// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { // Helper methods to test parsing merge behavior. void ExpectMessageMerged(const unittest::TestAllTypesLite& message) { EXPECT_EQ(message.optional_int32(), 3); EXPECT_EQ(message.optional_int64(), 2); EXPECT_EQ(message.optional_string(), "hello"); } void AssignParsingMergeMessages(unittest::TestAllTypesLite* msg1, unittest::TestAllTypesLite* msg2, unittest::TestAllTypesLite* msg3) { msg1->set_optional_int32(1); msg2->set_optional_int64(2); msg3->set_optional_int32(3); msg3->set_optional_string("hello"); } void SetAllTypesInEmptyMessageUnknownFields( unittest::TestEmptyMessageLite* empty_message) { protobuf_unittest::TestAllTypesLite message; TestUtilLite::ExpectClear(message); TestUtilLite::SetAllFields(&message); std::string data = message.SerializeAsString(); empty_message->ParseFromString(data); } void SetSomeTypesInEmptyMessageUnknownFields( unittest::TestEmptyMessageLite* empty_message) { protobuf_unittest::TestAllTypesLite message; TestUtilLite::ExpectClear(message); message.set_optional_int32(101); message.set_optional_int64(102); message.set_optional_uint32(103); message.set_optional_uint64(104); std::string data = message.SerializeAsString(); empty_message->ParseFromString(data); } TEST(ParseVarintTest, Varint32) { auto test_value = [](uint32_t value, int varint_length) { uint8_t buffer[10]; uint8_t* p = io::CodedOutputStream::WriteVarint32ToArray(value, buffer); ASSERT_EQ(p - buffer, varint_length) << "Value = " << value; const char* cbuffer = reinterpret_cast(buffer); uint32_t parsed = ~value; const char* r = internal::VarintParse(cbuffer, &parsed); ASSERT_EQ(r - cbuffer, varint_length) << "Value = " << value; ASSERT_EQ(parsed, value); }; uint32_t base = 73; // 1001011b for (int varint_length = 1; varint_length <= 5; ++varint_length) { uint32_t values[] = { base - 73, base - 72, base, base + 126 - 73, base + 126 - 72, }; for (uint32_t value : values) { test_value(value, varint_length); } base = (base << 7) + 73; } test_value(std::numeric_limits::max(), 5); } TEST(ParseVarintTest, Varint64) { auto test_value = [](uint64_t value, int varint_length) { uint8_t buffer[10]; uint8_t* p = io::CodedOutputStream::WriteVarint64ToArray(value, buffer); ASSERT_EQ(p - buffer, varint_length) << "Value = " << value; const char* cbuffer = reinterpret_cast(buffer); uint64_t parsed = ~value; const char* r = internal::VarintParse(cbuffer, &parsed); ASSERT_EQ(r - cbuffer, varint_length) << "Value = " << value; ASSERT_EQ(parsed, value); }; uint64_t base = 73; // 1001011b for (int varint_length = 1; varint_length <= 10; ++varint_length) { uint64_t values[] = { base - 73, base - 72, base, base + 126 - 73, base + 126 - 72, }; for (uint64_t value : values) { test_value(value, varint_length); } base = (base << 7) + 73; } test_value(std::numeric_limits::max(), 10); } TEST(Lite, AllLite1) { std::string data; { protobuf_unittest::TestAllTypesLite message, message2, message3; TestUtilLite::ExpectClear(message); TestUtilLite::SetAllFields(&message); message2.CopyFrom(message); data = message.SerializeAsString(); message3.ParseFromString(data); TestUtilLite::ExpectAllFieldsSet(message); TestUtilLite::ExpectAllFieldsSet(message2); TestUtilLite::ExpectAllFieldsSet(message3); TestUtilLite::ModifyRepeatedFields(&message); TestUtilLite::ExpectRepeatedFieldsModified(message); message.Clear(); TestUtilLite::ExpectClear(message); } } TEST(Lite, AllLite2) { std::string data; { protobuf_unittest::TestAllExtensionsLite message, message2, message3; TestUtilLite::ExpectExtensionsClear(message); TestUtilLite::SetAllExtensions(&message); message2.CopyFrom(message); std::string extensions_data = message.SerializeAsString(); message3.ParseFromString(extensions_data); TestUtilLite::ExpectAllExtensionsSet(message); TestUtilLite::ExpectAllExtensionsSet(message2); TestUtilLite::ExpectAllExtensionsSet(message3); TestUtilLite::ModifyRepeatedExtensions(&message); TestUtilLite::ExpectRepeatedExtensionsModified(message); message.Clear(); TestUtilLite::ExpectExtensionsClear(message); } } TEST(Lite, AllLite3) { std::string data, packed_data; { protobuf_unittest::TestPackedTypesLite message, message2, message3; TestUtilLite::ExpectPackedClear(message); TestUtilLite::SetPackedFields(&message); message2.CopyFrom(message); packed_data = message.SerializeAsString(); message3.ParseFromString(packed_data); TestUtilLite::ExpectPackedFieldsSet(message); TestUtilLite::ExpectPackedFieldsSet(message2); TestUtilLite::ExpectPackedFieldsSet(message3); TestUtilLite::ModifyPackedFields(&message); TestUtilLite::ExpectPackedFieldsModified(message); message.Clear(); TestUtilLite::ExpectPackedClear(message); } { protobuf_unittest::TestPackedExtensionsLite