//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: Math primitives.
//
//===========================================================================//

/// FIXME: As soon as all references to mathlib.c are gone, include it in here

#include "core/stdafx.h"

#include "tier0/basetypes.h"
//#include <memory.h>
#include "tier0/dbg.h"
#include "tier0/cpu.h"

//#include "tier0/vprof.h"
//#define _VPROF_MATHLIB

#if !defined(__SPU__)
#pragma warning(disable:4244)   // "conversion from 'const int' to 'float', possible loss of data"
#pragma warning(disable:4730)	// "mixing _m64 and floating point expressions may result in incorrect code"
#endif

#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#include "mathlib/vplane.h"
#if !defined(__SPU__)
#include "mathlib/vmatrix.h"
#endif

#if !defined( _X360 )
//#include "sse.h"
#endif

#include "mathlib/ssemath.h"
#include "mathlib/ssequaternion.h"

// memdbgon must be the last include file in a .cpp file!!!
//#include "tier0/memdbgon.h"

bool s_bMathlibInitialized = false;
#ifdef PARANOID
// User must provide an implementation of Sys_Error()
void Sys_Error(char* error, ...);
#endif

const Vector3D vec3_origin(0, 0, 0);
const QAngle vec3_angle(0, 0, 0);
const Quaternion quat_identity(0, 0, 0, 1);
const Vector3D vec3_invalid(FLT_MAX, FLT_MAX, FLT_MAX);
const int nanmask = 255 << 23;

const matrix3x4a_t g_MatrixIdentity(
	1, 0, 0, 0,
	0, 1, 0, 0,
	0, 0, 1, 0
);

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Standard C implementations of optimized routines:
//-----------------------------------------------------------------------------
float _sqrtf(float _X)
{
	Assert(s_bMathlibInitialized);
	return sqrtf(_X);
}

float _rsqrtf(float x)
{
	Assert(s_bMathlibInitialized);

	return 1.f / _sqrtf(x);
}

#ifndef PLATFORM_PPC
float VectorNormalize(Vector3D& vec)
{
#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("_VectorNormalize", "Mathlib");
#endif
	Assert(s_bMathlibInitialized);
	float radius = sqrtf(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);

	// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
	float iradius = 1.f / (radius + FLT_EPSILON);

	vec.x *= iradius;
	vec.y *= iradius;
	vec.z *= iradius;

	return radius;
}
#endif


// TODO: Add fast C VectorNormalizeFast.
// Perhaps use approximate rsqrt trick, if the accuracy isn't too bad.
void FASTCALL _VectorNormalizeFast(Vector3D& vec)
{
	Assert(s_bMathlibInitialized);

	// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
	float iradius = 1.f / (sqrtf(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z) + FLT_EPSILON);

	vec.x *= iradius;
	vec.y *= iradius;
	vec.z *= iradius;

}

float _InvRSquared(const float* v)
{
	Assert(s_bMathlibInitialized);
	float	r2 = DotProduct(v, v);
	return r2 < 1.f ? 1.f : 1 / r2;
}

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Function pointers selecting the appropriate implementation
//-----------------------------------------------------------------------------
void  (FASTCALL* pfVectorNormalizeFast)(Vector3D& v) = _VectorNormalizeFast;

float SinCosTable[SIN_TABLE_SIZE];
void InitSinCosTable()
{
	for (int i = 0; i < SIN_TABLE_SIZE; i++)
	{
		SinCosTable[i] = sin(i * 2.0 * M_PI / SIN_TABLE_SIZE);
	}
}
#endif // !defined(__SPU__)


qboolean VectorsEqual(const float* v1, const float* v2)
{
	Assert(s_bMathlibInitialized);
	return ((v1[0] == v2[0]) &&
		(v1[1] == v2[1]) &&
		(v1[2] == v2[2]));
}
#endif // #if !defined(__SPU__)

