}


FORCEINLINE int RoundFloatToInt(float f)
{
#if defined( _X360 )
#ifdef Assert
	Assert(IsFPUControlWordSet());
#endif
	union
	{
		double flResult;
		int pResult[2];
	};
	flResult = __fctiw(f);
	return pResult[1];
#elif defined ( _PS3 )
#if defined(__SPU__)
	int nResult;
	nResult = static_cast<int>(f);
	return nResult;
#else
	return  __fctiw(f);
#endif
#else // !X360
	int nResult;
#if defined( COMPILER_MSVC32 )
	__asm
	{
		fld f
		fistp nResult
	}
#elif GNUC
	__asm __volatile__(
	"fistpl %0;": "=m" (nResult) : "t" (f) : "st"
		);
#else
	nResult = static_cast<int>(f);
#endif
	return nResult;
#endif
}

FORCEINLINE unsigned char RoundFloatToByte(float f)
{
#if defined( _X360 )
#ifdef Assert
	Assert(IsFPUControlWordSet());
#endif
	union
	{
		double flResult;
		int pIntResult[2];
		unsigned char pResult[8];
	};
	flResult = __fctiw(f);
#ifdef Assert
	Assert(pIntResult[1] >= 0 && pIntResult[1] <= 255);
#endif
	return pResult[7];

#elif defined ( _PS3 )
#if defined(__SPU__)
	int nResult;
	nResult = static_cast<unsigned int> (f) & 0xff;
	return nResult;
#else
	return __fctiw(f);
#endif
#else // !X360

	int nResult;

#if defined( COMPILER_MSVC32 )
	__asm
	{
		fld f
		fistp nResult
	}
#elif GNUC
	__asm __volatile__(
	"fistpl %0;": "=m" (nResult) : "t" (f) : "st"
		);
#else
	nResult = static_cast<unsigned int> (f) & 0xff;
#endif

#ifdef Assert
	Assert(nResult >= 0 && nResult <= 255);
#endif 
	return (unsigned char)nResult;

#endif
}

FORCEINLINE unsigned long RoundFloatToUnsignedLong(float f)
{
#if defined( _X360 )
#ifdef Assert
	Assert(IsFPUControlWordSet());
#endif
	union
	{
		double flResult;
		int pIntResult[2];
		unsigned long pResult[2];
	};
	flResult = __fctiw(f);
	Assert(pIntResult[1] >= 0);
	return pResult[1];
#elif defined ( _PS3 )
#if defined(__SPU__)
	return static_cast<unsigned long>(f);
#else
	return __fctiw(f);
#endif
#else  // !X360

#if defined( COMPILER_MSVC32 )
	unsigned char nResult[8];
	__asm
	{
		fld f
		fistp       qword ptr nResult
	}
	return *((unsigned long*)nResult);
#elif defined( COMPILER_GCC )
	unsigned char nResult[8];
	__asm __volatile__(
	"fistpl %0;": "=m" (nResult) : "t" (f) : "st"
		);
	return *((unsigned long*)nResult);
#else
	return static_cast<unsigned long>(f);
#endif

#endif
}

FORCEINLINE bool IsIntegralValue(float flValue, float flTolerance = 0.001f)
{
	return fabs(RoundFloatToInt(flValue) - flValue) < flTolerance;
}

// Fast, accurate ftol:
FORCEINLINE int Float2Int(float a)
{
#if defined( _X360 )
	union
	{
		double flResult;
		int pResult[2];
	};
	flResult = __fctiwz(a);
	return pResult[1];
#elif defined ( _PS3 )
#if defined(__SPU__)
	int RetVal;
	RetVal = static_cast<int>(a);
	return RetVal;
#else
	return __fctiwz(a);
#endif
#else  // !X360

	int RetVal;

#if defined( COMPILER_MSVC32 )
	int CtrlwdHolder;
	int CtrlwdSetter;
	__asm
	{
		fld    a					// push 'a' onto the FP stack
		fnstcw CtrlwdHolder		// store FPU control word
		movzx  eax, CtrlwdHolder	// move and zero extend word into eax
		and eax, 0xFFFFF3FF	// set all bits except rounding bits to 1
		or eax, 0x00000C00	// set rounding mode bits to round towards zero
		mov    CtrlwdSetter, eax	// Prepare to set the rounding mode -- prepare to enter plaid!
		fldcw  CtrlwdSetter		// Entering plaid!
		fistp  RetVal				// Store and converted (to int) result
		fldcw  CtrlwdHolder		// Restore control word
	}
#else
	RetVal = static_cast<int>(a);
#endif

	return RetVal;
#endif
}



// Over 15x faster than: (int)floor(value)
inline int Floor2Int(float a)
{
	int RetVal;

#if defined( PLATFORM_PPC )
	RetVal = (int)floor(a);
#elif defined( COMPILER_MSVC32 )
	int CtrlwdHolder;
	int CtrlwdSetter;
	__asm
	{
		fld    a					// push 'a' onto the FP stack
		fnstcw CtrlwdHolder		// store FPU control word
		movzx  eax, CtrlwdHolder	// move and zero extend word into eax
		and eax, 0xFFFFF3FF	// set all bits except rounding bits to 1
		or eax, 0x00000400	// set rounding mode bits to round down
		mov    CtrlwdSetter, eax	// Prepare to set the rounding mode -- prepare to enter plaid!
		fldcw  CtrlwdSetter		// Entering plaid!
		fistp  RetVal				// Store floored and converted (to int) result
		fldcw  CtrlwdHolder		// Restore control word
	}
#else
	RetVal = static_cast<int>(floor(a));
#endif

	return RetVal;
}

//-----------------------------------------------------------------------------
// Fast color conversion from float to unsigned char
//-----------------------------------------------------------------------------
FORCEINLINE unsigned char FastFToC(float c)
{
	volatile float dc;

	// ieee trick
	dc = c * 255.0f + (float)(1 << 23);

	// return the lsb
#if defined( _X360 ) || defined( _PS3 )
	return ((unsigned char*)&dc)[3];
#else
	return *(unsigned char*)&dc;
#endif
}

//-----------------------------------------------------------------------------
// Purpose: Bound input float to .001 (millisecond) boundary
// Input  : in - 
// Output : inline float
//-----------------------------------------------------------------------------
inline float ClampToMsec(float in)
{
	int msec = Floor2Int(in * 1000.0f + 0.5f);
	return msec / 1000.0f;
}