message, message2, message3; TestUtilLite::ExpectPackedExtensionsClear(message); TestUtilLite::SetPackedExtensions(&message); message2.CopyFrom(message); std::string packed_extensions_data = message.SerializeAsString(); EXPECT_EQ(packed_extensions_data, packed_data); message3.ParseFromString(packed_extensions_data); TestUtilLite::ExpectPackedExtensionsSet(message); TestUtilLite::ExpectPackedExtensionsSet(message2); TestUtilLite::ExpectPackedExtensionsSet(message3); TestUtilLite::ModifyPackedExtensions(&message); TestUtilLite::ExpectPackedExtensionsModified(message); message.Clear(); TestUtilLite::ExpectPackedExtensionsClear(message); } } TEST(Lite, AllLite5) { std::string data; { // Test that if an optional or required message/group field appears multiple // times in the input, they need to be merged. unittest::TestParsingMergeLite::RepeatedFieldsGenerator generator; unittest::TestAllTypesLite* msg1; unittest::TestAllTypesLite* msg2; unittest::TestAllTypesLite* msg3; #define ASSIGN_REPEATED_FIELD(FIELD) \ msg1 = generator.add_##FIELD(); \ msg2 = generator.add_##FIELD(); \ msg3 = generator.add_##FIELD(); \ AssignParsingMergeMessages(msg1, msg2, msg3) ASSIGN_REPEATED_FIELD(field1); ASSIGN_REPEATED_FIELD(field2); ASSIGN_REPEATED_FIELD(field3); ASSIGN_REPEATED_FIELD(ext1); ASSIGN_REPEATED_FIELD(ext2); #undef ASSIGN_REPEATED_FIELD #define ASSIGN_REPEATED_GROUP(FIELD) \ msg1 = generator.add_##FIELD()->mutable_field1(); \ msg2 = generator.add_##FIELD()->mutable_field1(); \ msg3 = generator.add_##FIELD()->mutable_field1(); \ AssignParsingMergeMessages(msg1, msg2, msg3) ASSIGN_REPEATED_GROUP(group1); ASSIGN_REPEATED_GROUP(group2); #undef ASSIGN_REPEATED_GROUP std::string buffer; generator.SerializeToString(&buffer); unittest::TestParsingMergeLite parsing_merge; parsing_merge.ParseFromString(buffer); // Required and optional fields should be merged. ExpectMessageMerged(parsing_merge.required_all_types()); ExpectMessageMerged(parsing_merge.optional_all_types()); ExpectMessageMerged( parsing_merge.optionalgroup().optional_group_all_types()); ExpectMessageMerged(parsing_merge.GetExtension( unittest::TestParsingMergeLite::optional_ext)); // Repeated fields should not be merged. EXPECT_EQ(parsing_merge.repeated_all_types_size(), 3); EXPECT_EQ(parsing_merge.repeatedgroup_size(), 3); EXPECT_EQ(parsing_merge.ExtensionSize( unittest::TestParsingMergeLite::repeated_ext), 3); } } TEST(Lite, AllLite6) { std::string data; // Test unknown fields support for lite messages. { protobuf_unittest::TestAllTypesLite message, message2; protobuf_unittest::TestEmptyMessageLite empty_message; TestUtilLite::ExpectClear(message); TestUtilLite::SetAllFields(&message); data = message.SerializeAsString(); ASSERT_TRUE(empty_message.ParseFromString(data)); data.clear(); data = empty_message.SerializeAsString(); EXPECT_TRUE(message2.ParseFromString(data)); data = message2.SerializeAsString(); TestUtilLite::ExpectAllFieldsSet(message2); message.Clear(); TestUtilLite::ExpectClear(message); } } TEST(Lite, AllLite7) { std::string data; { protobuf_unittest::TestAllExtensionsLite message, message2; protobuf_unittest::TestEmptyMessageLite empty_message; TestUtilLite::ExpectExtensionsClear(message); TestUtilLite::SetAllExtensions(&message); data = message.SerializeAsString(); empty_message.ParseFromString(data); data.clear(); data = empty_message.SerializeAsString(); message2.ParseFromString(data); data = message2.SerializeAsString(); TestUtilLite::ExpectAllExtensionsSet(message2); message.Clear(); TestUtilLite::ExpectExtensionsClear(message); } } TEST(Lite, AllLite8) { std::string data; { protobuf_unittest::TestPackedTypesLite message, message2; protobuf_unittest::TestEmptyMessageLite empty_message; TestUtilLite::ExpectPackedClear(message); TestUtilLite::SetPackedFields(&message); data = message.SerializeAsString(); empty_message.ParseFromString(data); data.clear(); data = empty_message.SerializeAsString(); message2.ParseFromString(data); data = message2.SerializeAsString(); TestUtilLite::ExpectPackedFieldsSet(message2); message.Clear(); TestUtilLite::ExpectPackedClear(message); } } TEST(Lite, AllLite9) { std::string data; { protobuf_unittest::TestPackedExtensionsLite message, message2; protobuf_unittest::TestEmptyMessageLite empty_message; TestUtilLite::ExpectPackedExtensionsClear(message); TestUtilLite::SetPackedExtensions(&message); data = message.SerializeAsString(); empty_message.ParseFromString(data); data.clear(); data = empty_message.SerializeAsString(); message2.ParseFromString(data); data = message2.SerializeAsString(); TestUtilLite::ExpectPackedExtensionsSet(message2); message.Clear(); TestUtilLite::ExpectPackedExtensionsClear(message); } } TEST(Lite, AllLite10) { std::string data; { // Test Unknown fields swap protobuf_unittest::TestEmptyMessageLite empty_message, empty_message2; SetAllTypesInEmptyMessageUnknownFields(&empty_message); SetSomeTypesInEmptyMessageUnknownFields(&empty_message2); data = empty_message.SerializeAsString(); std::string data2 = empty_message2.SerializeAsString(); empty_message.Swap(&empty_message2); EXPECT_EQ(data, empty_message2.SerializeAsString()); EXPECT_EQ(data2, empty_message.SerializeAsString()); } } TEST(Lite, AllLite11) { std::string data; { // Test unknown fields swap with self protobuf_unittest::TestEmptyMessageLite empty_message; SetAllTypesInEmptyMessageUnknownFields(&empty_message); data = empty_message.SerializeAsString(); empty_message.Swap(&empty_message); EXPECT_EQ(data, empty_message.SerializeAsString()); } } TEST(Lite, AllLite12) { std::string data; { // Test MergeFrom with unknown fields protobuf_unittest::TestAllTypesLite message, message2; protobuf_unittest::TestEmptyMessageLite empty_message, empty_message2; message.set_optional_int32(101); message.add_repeated_int32(201); message.set_optional_nested_enum(unittest::TestAllTypesLite::BAZ); message2.set_optional_int64(102); message2.add_repeated_int64(202); message2.set_optional_foreign_enum(unittest::FOREIGN_LITE_BAZ); data = message.SerializeAsString(); empty_message.ParseFromString(data); data = message2.SerializeAsString(); empty_message2.ParseFromString(data); message.MergeFrom(message2); empty_message.MergeFrom(empty_message2); data = empty_message.SerializeAsString(); message2.ParseFromString(data); // We do not compare the serialized output of a normal message and a lite // message because the order of fields do not match. We convert lite message // back into normal message, then compare. EXPECT_EQ(message.SerializeAsString(), message2.SerializeAsString()); } } TEST(Lite, AllLite13) { std::string data; { // Test unknown enum value protobuf_unittest::TestAllTypesLite message; std::string buffer; { io::StringOutputStream output_stream(&buffer); io::CodedOutputStream coded_output(&output_stream); internal::WireFormatLite::WriteTag( protobuf_unittest::TestAllTypesLite::kOptionalNestedEnumFieldNumber, internal::WireFormatLite::WIRETYPE_VARINT, &coded_output); coded_output.WriteVarint32(10); internal::WireFormatLite::WriteTag( protobuf_unittest::TestAllTypesLite::kRepeatedNestedEnumFieldNumber, internal::WireFormatLite::WIRETYPE_VARINT, &coded_output); coded_output.WriteVarint32(20); } message.ParseFromString(buffer); data = message.SerializeAsString(); EXPECT_EQ(data, buffer); } } TEST(Lite, AllLite14) { std::string data; { // Test Clear with unknown fields protobuf_unittest::TestEmptyMessageLite empty_message; SetAllTypesInEmptyMessageUnknownFields(&empty_message); empty_message.Clear(); EXPECT_EQ(0, empty_message.unknown_fields().size()); } } // Tests for map lite ============================================= TEST(Lite, AllLite15) { std::string data; { // Accessors protobuf_unittest::TestMapLite message; MapLiteTestUtil::SetMapFields(&message); MapLiteTestUtil::ExpectMapFieldsSet(message); MapLiteTestUtil::ModifyMapFields(&message); MapLiteTestUtil::ExpectMapFieldsModified(message); } } TEST(Lite, AllLite16) { std::string data; { // SetMapFieldsInitialized protobuf_unittest::TestMapLite message; MapLiteTestUtil::SetMapFieldsInitialized(&message); MapLiteTestUtil::ExpectMapFieldsSetInitialized(message); } } TEST(Lite, AllLite17) { std::string data; { // Clear protobuf_unittest::TestMapLite message; MapLiteTestUtil::SetMapFields(&message); message.Clear(); MapLiteTestUtil::ExpectClear(message); } } TEST(Lite, AllLite18) { std::string data; { // ClearMessageMap protobuf_unittest::TestMessageMapLite message; // Creates a TestAllTypes with default value TestUtilLite::ExpectClear((*message.mutable_map_int32_message())[0]); } } TEST(Lite, AllLite19) { std::string data; { // CopyFrom protobuf_unittest::TestMapLite message1, message2; MapLiteTestUtil::SetMapFields(&message1); message2.CopyFrom(message1); MapLiteTestUtil::ExpectMapFieldsSet(message2); // Copying from self should be a no-op. message2.CopyFrom(message2); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite20) { std::string