//-----------------------------------------------------------------------------
// Purpose: Generates Euler angles given a left-handed orientation matrix. The
//			columns of the matrix contain the forward, left, and up vectors.
// Input  : matrix - Left-handed orientation matrix.
//			angles[PITCH, YAW, ROLL]. Receives right-handed counterclockwise
//				rotations in degrees around Y, Z, and X respectively.
//-----------------------------------------------------------------------------

void MatrixAngles(const matrix3x4_t& matrix, RadianEuler& angles, Vector3D& position)
{
	MatrixGetColumn(matrix, 3, position);
	MatrixAngles(matrix, angles);
}

void MatrixAngles(const matrix3x4_t& matrix, Quaternion& q, Vector3D& pos)
{
#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("MatrixQuaternion", "Mathlib");
#endif
	float trace;
	trace = matrix[0][0] + matrix[1][1] + matrix[2][2] + 1.0f;
	if (trace > 1.0f + FLT_EPSILON)
	{
		// VPROF_INCREMENT_COUNTER("MatrixQuaternion A",1);
		q.x = (matrix[2][1] - matrix[1][2]);
		q.y = (matrix[0][2] - matrix[2][0]);
		q.z = (matrix[1][0] - matrix[0][1]);
		q.w = trace;
	}
	else if (matrix[0][0] > matrix[1][1] && matrix[0][0] > matrix[2][2])
	{
		// VPROF_INCREMENT_COUNTER("MatrixQuaternion B",1);
		trace = 1.0f + matrix[0][0] - matrix[1][1] - matrix[2][2];
		q.x = trace;
		q.y = (matrix[1][0] + matrix[0][1]);
		q.z = (matrix[0][2] + matrix[2][0]);
		q.w = (matrix[2][1] - matrix[1][2]);
	}
	else if (matrix[1][1] > matrix[2][2])
	{
		// VPROF_INCREMENT_COUNTER("MatrixQuaternion C",1);
		trace = 1.0f + matrix[1][1] - matrix[0][0] - matrix[2][2];
		q.x = (matrix[0][1] + matrix[1][0]);
		q.y = trace;
		q.z = (matrix[2][1] + matrix[1][2]);
		q.w = (matrix[0][2] - matrix[2][0]);
	}
	else
	{
		// VPROF_INCREMENT_COUNTER("MatrixQuaternion D",1);
		trace = 1.0f + matrix[2][2] - matrix[0][0] - matrix[1][1];
		q.x = (matrix[0][2] + matrix[2][0]);
		q.y = (matrix[2][1] + matrix[1][2]);
		q.z = trace;
		q.w = (matrix[1][0] - matrix[0][1]);
	}

	QuaternionNormalize(q);

#if 0
	// check against the angle version
	RadianEuler ang;
	MatrixAngles(matrix, ang);
	Quaternion test;
	AngleQuaternion(ang, test);
	float d = QuaternionDotProduct(q, test);
	Assert(fabs(d) > 0.99 && fabs(d) < 1.01);
#endif

	MatrixGetColumn(matrix, 3, pos);
}

void MatrixAngles(const matrix3x4_t& matrix, float* angles)
{
#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("MatrixAngles", "Mathlib");
#endif
	Assert(s_bMathlibInitialized);
	float forward[3];
	float left[3];
	float up[3];

	//
	// Extract the basis vectors from the matrix. Since we only need the Z
	// component of the up vector, we don't get X and Y.
	//
	forward[0] = matrix[0][0];
	forward[1] = matrix[1][0];
	forward[2] = matrix[2][0];
	left[0] = matrix[0][1];
	left[1] = matrix[1][1];
	left[2] = matrix[2][1];
	up[2] = matrix[2][2];

	float xyDist = sqrtf(forward[0] * forward[0] + forward[1] * forward[1]);

	// enough here to get angles?
	if (xyDist > 0.001f)
	{
		// (yaw)	y = ATAN( forward.y, forward.x );		-- in our space, forward is the X axis
		angles[1] = RAD2DEG(atan2f(forward[1], forward[0]));

		// (pitch)	x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
		angles[0] = RAD2DEG(atan2f(-forward[2], xyDist));

		// (roll)	z = ATAN( left.z, up.z );
		angles[2] = RAD2DEG(atan2f(left[2], up[2]));
	}
	else	// forward is mostly Z, gimbal lock-
	{
		// (yaw)	y = ATAN( -left.x, left.y );			-- forward is mostly z, so use right for yaw
		angles[1] = RAD2DEG(atan2f(-left[0], left[1]));

		// (pitch)	x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
		angles[0] = RAD2DEG(atan2f(-forward[2], xyDist));

		// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
		angles[2] = 0;
	}
}

Vector3D MatrixNormalize(const matrix3x4_t& in, matrix3x4_t& out)
{
	Vector3D vScale;
	vScale.x = sqrt(in[0][0] * in[0][0] + in[1][0] * in[1][0] + in[2][0] * in[2][0]);
	vScale.y = sqrt(in[0][1] * in[0][1] + in[1][1] * in[1][1] + in[2][1] * in[2][1]);
	vScale.z = sqrt(in[0][2] * in[0][2] + in[1][2] * in[1][2] + in[2][2] * in[2][2]);

	matrix3x4_t norm;
	float flInvScaleX = 1.0f / vScale.x;
	float flInvScaleY = 1.0f / vScale.y;
	float flInvScaleZ = 1.0f / vScale.z;
	out[0][0] = in[0][0] * flInvScaleX; out[1][0] = in[1][0] * flInvScaleX; out[2][0] = in[2][0] * flInvScaleX;
	out[0][1] = in[0][1] * flInvScaleY; out[1][1] = in[1][1] * flInvScaleY; out[2][1] = in[2][1] * flInvScaleY;
	out[0][2] = in[0][2] * flInvScaleZ; out[1][2] = in[1][2] * flInvScaleZ; out[2][2] = in[2][2] * flInvScaleZ;
	out[0][3] = in[0][3]; out[1][3] = in[1][3]; out[2][3] = in[2][3];

	return vScale;
}



#if !defined(__SPU__)
// transform in1 by the matrix in2
void VectorTransform(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out)
{
	Assert(s_bMathlibInitialized);
	float x = DotProduct(in1, in2[0]) + in2[0][3];
	float y = DotProduct(in1, in2[1]) + in2[1][3];
	float z = DotProduct(in1, in2[2]) + in2[2][3];

	out[0] = x;
	out[1] = y;
	out[2] = z;
}


// assuming the matrix is orthonormal, transform in1 by the transpose (also the inverse in this case) of in2.
void VectorITransform(const float* in1, const matrix3x4_t& in2, float* out)
{
	Assert(s_bMathlibInitialized);
	float in1t[3];

	in1t[0] = in1[0] - in2[0][3];
	in1t[1] = in1[1] - in2[1][3];
	in1t[2] = in1[2] - in2[2][3];

	float x = in1t[0] * in2[0][0] + in1t[1] * in2[1][0] + in1t[2] * in2[2][0];
	float y = in1t[0] * in2[0][1] + in1t[1] * in2[1][1] + in1t[2] * in2[2][1];
	float z = in1t[0] * in2[0][2] + in1t[1] * in2[1][2] + in1t[2] * in2[2][2];

	out[0] = x;
	out[1] = y;
	out[2] = z;
}
#endif // #if !defined(__SPU__)

// assume in2 is a rotation and rotate the input vector
void VectorRotate(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out)
{
	Assert(s_bMathlibInitialized);
	float x = DotProduct(in1, in2[0]);
	float y = DotProduct(in1, in2[1]);
	float z = DotProduct(in1, in2[2]);

	out[0] = x;
	out[1] = y;
	out[2] = z;
}

#if !defined(__SPU__)
// assume in2 is a rotation and rotate the input vector
void VectorRotate(const Vector3D& in1, const QAngle& in2, Vector3D& out)
{
	matrix3x4_t matRotate;
	AngleMatrix(in2, matRotate);
	VectorRotate(in1, matRotate, out);
}

// assume in2 is a rotation and rotate the input vector
void VectorRotate(const Vector3D& in1, const Quaternion& in2, Vector3D& out)
{
#if WE_WANT_OUR_CODE_TO_BE_POINTLESSLY_SLOW
	matrix3x4_t matRotate;
	QuaternionMatrix(in2, matRotate);
	VectorRotate(in1, matRotate, out);
#else
	// rotation is  q * v * q^-1

	Quaternion conjugate = in2.Conjugate();


	// do the rotation as unrolled flop code ( QuaternionMult is a function call, which murders instruction scheduling )
	// first q*v
	Quaternion temp;
	temp.x = in2.y * in1.z - in2.z * in1.y + in2.w * in1.x;
	temp.y = -in2.x * in1.z + in2.z * in1.x + in2.w * in1.y;
	temp.z = in2.x * in1.y - in2.y * in1.x + in2.w * in1.z;
	temp.w = -in2.x * in1.x - in2.y * in1.y - in2.z * in1.z;