// Over 15x faster than: (int)ceil(value)
inline int Ceil2Int(float a)
{
	int RetVal;

#if defined( PLATFORM_PPC )
	RetVal = (int)ceil(a);
#elif defined( COMPILER_MSVC32 )
	int CtrlwdHolder;
	int CtrlwdSetter;
	__asm
	{
		fld    a					// push 'a' onto the FP stack
		fnstcw CtrlwdHolder		// store FPU control word
		movzx  eax, CtrlwdHolder	// move and zero extend word into eax
		and eax, 0xFFFFF3FF	// set all bits except rounding bits to 1
		or eax, 0x00000800	// set rounding mode bits to round down
		mov    CtrlwdSetter, eax	// Prepare to set the rounding mode -- prepare to enter plaid!
		fldcw  CtrlwdSetter		// Entering plaid!
		fistp  RetVal				// Store floored and converted (to int) result
		fldcw  CtrlwdHolder		// Restore control word
	}
#else
	RetVal = static_cast<int>(ceil(a));
#endif

	return RetVal;
}


// Regular signed area of triangle
#define TriArea2D( A, B, C ) \
	( 0.5f * ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) )

// This version doesn't premultiply by 0.5f, so it's the area of the rectangle instead
#define TriArea2DTimesTwo( A, B, C ) \
	( ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) )


// Get the barycentric coordinates of "pt" in triangle [A,B,C].
inline void GetBarycentricCoords2D(
	Vector2D const& A,
	Vector2D const& B,
	Vector2D const& C,
	Vector2D const& pt,
	float bcCoords[3])
{
	// Note, because to top and bottom are both x2, the issue washes out in the composite
	float invTriArea = 1.0f / TriArea2DTimesTwo(A, B, C);

	// NOTE: We assume here that the lightmap coordinate vertices go counterclockwise.
	// If not, TriArea2D() is negated so this works out right.
	bcCoords[0] = TriArea2DTimesTwo(B, C, pt) * invTriArea;
	bcCoords[1] = TriArea2DTimesTwo(C, A, pt) * invTriArea;
	bcCoords[2] = TriArea2DTimesTwo(A, B, pt) * invTriArea;
}


// Return true of the sphere might touch the box (the sphere is actually treated
// like a box itself, so this may return true if the sphere's bounding box touches
// a corner of the box but the sphere itself doesn't).
inline bool QuickBoxSphereTest(
	const Vector3D& vOrigin,
	float flRadius,
	const Vector3D& bbMin,
	const Vector3D& bbMax)
{
	return vOrigin.x - flRadius < bbMax.x&& vOrigin.x + flRadius > bbMin.x &&
		vOrigin.y - flRadius < bbMax.y&& vOrigin.y + flRadius > bbMin.y &&
		vOrigin.z - flRadius < bbMax.z&& vOrigin.z + flRadius > bbMin.z;
}


// Return true of the boxes intersect (but not if they just touch).
inline bool QuickBoxIntersectTest(
	const Vector3D& vBox1Min,
	const Vector3D& vBox1Max,
	const Vector3D& vBox2Min,
	const Vector3D& vBox2Max)
{
	return
		vBox1Min.x < vBox2Max.x&& vBox1Max.x > vBox2Min.x &&
		vBox1Min.y < vBox2Max.y&& vBox1Max.y > vBox2Min.y &&
		vBox1Min.z < vBox2Max.z&& vBox1Max.z > vBox2Min.z;
}


extern float GammaToLinearFullRange(float gamma);
extern float LinearToGammaFullRange(float linear);
extern float GammaToLinear(float gamma);
extern float LinearToGamma(float linear);

extern float SrgbGammaToLinear(float flSrgbGammaValue);
extern float SrgbLinearToGamma(float flLinearValue);
extern float X360GammaToLinear(float fl360GammaValue);
extern float X360LinearToGamma(float flLinearValue);
extern float SrgbGammaTo360Gamma(float flSrgbGammaValue);

// linear (0..4) to screen corrected vertex space (0..1?)
FORCEINLINE float LinearToVertexLight(float f)
{
	extern float lineartovertex[4096];

	// Gotta clamp before the multiply; could overflow...
	// assume 0..4 range
	int i = RoundFloatToInt(f * 1024.f);

	// Presumably the common case will be not to clamp, so check that first:
	if ((unsigned)i > 4095)
	{
		if (i < 0)
			i = 0;		// Compare to zero instead of 4095 to save 4 bytes in the instruction stream
		else
			i = 4095;
	}

	return lineartovertex[i];
}


FORCEINLINE unsigned char LinearToLightmap(float f)
{
	extern unsigned char lineartolightmap[4096];

	// Gotta clamp before the multiply; could overflow...
	int i = RoundFloatToInt(f * 1024.f);	// assume 0..4 range

	// Presumably the common case will be not to clamp, so check that first:
	if ((unsigned)i > 4095)
	{
		if (i < 0)
			i = 0;		// Compare to zero instead of 4095 to save 4 bytes in the instruction stream
		else
			i = 4095;
	}

	return lineartolightmap[i];
}

FORCEINLINE void ColorClamp(Vector3D& color)
{
	float maxc = MAX(color.x, MAX(color.y, color.z));
	if (maxc > 1.0f)
	{
		float ooMax = 1.0f / maxc;
		color.x *= ooMax;
		color.y *= ooMax;
		color.z *= ooMax;
	}

	if (color[0] < 0.f) color[0] = 0.f;
	if (color[1] < 0.f) color[1] = 0.f;
	if (color[2] < 0.f) color[2] = 0.f;
}

inline void ColorClampTruncate(Vector3D& color)
{
	if (color[0] > 1.0f) color[0] = 1.0f; else if (color[0] < 0.0f) color[0] = 0.0f;
	if (color[1] > 1.0f) color[1] = 1.0f; else if (color[1] < 0.0f) color[1] = 0.0f;
	if (color[2] > 1.0f) color[2] = 1.0f; else if (color[2] < 0.0f) color[2] = 0.0f;
}

// Interpolate a Catmull-Rom spline.
// t is a [0,1] value and interpolates a curve between p2 and p3.
void Catmull_Rom_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// Interpolate a Catmull-Rom spline.
// Returns the tangent of the point at t of the spline
void Catmull_Rom_Spline_Tangent(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// area under the curve [0..t]
void Catmull_Rom_Spline_Integral(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// area under the curve [0..1]
void Catmull_Rom_Spline_Integral(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	Vector3D& output);