data; { // CopyFromMessageMap protobuf_unittest::TestMessageMapLite message1, message2; (*message1.mutable_map_int32_message())[0].add_repeated_int32(100); (*message2.mutable_map_int32_message())[0].add_repeated_int32(101); message1.CopyFrom(message2); // Checks repeated field is overwritten. EXPECT_EQ(1, message1.map_int32_message().at(0).repeated_int32_size()); EXPECT_EQ(101, message1.map_int32_message().at(0).repeated_int32(0)); } } TEST(Lite, AllLite21) { std::string data; { // SwapWithEmpty protobuf_unittest::TestMapLite message1, message2; MapLiteTestUtil::SetMapFields(&message1); MapLiteTestUtil::ExpectMapFieldsSet(message1); MapLiteTestUtil::ExpectClear(message2); message1.Swap(&message2); MapLiteTestUtil::ExpectMapFieldsSet(message2); MapLiteTestUtil::ExpectClear(message1); } } TEST(Lite, AllLite22) { std::string data; { // SwapWithSelf protobuf_unittest::TestMapLite message; MapLiteTestUtil::SetMapFields(&message); MapLiteTestUtil::ExpectMapFieldsSet(message); message.Swap(&message); MapLiteTestUtil::ExpectMapFieldsSet(message); } } TEST(Lite, AllLite23) { std::string data; { // SwapWithOther protobuf_unittest::TestMapLite message1, message2; MapLiteTestUtil::SetMapFields(&message1); MapLiteTestUtil::SetMapFields(&message2); MapLiteTestUtil::ModifyMapFields(&message2); message1.Swap(&message2); MapLiteTestUtil::ExpectMapFieldsModified(message1); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite24) { std::string data; { // CopyConstructor protobuf_unittest::TestMapLite message1; MapLiteTestUtil::SetMapFields(&message1); protobuf_unittest::TestMapLite message2(message1); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite25) { std::string data; { // CopyAssignmentOperator protobuf_unittest::TestMapLite message1; MapLiteTestUtil::SetMapFields(&message1); protobuf_unittest::TestMapLite message2; message2 = message1; MapLiteTestUtil::ExpectMapFieldsSet(message2); // Make sure that self-assignment does something sane. message2.operator=(message2); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite26) { std::string data; { // NonEmptyMergeFrom protobuf_unittest::TestMapLite message1, message2; MapLiteTestUtil::SetMapFields(&message1); // This field will test merging into an empty spot. (*message2.mutable_map_int32_int32())[1] = 1; message1.mutable_map_int32_int32()->erase(1); // This tests overwriting. (*message2.mutable_map_int32_double())[1] = 1; (*message1.mutable_map_int32_double())[1] = 2; message1.MergeFrom(message2); MapLiteTestUtil::ExpectMapFieldsSet(message1); } } TEST(Lite, AllLite27) { std::string data; { // MergeFromMessageMap protobuf_unittest::TestMessageMapLite message1, message2; (*message1.mutable_map_int32_message())[0].add_repeated_int32(100); (*message2.mutable_map_int32_message())[0].add_repeated_int32(101); message1.MergeFrom(message2); // Checks repeated field is overwritten. EXPECT_EQ(1, message1.map_int32_message().at(0).repeated_int32_size()); EXPECT_EQ(101, message1.map_int32_message().at(0).repeated_int32(0)); } } TEST(Lite, AllLite28) { std::string data; { // Test the generated SerializeWithCachedSizesToArray() protobuf_unittest::TestMapLite message1, message2; std::string data; MapLiteTestUtil::SetMapFields(&message1); size_t size = message1.ByteSizeLong(); data.resize(size); ::uint8_t* start = reinterpret_cast<::uint8_t*>(::google::protobuf::string_as_array(&data)); ::uint8_t* end = message1.SerializeWithCachedSizesToArray(start); EXPECT_EQ(size, end - start); EXPECT_TRUE(message2.ParseFromString(data)); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite29) { std::string data; { // Test the generated SerializeWithCachedSizes() protobuf_unittest::TestMapLite message1, message2; MapLiteTestUtil::SetMapFields(&message1); size_t size = message1.ByteSizeLong(); std::string data; data.resize(size); { // Allow the output stream to buffer only one byte at a time. io::ArrayOutputStream array_stream(::google::protobuf::string_as_array(&data), size, 1); io::CodedOutputStream output_stream(&array_stream); message1.SerializeWithCachedSizes(&output_stream); EXPECT_FALSE(output_stream.HadError()); EXPECT_EQ(size, output_stream.ByteCount()); } EXPECT_TRUE(message2.ParseFromString(data)); MapLiteTestUtil::ExpectMapFieldsSet(message2); } } TEST(Lite, AllLite32) { std::string data; { // Proto2UnknownEnum protobuf_unittest::TestEnumMapPlusExtraLite from; (*from.mutable_known_map_field())[0] = protobuf_unittest::E_PROTO2_MAP_ENUM_FOO_LITE; (*from.mutable_unknown_map_field())[0] = protobuf_unittest::E_PROTO2_MAP_ENUM_EXTRA_LITE; std::string