	// now  (qv)(q*)
	out.x = temp.x * conjugate.w + temp.y * conjugate.z - temp.z * conjugate.y + temp.w * conjugate.x;
	out.y = -temp.x * conjugate.z + temp.y * conjugate.w + temp.z * conjugate.x + temp.w * conjugate.y;
	out.z = temp.x * conjugate.y - temp.y * conjugate.x + temp.z * conjugate.w + temp.w * conjugate.z;
	Assert(fabs(-temp.x * conjugate.x - temp.y * conjugate.y - temp.z * conjugate.z + temp.w * conjugate.w) < 0.0001);
#endif
}


// rotate by the inverse of the matrix
void VectorIRotate(const float* RESTRICT in1, const matrix3x4_t& in2, float* RESTRICT out)
{
	Assert(s_bMathlibInitialized);
	Assert(in1 != out);
	out[0] = in1[0] * in2[0][0] + in1[1] * in2[1][0] + in1[2] * in2[2][0];
	out[1] = in1[0] * in2[0][1] + in1[1] * in2[1][1] + in1[2] * in2[2][1];
	out[2] = in1[0] * in2[0][2] + in1[1] * in2[1][2] + in1[2] * in2[2][2];
}

#ifndef VECTOR_NO_SLOW_OPERATIONS
// transform a set of angles in the output space of parentMatrix to the input space
QAngle TransformAnglesToLocalSpace(const QAngle& angles, const matrix3x4_t& parentMatrix)
{
	matrix3x4_t angToWorld, worldToParent, localMatrix;
	MatrixInvert(parentMatrix, worldToParent);
	AngleMatrix(angles, angToWorld);
	ConcatTransforms(worldToParent, angToWorld, localMatrix);

	QAngle out;
	MatrixAngles(localMatrix, out);
	return out;
}

// transform a set of angles in the input space of parentMatrix to the output space
QAngle TransformAnglesToWorldSpace(const QAngle& angles, const matrix3x4_t& parentMatrix)
{
	matrix3x4_t angToParent, angToWorld;
	AngleMatrix(angles, angToParent);
	ConcatTransforms(parentMatrix, angToParent, angToWorld);
	QAngle out;
	MatrixAngles(angToWorld, out);
	return out;
}

#endif // VECTOR_NO_SLOW_OPERATIONS

void MatrixInitialize(matrix3x4_t& mat, const Vector3D& vecOrigin, const Vector3D& vecXAxis, const Vector3D& vecYAxis, const Vector3D& vecZAxis)
{
	MatrixSetColumn(vecXAxis, 0, mat);
	MatrixSetColumn(vecYAxis, 1, mat);
	MatrixSetColumn(vecZAxis, 2, mat);
	MatrixSetColumn(vecOrigin, 3, mat);
}

void MatrixCopy(const matrix3x4_t& in, matrix3x4_t& out)
{
	Assert(s_bMathlibInitialized);
	memcpy(out.Base(), in.Base(), sizeof(float) * 3 * 4);
}

//-----------------------------------------------------------------------------
// Matrix equality test
//-----------------------------------------------------------------------------
bool MatricesAreEqual(const matrix3x4_t& src1, const matrix3x4_t& src2, float flTolerance)
{
	for (int i = 0; i < 3; ++i)
	{
		for (int j = 0; j < 4; ++j)
		{
			if (fabs(src1[i][j] - src2[i][j]) > flTolerance)
				return false;
		}
	}
	return true;
}
#endif // #if !defined(__SPU__)


// NOTE: This is just the transpose not a general inverse
void MatrixInvert(const matrix3x4_t& in, matrix3x4_t& out)
{
	Assert(s_bMathlibInitialized);
	if (&in == &out)
	{
		V_swap(out[0][1], out[1][0]);
		V_swap(out[0][2], out[2][0]);
		V_swap(out[1][2], out[2][1]);
	}
	else
	{
		// transpose the matrix
		out[0][0] = in[0][0];
		out[0][1] = in[1][0];
		out[0][2] = in[2][0];

		out[1][0] = in[0][1];
		out[1][1] = in[1][1];
		out[1][2] = in[2][1];

		out[2][0] = in[0][2];
		out[2][1] = in[1][2];
		out[2][2] = in[2][2];
	}

	// now fix up the translation to be in the other space
	float tmp[3];
	tmp[0] = in[0][3];
	tmp[1] = in[1][3];
	tmp[2] = in[2][3];