// Interpolate a Catmull-Rom spline.
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
void Catmull_Rom_Spline_Normalize(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// area under the curve [0..t]
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
void Catmull_Rom_Spline_Integral_Normalize(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// Interpolate a Catmull-Rom spline.
// Normalize p2.x->p1.x and p3.x->p4.x to be the same length as p2.x->p3.x
void Catmull_Rom_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// area under the curve [0..t]
void Catmull_Rom_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// Interpolate a Hermite spline.
// t is a [0,1] value and interpolates a curve between p1 and p2 with the deltas d1 and d2.
void Hermite_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& d1,
	const Vector3D& d2,
	float t,
	Vector3D& output);

float Hermite_Spline(
	float p1,
	float p2,
	float d1,
	float d2,
	float t);

// t is a [0,1] value and interpolates a curve between p1 and p2 with the slopes p0->p1 and p1->p2
void Hermite_Spline(
	const Vector3D& p0,
	const Vector3D& p1,
	const Vector3D& p2,
	float t,
	Vector3D& output);

float Hermite_Spline(
	float p0,
	float p1,
	float p2,
	float t);


void Hermite_SplineBasis(float t, float basis[4]);

void Hermite_Spline(
	const Quaternion& q0,
	const Quaternion& q1,
	const Quaternion& q2,
	float t,
	Quaternion& output);


// See http://en.wikipedia.org/wiki/Kochanek-Bartels_curves
// 
// Tension:  -1 = Round -> 1 = Tight
// Bias:     -1 = Pre-shoot (bias left) -> 1 = Post-shoot (bias right)
// Continuity: -1 = Box corners -> 1 = Inverted corners
//
// If T=B=C=0 it's the same matrix as Catmull-Rom.
// If T=1 & B=C=0 it's the same as Cubic.
// If T=B=0 & C=-1 it's just linear interpolation
// 
// See http://news.povray.org/povray.binaries.tutorials/attachment/%3CXns91B880592482seed7@povray.org%3E/Splines.bas.txt
// for example code and descriptions of various spline types...
// 
void Kochanek_Bartels_Spline(
	float tension,
	float bias,
	float continuity,
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

void Kochanek_Bartels_Spline_NormalizeX(
	float tension,
	float bias,
	float continuity,
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// See link at Kochanek_Bartels_Spline for info on the basis matrix used
void Cubic_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

void Cubic_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// See link at Kochanek_Bartels_Spline for info on the basis matrix used
void BSpline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

void BSpline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// See link at Kochanek_Bartels_Spline for info on the basis matrix used
void Parabolic_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

void Parabolic_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output);

// Evaluate the cubic Bernstein basis for the input parametric coordinate.
// Output is the coefficient for that basis polynomial.
float CubicBasis0(float t);
float CubicBasis1(float t);
float CubicBasis2(float t);
float CubicBasis3(float t);

// quintic interpolating polynomial from Perlin.
// 0->0, 1->1, smooth-in between with smooth tangents
inline float QuinticInterpolatingPolynomial(float t)
{
	// 6t^5-15t^4+10t^3
	return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
}

// given a table of sorted tabulated positions, return the two indices and blendfactor to linear
// interpolate. Does a search. Can be used to find the blend value to interpolate between
// keyframes.
void GetInterpolationData(float const* pKnotPositions,
	float const* pKnotValues,
	int nNumValuesinList,
	int nInterpolationRange,
	float flPositionToInterpolateAt,
	bool bWrap,
	float* pValueA,
	float* pValueB,
	float* pInterpolationValue);
float RangeCompressor(float flValue, float flMin, float flMax, float flBase);

// Get the minimum distance from vOrigin to the bounding box defined by [mins,maxs]
// using voronoi regions.
// 0 is returned if the origin is inside the box.
float CalcSqrDistanceToAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point);
void CalcClosestPointOnAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point, Vector3D& closestOut);
void CalcSqrDistAndClosestPointOnAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point, Vector3D& closestOut, float& distSqrOut);

inline float CalcDistanceToAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point)
{
	float flDistSqr = CalcSqrDistanceToAABB(mins, maxs, point);
	return sqrt(flDistSqr);
}

// Get the closest point from P to the (infinite) line through vLineA and vLineB and
// calculate the shortest distance from P to the line.
// If you pass in a value for t, it will tell you the t for (A + (B-A)t) to get the closest point.
// If the closest point lies on the segment between A and B, then 0 <= t <= 1.
void  CalcClosestPointOnLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, Vector3D& vClosest, float* t = 0);
float CalcDistanceToLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* t = 0);
float CalcDistanceSqrToLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* t = 0);

// The same three functions as above, except now the line is closed between A and B.
void  CalcClosestPointOnLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, Vector3D& vClosest, float* t = 0);
float CalcDistanceToLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* t = 0);
float CalcDistanceSqrToLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* t = 0);

// A function to compute the closes line segment connection two lines (or false if the lines are parallel, etc.)
bool CalcLineToLineIntersectionSegment(
	const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, const Vector3D& p4, Vector3D* s1, Vector3D* s2,
	float* t1, float* t2);

// The above functions in 2D
void  CalcClosestPointOnLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, Vector2D& vClosest, float* t = 0);
float CalcDistanceToLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
float CalcDistanceSqrToLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
void  CalcClosestPointOnLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, Vector2D& vClosest, float* t = 0);
float CalcDistanceToLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
float CalcDistanceSqrToLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);

// Init the mathlib
void MathLib_Init(float gamma = 2.2f, float texGamma = 2.2f, float brightness = 0.0f, int overbright = 2.0f);
bool MathLib_MMXEnabled(void);
bool MathLib_SSEEnabled(void);
bool MathLib_SSE2Enabled(void);

inline float Approach(float target, float value, float speed);
float ApproachAngle(float target, float value, float speed);
float AngleDiff(float destAngle, float srcAngle);
float AngleDistance(float next, float cur);
float AngleNormalize(float angle);

// ensure that 0 <= angle <= 360
float AngleNormalizePositive(float angle);

bool AnglesAreEqual(float a, float b, float tolerance = 0.0f);


void RotationDeltaAxisAngle(const QAngle& srcAngles, const QAngle& destAngles, Vector3D& deltaAxis, float& deltaAngle);
void RotationDelta(const QAngle& srcAngles, const QAngle& destAngles, QAngle* out);