data; from.SerializeToString(&data); protobuf_unittest::TestEnumMapLite to; EXPECT_TRUE(to.ParseFromString(data)); EXPECT_EQ(0, to.unknown_map_field().size()); EXPECT_FALSE(to.mutable_unknown_fields()->empty()); ASSERT_EQ(1, to.known_map_field().size()); EXPECT_EQ(protobuf_unittest::PROTO2_MAP_ENUM_FOO_LITE, to.known_map_field().at(0)); data.clear(); from.Clear(); to.SerializeToString(&data); EXPECT_TRUE(from.ParseFromString(data)); ASSERT_EQ(1, from.known_map_field().size()); EXPECT_EQ(protobuf_unittest::E_PROTO2_MAP_ENUM_FOO_LITE, from.known_map_field().at(0)); ASSERT_EQ(1, from.unknown_map_field().size()); EXPECT_EQ(protobuf_unittest::E_PROTO2_MAP_ENUM_EXTRA_LITE, from.unknown_map_field().at(0)); } } TEST(Lite, AllLite33) { std::string data; { // StandardWireFormat protobuf_unittest::TestMapLite message; std::string data = "\x0A\x04\x08\x01\x10\x01"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); EXPECT_EQ(1, message.map_int32_int32().at(1)); } } TEST(Lite, AllLite34) { std::string data; { // UnorderedWireFormat protobuf_unittest::TestMapLite message; // put value before key in wire format std::string data = "\x0A\x04\x10\x01\x08\x02"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); ASSERT_NE(message.map_int32_int32().find(2), message.map_int32_int32().end()); EXPECT_EQ(1, message.map_int32_int32().at(2)); } } TEST(Lite, AllLite35) { std::string data; { // DuplicatedKeyWireFormat protobuf_unittest::TestMapLite message; // Two key fields in wire format std::string data = "\x0A\x06\x08\x01\x08\x02\x10\x01"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); EXPECT_EQ(1, message.map_int32_int32().at(2)); } } TEST(Lite, AllLite36) { std::string data; { // DuplicatedValueWireFormat protobuf_unittest::TestMapLite message; // Two value fields in wire format std::string data = "\x0A\x06\x08\x01\x10\x01\x10\x02"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); EXPECT_EQ(2, message.map_int32_int32().at(1)); } } TEST(Lite, AllLite37) { std::string data; { // MissedKeyWireFormat protobuf_unittest::TestMapLite message; // No key field in wire format std::string data = "\x0A\x02\x10\x01"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); ASSERT_NE(message.map_int32_int32().find(0), message.map_int32_int32().end()); EXPECT_EQ(1, message.map_int32_int32().at(0)); } } TEST(Lite, AllLite38) { std::string data; { // MissedValueWireFormat protobuf_unittest::TestMapLite message; // No value field in wire format std::string data = "\x0A\x02\x08\x01"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); ASSERT_NE(message.map_int32_int32().find(1), message.map_int32_int32().end()); EXPECT_EQ(0, message.map_int32_int32().at(1)); } } TEST(Lite, AllLite39) { std::string data; { // UnknownFieldWireFormat protobuf_unittest::TestMapLite message; // Unknown field in wire format std::string data = "\x0A\x06\x08\x02\x10\x03\x18\x01"; EXPECT_TRUE(message.ParseFromString(data)); ASSERT_EQ(1, message.map_int32_int32().size()); EXPECT_EQ(3, message.map_int32_int32().at(2)); } } TEST(Lite, AllLite40) { std::string data; { // CorruptedWireFormat protobuf_unittest::TestMapLite message; // corrupted data in wire format std::string data = "\x0A\x06\x08\x02\x11\x03"; EXPECT_FALSE(message.ParseFromString(data)); } } TEST(Lite, AllLite41) { std::string data; { // IsInitialized protobuf_unittest::TestRequiredMessageMapLite map_message; // Add an uninitialized message. (*map_message.mutable_map_field())[0]; EXPECT_FALSE(map_message.IsInitialized()); // Initialize uninitialized message (*map_message.mutable_map_field())[0].set_a(0); (*map_message.mutable_map_field())[0].set_b(0); (*map_message.mutable_map_field())[0].set_c(0); EXPECT_TRUE(map_message.IsInitialized()); } } TEST(Lite, AllLite42) { std::string data; { // Check that adding more values to enum does not corrupt message // when passed through an old client. protobuf_unittest::V2MessageLite v2_message; v2_message.set_int_field(800); // Set enum field to the value not understood by the old client. v2_message.set_enum_field(protobuf_unittest::V2_SECOND); std::string v2_bytes = v2_message.SerializeAsString(); protobuf_unittest::V1MessageLite v1_message; v1_message.ParseFromString(v2_bytes); EXPECT_TRUE(v1_message.IsInitialized()); EXPECT_EQ(v1_message.int_field(), v2_message.int_field()); // V1 client does not understand V2_SECOND value, so it discards it and // uses default value instead. EXPECT_EQ(v1_message.enum_field(), protobuf_unittest::V1_FIRST); // However, when re-serialized, it should preserve