//-----------------------------------------------------------------------------
// Clips a line segment such that only the portion in the positive half-space
// of the plane remains.  If the segment is entirely clipped, the vectors
// are set to vec3_invalid (all components are FLT_MAX).
//
// flBias is added to the dot product with the normal.  A positive bias 
// results in a more inclusive positive half-space, while a negative bias
// results in a more exclusive positive half-space.
//-----------------------------------------------------------------------------
void ClipLineSegmentToPlane(const Vector3D& vNormal, const Vector3D& vPlanePoint, Vector3D* p1, Vector3D* p2, float flBias = 0.0f);

void ComputeTrianglePlane(const Vector3D& v1, const Vector3D& v2, const Vector3D& v3, Vector3D& normal, float& intercept);
int PolyFromPlane(Vector3D* pOutVerts, const Vector3D& normal, float dist, float fHalfScale = 9000.0f);
void PolyFromPlane_SIMD(fltx4* pOutVerts, const fltx4& plane, float fHalfScale = 9000.0f);
int ClipPolyToPlane(Vector3D* inVerts, int vertCount, Vector3D* outVerts, const Vector3D& normal, float dist, float fOnPlaneEpsilon = 0.1f);
int ClipPolyToPlane_SIMD(fltx4* pInVerts, int vertCount, fltx4* pOutVerts, const fltx4& plane, float fOnPlaneEpsilon = 0.1f);
int ClipPolyToPlane_Precise(double* inVerts, int vertCount, double* outVerts, const double* normal, double dist, double fOnPlaneEpsilon = 0.1);
float TetrahedronVolume(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2, const Vector3D& p3);
float TriangleArea(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2);

/// return surface area of an AABB
FORCEINLINE float BoxSurfaceArea(Vector3D const& vecBoxMin, Vector3D const& vecBoxMax)
{
	Vector3D boxdim = vecBoxMax - vecBoxMin;
	return 2.0f * ((boxdim[0] * boxdim[2]) + (boxdim[0] * boxdim[1]) + (boxdim[1] * boxdim[2]));
}

//-----------------------------------------------------------------------------
// Computes a reasonable tangent space for a triangle
//-----------------------------------------------------------------------------
void CalcTriangleTangentSpace(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2,
	const Vector2D& t0, const Vector2D& t1, const Vector2D& t2,
	Vector3D& sVect, Vector3D& tVect);

//-----------------------------------------------------------------------------
// Transforms a AABB into another space; which will inherently grow the box.
//-----------------------------------------------------------------------------
void TransformAABB(const matrix3x4_t& in1, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut);

//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void ITransformAABB(const matrix3x4_t& in1, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut);

//-----------------------------------------------------------------------------
// Rotates a AABB into another space; which will inherently grow the box. 
// (same as TransformAABB, but doesn't take the translation into account)
//-----------------------------------------------------------------------------
void RotateAABB(const matrix3x4_t& in1, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut);

//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void IRotateAABB(const matrix3x4_t& in1, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut);

//-----------------------------------------------------------------------------
// Transform a plane
//-----------------------------------------------------------------------------
inline void MatrixTransformPlane(const matrix3x4_t& src, const cplane_t& inPlane, cplane_t& outPlane)
{
	// What we want to do is the following:
	// 1) transform the normal into the new space.
	// 2) Determine a point on the old plane given by plane dist * plane normal
	// 3) Transform that point into the new space
	// 4) Plane dist = DotProduct( new normal, new point )

	// An optimized version, which works if the plane is orthogonal.
	// 1) Transform the normal into the new space
	// 2) Realize that transforming the old plane point into the new space
	// is given by [ d * n'x + Tx, d * n'y + Ty, d * n'z + Tz ]
	// where d = old plane dist, n' = transformed normal, Tn = translational component of transform
	// 3) Compute the new plane dist using the dot product of the normal result of #2

	// For a correct result, this should be an inverse-transpose matrix
	// but that only matters if there are nonuniform scale or skew factors in this matrix.
	VectorRotate(inPlane.normal, src, outPlane.normal);
	outPlane.dist = inPlane.dist * DotProduct(outPlane.normal, outPlane.normal);
	outPlane.dist += outPlane.normal.x * src[0][3] + outPlane.normal.y * src[1][3] + outPlane.normal.z * src[2][3];
}

inline void MatrixITransformPlane(const matrix3x4_t& src, const cplane_t& inPlane, cplane_t& outPlane)
{
	// The trick here is that Tn = translational component of transform,
	// but for an inverse transform, Tn = - R^-1 * T
	Vector3D vecTranslation;
	MatrixGetColumn(src, 3, vecTranslation);

	Vector3D vecInvTranslation;
	VectorIRotate(vecTranslation, src, vecInvTranslation);

	VectorIRotate(inPlane.normal, src, outPlane.normal);
	outPlane.dist = inPlane.dist * DotProduct(outPlane.normal, outPlane.normal);
	outPlane.dist -= outPlane.normal.x * vecInvTranslation[0] + outPlane.normal.y * vecInvTranslation[1] + outPlane.normal.z * vecInvTranslation[2];
}

int CeilPow2(int in);
int FloorPow2(int in);

FORCEINLINE float* UnpackNormal_HEND3N(const unsigned int* pPackedNormal, float* pNormal)
{
	int temp[3];
	temp[0] = ((*pPackedNormal >> 0L) & 0x7ff);
	if (temp[0] & 0x400)
	{
		temp[0] = 2048 - temp[0];
	}
	temp[1] = ((*pPackedNormal >> 11L) & 0x7ff);
	if (temp[1] & 0x400)
	{
		temp[1] = 2048 - temp[1];
	}
	temp[2] = ((*pPackedNormal >> 22L) & 0x3ff);
	if (temp[2] & 0x200)
	{
		temp[2] = 1024 - temp[2];
	}
	pNormal[0] = (float)temp[0] * 1.0f / 1023.0f;
	pNormal[1] = (float)temp[1] * 1.0f / 1023.0f;
	pNormal[2] = (float)temp[2] * 1.0f / 511.0f;
	return pNormal;
}


FORCEINLINE unsigned int* PackNormal_HEND3N(const float* pNormal, unsigned int* pPackedNormal)
{
	int temp[3];

	temp[0] = Float2Int(pNormal[0] * 1023.0f);
	temp[1] = Float2Int(pNormal[1] * 1023.0f);
	temp[2] = Float2Int(pNormal[2] * 511.0f);

	// the normal is out of bounds, determine the source and fix
	// clamping would be even more of a slowdown here
	Assert(temp[0] >= -1023 && temp[0] <= 1023);
	Assert(temp[1] >= -1023 && temp[1] <= 1023);
	Assert(temp[2] >= -511 && temp[2] <= 511);

	*pPackedNormal = ((temp[2] & 0x3ff) << 22L) |
		((temp[1] & 0x7ff) << 11L) |
		((temp[0] & 0x7ff) << 0L);
	return pPackedNormal;
}


FORCEINLINE unsigned int* PackNormal_HEND3N(float nx, float ny, float nz, unsigned int* pPackedNormal)
{
	int temp[3];

	temp[0] = Float2Int(nx * 1023.0f);
	temp[1] = Float2Int(ny * 1023.0f);
	temp[2] = Float2Int(nz * 511.0f);

	// the normal is out of bounds, determine the source and fix
	// clamping would be even more of a slowdown here
	Assert(temp[0] >= -1023 && temp[0] <= 1023);
	Assert(temp[1] >= -1023 && temp[1] <= 1023);
	Assert(temp[2] >= -511 && temp[2] <= 511);

	*pPackedNormal = ((temp[2] & 0x3ff) << 22L) |
		((temp[1] & 0x7ff) << 11L) |
		((temp[0] & 0x7ff) << 0L);
	return pPackedNormal;
}



FORCEINLINE float* UnpackNormal_SHORT2(const unsigned int* pPackedNormal, float* pNormal, bool bIsTangent = FALSE)
{
	// Unpacks from Jason's 2-short format (fills in a 4th binormal-sign (+1/-1) value, if this is a tangent vector)

	// FIXME: short math is slow on 360 - use ints here instead (bit-twiddle to deal w/ the sign bits)
	short iX = (*pPackedNormal & 0x0000FFFF);
	short iY = (*pPackedNormal & 0xFFFF0000) >> 16;

	float zSign = +1;
	if (iX < 0)
	{
		zSign = -1;
		iX = -iX;
	}
	float tSign = +1;
	if (iY < 0)
	{
		tSign = -1;
		iY = -iY;
	}

	pNormal[0] = (iX - 16384.0f) / 16384.0f;
	pNormal[1] = (iY - 16384.0f) / 16384.0f;
	float mag = (pNormal[0] * pNormal[0] + pNormal[1] * pNormal[1]);
	if (mag > 1.0f)
	{
		mag = 1.0f;
	}
	pNormal[2] = zSign * sqrtf(1.0f - mag);
	if (bIsTangent)
	{
		pNormal[3] = tSign;
	}

	return pNormal;
}

FORCEINLINE unsigned int* PackNormal_SHORT2(float nx, float ny, float nz, unsigned int* pPackedNormal, float binormalSign = +1.0f)
{
	// Pack a vector (ASSUMED TO BE NORMALIZED) into Jason's 4-byte (SHORT2) format.
	// This simply reconstructs Z from X & Y. It uses the sign bits of the X & Y coords
	// to reconstruct the sign of Z and, if this is a tangent vector, the sign of the
	// binormal (this is needed because tangent/binormal vectors are supposed to follow
	// UV gradients, but shaders reconstruct the binormal from the tangent and normal
	// assuming that they form a right-handed basis).

	nx += 1;					// [-1,+1] -> [0,2]
	ny += 1;
	nx *= 16384.0f;				// [ 0, 2] -> [0,32768]
	ny *= 16384.0f;

	// '0' and '32768' values are invalid encodings
	nx = MAX(nx, 1.0f);		// Make sure there are no zero values
	ny = MAX(ny, 1.0f);
	nx = MIN(nx, 32767.0f);	// Make sure there are no 32768 values
	ny = MIN(ny, 32767.0f);

	if (nz < 0.0f)
		nx = -nx;				// Set the sign bit for z

	ny *= binormalSign;			// Set the sign bit for the binormal (use when encoding a tangent vector)

	// FIXME: short math is slow on 360 - use ints here instead (bit-twiddle to deal w/ the sign bits), also use Float2Int()
	short sX = (short)nx;		// signed short [1,32767]
	short sY = (short)ny;

	*pPackedNormal = (sX & 0x0000FFFF) | (sY << 16); // NOTE: The mask is necessary (if sX is negative and cast to an int...)

	return pPackedNormal;
}

FORCEINLINE unsigned int* PackNormal_SHORT2(const float* pNormal, unsigned int* pPackedNormal, float binormalSign = +1.0f)
{
	return PackNormal_SHORT2(pNormal[0], pNormal[1], pNormal[2], pPackedNormal, binormalSign);
}

// Unpacks a UBYTE4 normal (for a tangent, the result's fourth component receives the binormal 'sign')
FORCEINLINE float* UnpackNormal_UBYTE4(const unsigned int* pPackedNormal, float* pNormal, bool bIsTangent = FALSE)
{
	unsigned char cX, cY;
	if (bIsTangent)
	{
		cX = (*pPackedNormal >> 16) & UINT8_MAX;	// Unpack Z
		cY = (*pPackedNormal >> 24) & UINT8_MAX;	// Unpack W
	}
	else
	{
		cX = (*pPackedNormal >> 0) & UINT8_MAX;		// Unpack X
		cY = (*pPackedNormal >> 8) & UINT8_MAX;		// Unpack Y
	}

	float x = cX - 128.0f;
	float y = cY - 128.0f;
	float z;

	float zSignBit = x < 0 ? 1.0f : 0.0f;			// z and t negative bits (like slt asm instruction)
	float tSignBit = y < 0 ? 1.0f : 0.0f;
	float zSign = -(2 * zSignBit - 1);			// z and t signs
	float tSign = -(2 * tSignBit - 1);

	x = x * zSign - zSignBit;							// 0..127
	y = y * tSign - tSignBit;
	x = x - 64;										// -64..63
	y = y - 64;

	float xSignBit = x < 0 ? 1.0f : 0.0f;	// x and y negative bits (like slt asm instruction)
	float ySignBit = y < 0 ? 1.0f : 0.0f;
	float xSign = -(2 * xSignBit - 1);			// x and y signs
	float ySign = -(2 * ySignBit - 1);

	x = (x * xSign - xSignBit) / 63.0f;				// 0..1 range
	y = (y * ySign - ySignBit) / 63.0f;
	z = 1.0f - x - y;

	float oolen = 1.0f / sqrt(x * x + y * y + z * z);	// Normalize and
	x *= oolen * xSign;					// Recover signs
	y *= oolen * ySign;
	z *= oolen * zSign;

	pNormal[0] = x;
	pNormal[1] = y;
	pNormal[2] = z;
	if (bIsTangent)
	{
		pNormal[3] = tSign;
	}