enum value. std::string v1_bytes = v1_message.SerializeAsString(); protobuf_unittest::V2MessageLite same_v2_message; same_v2_message.ParseFromString(v1_bytes); EXPECT_EQ(v2_message.int_field(), same_v2_message.int_field()); EXPECT_EQ(v2_message.enum_field(), same_v2_message.enum_field()); } } // Test that when parsing a oneof, we can successfully clear whatever already // happened to be stored in the oneof. TEST(Lite, AllLite43) { protobuf_unittest::TestOneofParsingLite message1; message1.set_oneof_int32(17); std::string serialized; EXPECT_TRUE(message1.SerializeToString(&serialized)); // Submessage { protobuf_unittest::TestOneofParsingLite message2; message2.mutable_oneof_submessage(); io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream)); EXPECT_EQ(17, message2.oneof_int32()); } // String { protobuf_unittest::TestOneofParsingLite message2; message2.set_oneof_string("string"); io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream)); EXPECT_EQ(17, message2.oneof_int32()); } // Bytes { protobuf_unittest::TestOneofParsingLite message2; message2.set_oneof_bytes("bytes"); io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream)); EXPECT_EQ(17, message2.oneof_int32()); } } // Verify that we can successfully parse fields of various types within oneof // fields. We also verify that we can parse the same data twice into the same // message. TEST(Lite, AllLite44) { // Int32 { protobuf_unittest::TestOneofParsingLite original; original.set_oneof_int32(17); std::string serialized; EXPECT_TRUE(original.SerializeToString(&serialized)); protobuf_unittest::TestOneofParsingLite parsed; for (int i = 0; i < 2; ++i) { io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream)); EXPECT_EQ(17, parsed.oneof_int32()); } } // Submessage { protobuf_unittest::TestOneofParsingLite original; original.mutable_oneof_submessage()->set_optional_int32(5); std::string serialized; EXPECT_TRUE(original.SerializeToString(&serialized)); protobuf_unittest::TestOneofParsingLite parsed; for (int i = 0; i < 2; ++i) { io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream)); EXPECT_EQ(5, parsed.oneof_submessage().optional_int32()); } } // String { protobuf_unittest::TestOneofParsingLite original; original.set_oneof_string("string"); std::string serialized; EXPECT_TRUE(original.SerializeToString(&serialized)); protobuf_unittest::TestOneofParsingLite parsed; for (int i = 0; i < 2; ++i) { io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream)); EXPECT_EQ("string", parsed.oneof_string()); } } // Bytes { protobuf_unittest::TestOneofParsingLite original; original.set_oneof_bytes("bytes"); std::string serialized; EXPECT_TRUE(original.SerializeToString(&serialized)); protobuf_unittest::TestOneofParsingLite parsed; for (int i = 0; i < 2; ++i) { io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream)); EXPECT_EQ("bytes", parsed.oneof_bytes()); } } // Enum { protobuf_unittest::TestOneofParsingLite original; original.set_oneof_enum(protobuf_unittest::V2_SECOND); std::string serialized; EXPECT_TRUE(original.SerializeToString(&serialized)); protobuf_unittest::TestOneofParsingLite parsed; for (int i = 0; i < 2; ++i) { io::CodedInputStream input_stream( reinterpret_cast(serialized.data()), serialized.size()); EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream)); EXPECT_EQ(protobuf_unittest::V2_SECOND, parsed.oneof_enum()); } } std::cout << "PASS" << std::endl; } TEST(Lite, AllLite45) { // Test unknown fields are not discarded upon parsing. std::string data = "\20\1"; // varint 1 with field number 2 protobuf_unittest::ForeignMessageLite a; EXPECT_TRUE(a.ParseFromString(data)); io::CodedInputStream input_stream( reinterpret_cast(data.data()), data.size()); EXPECT_TRUE(a.MergePartialFromCodedStream(&input_stream)); std::string serialized = a.SerializeAsString(); EXPECT_EQ(serialized.substr(0, 2), data); EXPECT_EQ(serialized.substr(2), data); } // The following two tests check for wire compatibility between packed and // unpacked repeated fields. There used to be a bug in the generated parsing // code that caused us to calculate the highest possible tag number without // taking into account that a repeated field might not be in the packed (or // unpacked) state we expect. These tests specifically check for that issue by // making sure we can parse repeated fields when the tag is higher than we would // expect. TEST(Lite, AllLite46) { protobuf_unittest::PackedInt32 packed; packed.add_repeated_int32(42); std::string serialized; ASSERT_TRUE(packed.SerializeToString(&serialized)); protobuf_unittest::NonPackedInt32 