	return pNormal;
}

//////////////////////////////////////////////////////////////////////////////
// See: http://www.oroboro.com/rafael/docserv.php/index/programming/article/unitv2
//
// UBYTE4 encoding, using per-octant projection onto x+y+z=1
// Assume input vector is already unit length
//
// binormalSign specifies 'sign' of binormal, stored in t sign bit of tangent
// (lets the shader know whether norm/tan/bin form a right-handed basis)
//
// bIsTangent is used to specify which WORD of the output to store the data
// The expected usage is to call once with the normal and once with
// the tangent and binormal sign flag, bitwise OR'ing the returned DWORDs
FORCEINLINE unsigned int* PackNormal_UBYTE4(float nx, float ny, float nz, unsigned int* pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f)
{
	float xSign = nx < 0.0f ? -1.0f : 1.0f;			// -1 or 1 sign
	float ySign = ny < 0.0f ? -1.0f : 1.0f;
	float zSign = nz < 0.0f ? -1.0f : 1.0f;
	float tSign = binormalSign;
	Assert((binormalSign == +1.0f) || (binormalSign == -1.0f));

	float xSignBit = 0.5f * (1 - xSign);			// [-1,+1] -> [1,0]
	float ySignBit = 0.5f * (1 - ySign);			// 1 is negative bit (like slt instruction)
	float zSignBit = 0.5f * (1 - zSign);
	float tSignBit = 0.5f * (1 - binormalSign);

	float absX = xSign * nx;							// 0..1 range (abs)
	float absY = ySign * ny;
	float absZ = zSign * nz;

	float xbits = absX / (absX + absY + absZ);	// Project onto x+y+z=1 plane
	float ybits = absY / (absX + absY + absZ);

	xbits *= 63;									// 0..63
	ybits *= 63;

	xbits = xbits * xSign - xSignBit;				// -64..63 range
	ybits = ybits * ySign - ySignBit;
	xbits += 64.0f;									// 0..127 range
	ybits += 64.0f;

	xbits = xbits * zSign - zSignBit;				// Negate based on z and t
	ybits = ybits * tSign - tSignBit;				// -128..127 range

	xbits += 128.0f;								// 0..255 range
	ybits += 128.0f;

	unsigned char cX = (unsigned char)xbits;
	unsigned char cY = (unsigned char)ybits;

	if (!bIsTangent)
		*pPackedNormal = (cX << 0) | (cY << 8);	// xy for normal
	else
		*pPackedNormal = (cX << 16) | (cY << 24);	// zw for tangent

	return pPackedNormal;
}

FORCEINLINE unsigned int* PackNormal_UBYTE4(const float* pNormal, unsigned int* pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f)
{
	return PackNormal_UBYTE4(pNormal[0], pNormal[1], pNormal[2], pPackedNormal, bIsTangent, binormalSign);
}

FORCEINLINE void RGB2YUV(int& nR, int& nG, int& nB, float& fY, float& fU, float& fV, bool bApplySaturationCurve)
{
	// YUV conversion:
	//  |Y|   |  0.299f     0.587f     0.114f   |   |R|
	//  |U| = | -0.14713f  -0.28886f   0.436f   | x |G|
	//  |V|   |  0.615f    -0.51499f  -0.10001f |   |B|
	//
	// The coefficients in the first row sum to one, whereas the 2nd and 3rd rows each sum to zero (UV (0,0) means greyscale).
	// Ranges are Y [0,1], U [-0.436,+0.436] and V [-0.615,+0.615].
	// We scale and offset to [0,1] and allow the caller to round as they please.

	fY = (0.29900f * nR + 0.58700f * nG + 0.11400f * nB) / 255;
	fU = (-0.14713f * nR + -0.28886f * nG + 0.43600f * nB) * (0.5f / 0.436f) / 255 + 0.5f;
	fV = (0.61500f * nR + -0.51499f * nG + -0.10001f * nB) * (0.5f / 0.615f) / 255 + 0.5f;

	if (bApplySaturationCurve)
	{
		// Apply a curve to saturation, and snap-to-grey for low saturations
		const float SNAP_TO_GREY = 0;//0.0125f; Disabled, saturation curve seems sufficient
		float dX, dY, sat, scale;
		dX = 2 * (fU - 0.5f);
		dY = 2 * (fV - 0.5f);
		sat = sqrtf(dX * dX + dY * dY);
		sat = clamp((sat * (1 + SNAP_TO_GREY) - SNAP_TO_GREY), 0.f, 1.f);
		scale = (sat == 0) ? 0 : MIN((sqrtf(sat) / sat), 4.0f);
		fU = 0.5f + scale * (fU - 0.5f);
		fV = 0.5f + scale * (fV - 0.5f);
	}
}

#ifdef _X360
// Used for direct CPU access to VB data on 360 (used by shaderapi, studiorender and engine)
struct VBCPU_AccessInfo_t
{
	// Points to the GPU data pointer in the CVertexBuffer struct (VB data can be relocated during level transitions)
	const byte** ppBaseAddress;
	// pBaseAddress should be computed from ppBaseAddress immediately before use
	const byte* pBaseAddress;
	int          nStride;
	int          nPositionOffset;
	int          nTexCoord0_Offset;
	int          nNormalOffset;
	int          nBoneIndexOffset;
	int          nBoneWeightOffset;
	int          nCompressionType;
	// TODO: if needed, add colour and tangents
};
#endif

//-----------------------------------------------------------------------------
// Convert RGB to HSV
//-----------------------------------------------------------------------------
void RGBtoHSV(const Vector3D& rgb, Vector3D& hsv);


//-----------------------------------------------------------------------------
// Convert HSV to RGB
//-----------------------------------------------------------------------------
void HSVtoRGB(const Vector3D& hsv, Vector3D& rgb);


//-----------------------------------------------------------------------------
// Fast version of pow and log
//-----------------------------------------------------------------------------
#ifndef _PS3 // these actually aren't fast (or correct) on the PS3
float FastLog2(float i);			// log2( i )
float FastPow2(float i);			// 2^i
float FastPow(float a, float b);	// a^b
float FastPow10(float i);			// 10^i
#else
inline float FastLog2(float i) { return logbf(i); }			// log2( i )
inline float FastPow2(float i) { return exp2f(i); }			// 2^i
inline float FastPow(float a, float b) { return powf(a, b); }	// a^b
#define LOGBASE2OF10 3.3219280948873623478703194294893901758648313930
inline float FastPow10(float i) { return exp2f(i * LOGBASE2OF10); }			// 10^i, transform to base two, so log2(10^y) = y log2(10) . log2(10) = 3.3219280948873623478703194294893901758648313930
#endif