non_packed; ASSERT_TRUE(non_packed.ParseFromString(serialized)); ASSERT_EQ(1, non_packed.repeated_int32_size()); EXPECT_EQ(42, non_packed.repeated_int32(0)); } TEST(Lite, AllLite47) { protobuf_unittest::NonPackedFixed32 non_packed; non_packed.add_repeated_fixed32(42); std::string serialized; ASSERT_TRUE(non_packed.SerializeToString(&serialized)); protobuf_unittest::PackedFixed32 packed; ASSERT_TRUE(packed.ParseFromString(serialized)); ASSERT_EQ(1, packed.repeated_fixed32_size()); EXPECT_EQ(42, packed.repeated_fixed32(0)); } TEST(Lite, MapCrash) { // See b/113635730 Arena arena; auto msg = Arena::CreateMessage(&arena); // Payload for the map with a enum varint that's longer > // 10 bytes. This causes a parse fail and a subsequent delete. field 16 // (map) tag = 128+2 = \202 \1 // 13 long \15 // int32 key = 1 (\10 \1) // MapEnumLite value = too long varint (parse error) EXPECT_FALSE(msg->ParseFromString( "\202\1\15\10\1\200\200\200\200\200\200\200\200\200\200\1")); } TEST(Lite, CorrectEnding) { protobuf_unittest::TestAllTypesLite msg; { // All proto wireformat parsers should act the same on parsing data in as // much as it concerns the parsing, ie. not the interpretation of the data. // TestAllTypesLite is not a group inside another message. So in practice // will not encounter an end-group tag. However the parser should behave // like any wire format parser should. static const char kWireFormat[] = "\204\1"; io::CodedInputStream cis(reinterpret_cast(kWireFormat), 2); // The old CodedInputStream parser got an optimization (ReadTagNoLastTag) // for non-group messages (like TestAllTypesLite) which made it not accept // end-group. This is not a real big deal, but I think going forward its // good to have all parse loops behave 'exactly' the same. EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis)); EXPECT_FALSE(cis.ConsumedEntireMessage()); EXPECT_TRUE(cis.LastTagWas(132)); } { // This is an incomplete end-group tag. This should be a genuine parse // failure. static const char kWireFormat[] = "\214"; io::CodedInputStream cis(reinterpret_cast(kWireFormat), 1); // Unfortunately the old parser detects a parse error in ReadTag and returns // 0 (as it states 0 is an invalid tag). However 0 is not an invalid tag // as it can be used to terminate the stream, so this returns true. EXPECT_FALSE(msg.MergePartialFromCodedStream(&cis)); } } TEST(Lite, DebugString) { protobuf_unittest::TestAllTypesLite message1, message2; EXPECT_TRUE(HasPrefixString(message1.DebugString(), "MessageLite at 0x")); EXPECT_TRUE(HasPrefixString(message2.DebugString(), "MessageLite at 0x")); // DebugString() and ShortDebugString() are the same for now. EXPECT_EQ(message1.DebugString(), message1.ShortDebugString()); // Even identical lite protos should have different DebugString() output. Part // of the reason for including the memory address is so that we get some // non-determinism, which should make it easier for us to change the output // later without breaking any code. EXPECT_NE(message1.DebugString(), message2.DebugString()); } TEST(Lite, EnumValueToName) { EXPECT_EQ("FOREIGN_LITE_FOO", protobuf_unittest::ForeignEnumLite_Name( protobuf_unittest::FOREIGN_LITE_FOO)); EXPECT_EQ("FOREIGN_LITE_BAR", protobuf_unittest::ForeignEnumLite_Name( protobuf_unittest::FOREIGN_LITE_BAR)); EXPECT_EQ("FOREIGN_LITE_BAZ", protobuf_unittest::ForeignEnumLite_Name( protobuf_unittest::FOREIGN_LITE_BAZ)); EXPECT_EQ("", protobuf_unittest::ForeignEnumLite_Name(0)); EXPECT_EQ("", protobuf_unittest::ForeignEnumLite_Name(999)); } TEST(Lite, NestedEnumValueToName) { EXPECT_EQ("FOO", protobuf_unittest::TestAllTypesLite::NestedEnum_Name( protobuf_unittest::TestAllTypesLite::FOO)); EXPECT_EQ("BAR", protobuf_unittest::TestAllTypesLite::NestedEnum_Name( protobuf_unittest::TestAllTypesLite::BAR)); EXPECT_EQ("BAZ", protobuf_unittest::TestAllTypesLite::NestedEnum_Name( protobuf_unittest::TestAllTypesLite::BAZ)); EXPECT_EQ("", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(0)); EXPECT_EQ("", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(999)); } TEST(Lite, EnumNameToValue) { protobuf_unittest::ForeignEnumLite value; ASSERT_TRUE( protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_FOO", &value)); EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_FOO, value); ASSERT_TRUE( protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_BAR", &value)); EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_BAR, value); ASSERT_TRUE( protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_BAZ", &value)); EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_BAZ, value); // Non-existent