//-----------------------------------------------------------------------------
// For testing float equality
//-----------------------------------------------------------------------------

inline bool CloseEnough(float a, float b, float epsilon = EQUAL_EPSILON)
{
	return fabs(a - b) <= epsilon;
}

inline bool CloseEnough(const Vector3D& a, const Vector3D& b, float epsilon = EQUAL_EPSILON)
{
	return fabs(a.x - b.x) <= epsilon &&
		fabs(a.y - b.y) <= epsilon &&
		fabs(a.z - b.z) <= epsilon;
}

// Fast compare
// maxUlps is the maximum error in terms of Units in the Last Place. This 
// specifies how big an error we are willing to accept in terms of the value
// of the least significant digit of the floating point number�s 
// representation. maxUlps can also be interpreted in terms of how many 
// representable floats we are willing to accept between A and B. 
// This function will allow maxUlps-1 floats between A and B.
bool AlmostEqual(float a, float b, int maxUlps = 10);

inline bool AlmostEqual(const Vector3D& a, const Vector3D& b, int maxUlps = 10)
{
	return AlmostEqual(a.x, b.x, maxUlps) &&
		AlmostEqual(a.y, b.y, maxUlps) &&
		AlmostEqual(a.z, b.z, maxUlps);
}

inline Vector3D Approach(Vector3D target, Vector3D value, float speed)
{
	Vector3D diff = (target - value);
	float delta = diff.Length();

	if (delta > speed)
		value += diff.Normalized() * speed;
	else if (delta < -speed)
		value -= diff.Normalized() * speed;
	else
		value = target;

	return value;
}

inline float Approach(float target, float value, float speed)
{
	float delta = target - value;

#if defined(_X360) || defined( _PS3 ) // use conditional move for speed on 360

	return fsel(delta - speed,	// delta >= speed ?
		value + speed,	// if delta == speed, then value + speed == value + delta == target  
		fsel((-speed) - delta, // delta <= -speed
			value - speed,
			target)
	);  // delta < speed && delta > -speed

#else

	if (delta > speed)
		value += speed;
	else if (delta < -speed)
		value -= speed;
	else
		value = target;

	return value;

#endif
}


// return a 0..1 value based on the position of x between edge0 and edge1
inline float smoothstep_bounds(float edge0, float edge1, float x)
{
	x = static_cast<float>(clamp(static_cast<int>((x - edge0) / (edge1 - edge0)), 0, 1));
	return x * x * (3 - 2 * x);
}

// return a value between edge0 and edge1 based on the 0..1 value of x
inline float interpstep(float edge0, float edge1, float x)
{
	return edge0 + (x * (edge1 - edge0));
}

// on PPC we can do this truncate without converting to int
#if defined(_X360) || defined(_PS3)
inline double TruncateFloatToIntAsFloat(double flVal)
{
#if defined(_X360)
	double flIntFormat = __fctiwz(flVal);
	return __fcfid(flIntFormat);
#elif defined(_PS3)
#if defined(__SPU__)
	int iVal = int(flVal);
	return static_cast<double>(iVal);
#else
	double flIntFormat = __builtin_fctiwz(flVal);
	return __builtin_fcfid(flIntFormat);
#endif
#endif
}
#endif

inline double SubtractIntegerPart(double flVal)
{
#if defined(_X360) || defined(_PS3)
	return flVal - TruncateFloatToIntAsFloat(flVal);
#else
	return flVal - int(flVal);
#endif
}


inline void matrix3x4_t::InitFromQAngles(const QAngle& angles, const Vector3D& vPosition)
{
	AngleMatrix(angles, vPosition, *this);
}
inline void matrix3x4_t::InitFromQAngles(const QAngle& angles) { InitFromQAngles(angles, vec3_origin); }

inline void matrix3x4_t::InitFromRadianEuler(const RadianEuler& angles, const Vector3D& vPosition)
{
	AngleMatrix(angles, vPosition, *this);
}

inline void matrix3x4_t::InitFromRadianEuler(const RadianEuler& angles) { InitFromRadianEuler(angles, vec3_origin); }

inline void matrix3x4_t::InitFromQuaternion(const Quaternion& orientation, const Vector3D& vPosition)
{
	QuaternionMatrix(orientation, vPosition, *this);
}

inline void matrix3x4_t::InitFromDiagonal(const Vector3D& vDiagonal)
{
	SetToIdentity();
	m_flMatVal[0][0] = vDiagonal.x;
	m_flMatVal[1][1] = vDiagonal.y;
	m_flMatVal[2][2] = vDiagonal.z;
}


inline void matrix3x4_t::InitFromQuaternion(const Quaternion& orientation) { InitFromQuaternion(orientation, vec3_origin); }

inline Quaternion matrix3x4_t::ToQuaternion() const
{
	return MatrixQuaternion(*this);
}

inline QAngle matrix3x4_t::ToQAngle() const
{
	QAngle tmp;
	MatrixAngles(*this, tmp);
	return tmp;
}

inline void matrix3x4_t::SetToIdentity()
{
	SetIdentityMatrix(*this);
}

inline bool matrix3x4_t::IsEqualTo(const matrix3x4_t& other, float flTolerance) const
{
	return MatricesAreEqual(*this, other, flTolerance);
}

inline void matrix3x4_t::GetBasisVectorsFLU(Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp) const
{
	return MatrixVectorsFLU(*this, pForward, pLeft, pUp);
}

inline Vector3D matrix3x4_t::TransformVector(const Vector3D& v0) const
{
	return VectorTransform(v0, *this);
}

inline Vector3D matrix3x4_t::RotateVector(const Vector3D& v0) const
{
	return VectorRotate(v0, *this);
}

inline Vector3D matrix3x4_t::TransformVectorByInverse(const Vector3D& v0) const
{
	return VectorITransform(v0, *this);
}

inline Vector3D matrix3x4_t::RotateVectorByInverse(const Vector3D& v0) const
{
	Vector3D tmp;
	VectorIRotate(v0, *this, tmp);
	return tmp;
}

inline Vector3D matrix3x4_t::RotateExtents(const Vector3D& vBoxExtents) const
{
	return Vector3D(DotProductAbs(vBoxExtents, m_flMatVal[0]), DotProductAbs(vBoxExtents, m_flMatVal[1]), DotProductAbs(vBoxExtents, m_flMatVal[2]));
}

inline Vector3D matrix3x4_t::GetColumn(MatrixAxisType_t nColumn) const
{
	return Vector3D(m_flMatVal[0][nColumn], m_flMatVal[1][nColumn], m_flMatVal[2][nColumn]);
}

inline void matrix3x4_t::SetColumn(const Vector3D& vColumn, MatrixAxisType_t nColumn)
{
	m_flMatVal[0][nColumn] = vColumn.x;
	m_flMatVal[1][nColumn] = vColumn.y;
	m_flMatVal[2][nColumn] = vColumn.z;
}

inline void matrix3x4_t::InverseTR(matrix3x4_t& out) const
{
	::MatrixInvert(*this, out);
}

inline matrix3x4_t matrix3x4_t::InverseTR() const
{
	matrix3x4_t out;
	::MatrixInvert(*this, out);
	return out;
}

inline void matrix3x4_t::TransformAABB(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const
{
	::TransformAABB(*this, vecMinsIn, vecMaxsIn, vecMinsOut, vecMaxsOut);
}

inline void matrix3x4_t::TransformAABBByInverse(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const
{
	::ITransformAABB(*this, vecMinsIn, vecMaxsIn, vecMinsOut, vecMaxsOut);
}

inline void matrix3x4_t::RotateAABB(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const
{
	::RotateAABB(*this, vecMinsIn, vecMaxsIn, vecMinsOut, vecMaxsOut);
}
inline void matrix3x4_t::RotateAABBByInverse(const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut) const
{
	::IRotateAABB(*this, vecMinsIn, vecMaxsIn, vecMinsOut, vecMaxsOut);
}

inline void matrix3x4_t::TransformPlane(const cplane_t& inPlane, cplane_t& outPlane) const
{
	::MatrixTransformPlane(*this, inPlane, outPlane);
}
inline void matrix3x4_t::TransformPlaneByInverse(const cplane_t& inPlane, cplane_t& outPlane) const
{
	::MatrixITransformPlane(*this, inPlane, outPlane);
}

inline float matrix3x4_t::GetOrthogonalityError() const
{
	return
		fabsf(m_flMatVal[0][0] * m_flMatVal[0][1] + m_flMatVal[1][0] * m_flMatVal[1][1] + m_flMatVal[2][0] * m_flMatVal[2][1]) +
		fabsf(m_flMatVal[0][1] * m_flMatVal[0][2] + m_flMatVal[1][1] * m_flMatVal[1][2] + m_flMatVal[2][1] * m_flMatVal[2][2]) +
		fabsf(m_flMatVal[0][2] * m_flMatVal[0][0] + m_flMatVal[1][2] * m_flMatVal[1][0] + m_flMatVal[2][2] * m_flMatVal[2][0]);
}

inline matrix3x4_t Quaternion::ToMatrix() const
{
	matrix3x4_t mat;
	mat.InitFromQuaternion(*this);
	return mat;
}

inline matrix3x4_t QAngle::ToMatrix() const
{
	matrix3x4_t mat;
	AngleMatrix(*this, mat);
	return mat;
}

inline Quaternion QAngle::ToQuaternion() const
{
	return AngleQuaternion(*this);
}

inline float matrix3x4_t::GetDeterminant() const
{
	return
		m_flMatVal[0][0] * (m_flMatVal[1][1] * m_flMatVal[2][2] - m_flMatVal[2][1] * m_flMatVal[1][2])
		- m_flMatVal[0][1] * (m_flMatVal[1][0] * m_flMatVal[2][2] - m_flMatVal[1][2] * m_flMatVal[2][0])
		+ m_flMatVal[0][2] * (m_flMatVal[1][0] * m_flMatVal[2][1] - m_flMatVal[1][1] * m_flMatVal[2][0]);
}

inline float GetRelativeDifferenceSqr(const Vector3D& a, const Vector3D& b)
{
	return (a - b).LengthSqr() / Max(1.0f, Max(a.LengthSqr(), b.LengthSqr()));
}


inline float GetRelativeDifference(const Vector3D& a, const Vector3D& b)
{
	return sqrtf(GetRelativeDifferenceSqr(a, b));
}


// a good measure of relative error between two TR matrices, perhaps with a reasonable scale
inline float GetRelativeDifference(const matrix3x4_t& a, const matrix3x4_t& b)
{
	return sqrtf(Max(Max(GetRelativeDifferenceSqr(a.GetColumn(X_AXIS), b.GetColumn(X_AXIS)),
		GetRelativeDifferenceSqr(a.GetColumn(Y_AXIS), b.GetColumn(Y_AXIS))),
		Max(GetRelativeDifferenceSqr(a.GetColumn(Z_AXIS), b.GetColumn(Z_AXIS)),
			GetRelativeDifferenceSqr(a.GetOrigin(), b.GetOrigin()))
	)
	);
}



inline float matrix3x4_t::GetSylvestersCriterion()const
{
	// http://en.wikipedia.org/wiki/Sylvester%27s_criterion
	float flDet1 = m_flMatVal[0][0];
	float flDet2 = m_flMatVal[0][0] * m_flMatVal[1][1] - m_flMatVal[1][0] * m_flMatVal[0][1];
	float flDet3 = GetDeterminant();
	return MIN(MIN(flDet1, flDet2), flDet3);
}



// Generate the corner points of a box:
// +y       _+z
// ^        /|
// |       /
// |  3---7   
//   /|  /|
//  / | / |
// 2---6  |
// |  1|--5
// | / | /
// |/  |/
// 0---4   --> +x
void PointsFromBox(const Vector3D& mins, const Vector3D& maxs, Vector3D* points);
void BuildTransformedBox(Vector3D* v2, Vector3D const& bbmin, Vector3D const& bbmax, const matrix3x4_t& m);
// generate the corner points of a angled box:
// +y*r     _+z*u
// ^        /|
// |       /
// |  3---7   
//   /|  /|
//  / | / |
// 2---6  |
// |  1|--5
// | / | /
// |/  |/
// 0---4   --> +x*f
void PointsFromAngledBox(const QAngle& angles, const Vector3D& mins, const Vector3D& maxs, Vector3D* points);
void BuildTransformedAngledBox(Vector3D* v2, const QAngle& a, Vector3D const& bbmin, Vector3D const& bbmax, const matrix3x4_t& m);



#endif	// MATH_BASE_H