values EXPECT_FALSE(protobuf_unittest::ForeignEnumLite_Parse("E", &value)); EXPECT_FALSE( protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_C", &value)); EXPECT_FALSE(protobuf_unittest::ForeignEnumLite_Parse("G", &value)); } TEST(Lite, NestedEnumNameToValue) { protobuf_unittest::TestAllTypesLite::NestedEnum value; ASSERT_TRUE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("FOO", &value)); EXPECT_EQ(protobuf_unittest::TestAllTypesLite::FOO, value); ASSERT_TRUE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("BAR", &value)); EXPECT_EQ(protobuf_unittest::TestAllTypesLite::BAR, value); ASSERT_TRUE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("BAZ", &value)); EXPECT_EQ(protobuf_unittest::TestAllTypesLite::BAZ, value); // Non-existent values EXPECT_FALSE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("A", &value)); EXPECT_FALSE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("C", &value)); EXPECT_FALSE( protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("G", &value)); } TEST(Lite, AliasedEnum) { // Enums with allow_alias = true can have multiple entries with the same // value. EXPECT_EQ("FOO1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name( protobuf_unittest::DupEnum::FOO1)); EXPECT_EQ("FOO1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name( protobuf_unittest::DupEnum::FOO2)); EXPECT_EQ("BAR1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name( protobuf_unittest::DupEnum::BAR1)); EXPECT_EQ("BAR1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name( protobuf_unittest::DupEnum::BAR2)); EXPECT_EQ("BAZ", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name( protobuf_unittest::DupEnum::BAZ)); EXPECT_EQ("", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(999)); protobuf_unittest::DupEnum::TestEnumWithDupValueLite value; ASSERT_TRUE( protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Parse("FOO1", &value)); EXPECT_EQ(protobuf_unittest::DupEnum::FOO1, value); value = static_cast(0); ASSERT_TRUE( protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Parse("FOO2", &value)); EXPECT_EQ(protobuf_unittest::DupEnum::FOO2, value); } TEST(Lite, CodedInputStreamRollback) { { protobuf_unittest::TestAllTypesLite m; m.set_optional_bytes(std::string(30, 'a')); std::string serialized = m.SerializeAsString(); serialized += '\014'; serialized += std::string(3, ' '); io::ArrayInputStream is(serialized.data(), serialized.size(), serialized.size() - 6); { io::CodedInputStream cis(&is); m.Clear(); m.MergePartialFromCodedStream(&cis); EXPECT_TRUE(cis.LastTagWas(12)); EXPECT_FALSE(cis.ConsumedEntireMessage()); // Should leave is with 3 spaces; } const void* data; int size; ASSERT_TRUE(is.Next(&data, &size)); ASSERT_EQ(size, 3); EXPECT_EQ(memcmp(data, " ", 3), 0); } { protobuf_unittest::TestPackedTypesLite m; constexpr int kCount = 30; for (int i = 0; i < kCount; i++) m.add_packed_fixed32(i); std::string serialized = m.SerializeAsString(); serialized += '\014'; serialized += std::string(3, ' '); // Buffer breaks in middle of a fixed32. io::ArrayInputStream is(serialized.data(), serialized.size(), serialized.size() - 7); { io::CodedInputStream cis(&is); m.Clear(); m.MergePartialFromCodedStream(&cis); EXPECT_TRUE(cis.LastTagWas(12)); EXPECT_FALSE(cis.ConsumedEntireMessage()); // Should leave is with 3 spaces; } ASSERT_EQ(m.packed_fixed32_size(), kCount); for (int i = 0; i < kCount; i++) EXPECT_EQ(m.packed_fixed32(i), i); const void* data; int size; ASSERT_TRUE(is.Next(&data, &size)); ASSERT_EQ(size, 3); EXPECT_EQ(memcmp(data, " ", 3), 0); } { protobuf_unittest::TestPackedTypesLite m; constexpr int kCount = 30; // Make sure we output 2 byte varints for (int i = 0; i < kCount; i++) m.add_packed_fixed32(128 + i); std::string serialized = m.SerializeAsString(); serialized += '\014'; serialized += std::string(3, ' '); // Buffer breaks in middle of a 2 byte varint. io::ArrayInputStream is(serialized.data(), serialized.size(), serialized.size() - 5); { io::CodedInputStream cis(&is); m.Clear(); m.MergePartialFromCodedStream(&cis); EXPECT_TRUE(cis.LastTagWas(12)); EXPECT_FALSE(cis.ConsumedEntireMessage()); // Should leave is with 3 spaces; } ASSERT_EQ(m.packed_fixed32_size(), kCount); for (int i = 0; i < kCount; i++) EXPECT_EQ(m.packed_fixed32(i), i + 128); const void* data; int size; ASSERT_TRUE(is.Next(&data, &size)); ASSERT_EQ(size, 3); EXPECT_EQ(memcmp(data, " ", 3), 0); } } } // namespace protobuf } // namespace google