	out[0][3] = -DotProduct(tmp, out[0]);
	out[1][3] = -DotProduct(tmp, out[1]);
	out[2][3] = -DotProduct(tmp, out[2]);
}

void MatrixGetColumn(const matrix3x4_t& in, int column, Vector3D& out)
{
	out.x = in[0][column];
	out.y = in[1][column];
	out.z = in[2][column];
}

void MatrixSetColumn(const Vector3D& in, int column, matrix3x4_t& out)
{
	out[0][column] = in.x;
	out[1][column] = in.y;
	out[2][column] = in.z;
}

#if !defined(__SPU__)
int VectorCompare(const float* v1, const float* v2)
{
	Assert(s_bMathlibInitialized);
	int		i;

	for (i = 0; i < 3; i++)
		if (v1[i] != v2[i])
			return 0;

	return 1;
}

void CrossProduct(const float* v1, const float* v2, float* cross)
{
	Assert(s_bMathlibInitialized);
	Assert(v1 != cross);
	Assert(v2 != cross);
	cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
	cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
	cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
}

size_t Q_log2(unsigned int val)
{
#ifdef _X360 // use hardware
	// both zero and one return zero (per old implementation)
	return (val == 0) ? 0 : 31 - _CountLeadingZeros(val);
#else // use N. Compoop's algorithm ( inherited from days of yore )
	int answer = 0;
	while (val >>= 1)
		answer++;
	return answer;
#endif
}

// Matrix is right-handed x=forward, y=left, z=up.  We a left-handed convention for vectors in the game code (forward, right, up)
void MatrixVectorsFLU(const matrix3x4_t& matrix, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp)
{
	MatrixGetColumn(matrix, FORWARD_AXIS, *pForward);
	MatrixGetColumn(matrix, LEFT_AXIS, *pLeft);
	MatrixGetColumn(matrix, UP_AXIS, *pUp);
}

// Matrix is right-handed x=forward, y=left, z=up.  We a left-handed convention for vectors in the game code (forward, right, up)
void MatrixVectors(const matrix3x4_t& matrix, Vector3D* pForward, Vector3D* pRight, Vector3D* pUp)
{
	MatrixGetColumn(matrix, 0, *pForward);
	MatrixGetColumn(matrix, 1, *pRight);
	MatrixGetColumn(matrix, 2, *pUp);
	*pRight *= -1.0f;
}


void VectorVectors(const Vector3D& forward, Vector3D& right, Vector3D& up)
{
	Assert(s_bMathlibInitialized);
	Vector3D tmp;

	if (fabs(forward[0]) < 1e-6 && fabs(forward[1]) < 1e-6)
	{
		// pitch 90 degrees up/down from identity
		right[0] = 0;
		right[1] = -1;
		right[2] = 0;
		up[0] = -forward[2];
		up[1] = 0;
		up[2] = 0;
	}
	else
	{
		tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0;
		CrossProduct(forward, tmp, right);
		VectorNormalize(right);
		CrossProduct(right, forward, up);
		VectorNormalize(up);
	}
}

void VectorMatrix(const Vector3D& forward, matrix3x4_t& matrix)
{
	Assert(s_bMathlibInitialized);
	Vector3D right, up;
	VectorVectors(forward, right, up);

	MatrixSetColumn(forward, 0, matrix);
	MatrixSetColumn(-right, 1, matrix);
	MatrixSetColumn(up, 2, matrix);
}

void VectorPerpendicularToVector(Vector3D const& in, Vector3D* pvecOut)
{
	float flY = in.y * in.y;
	pvecOut->x = RemapVal(flY, 0, 1, in.z, 1);
	pvecOut->y = 0;
	pvecOut->z = -in.x;
	pvecOut->NormalizeInPlace();
	float flDot = DotProduct(*pvecOut, in);
	*pvecOut -= flDot * in;
	pvecOut->NormalizeInPlace();
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors.  Each vector is optional
//-----------------------------------------------------------------------------
void AngleVectorsFLU(const QAngle& angles, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp)
{
	Assert(s_bMathlibInitialized);

	float sr, sp, sy, cr, cp, cy;

#ifdef _X360
	fltx4 radians, scale, sine, cosine;
	radians = LoadUnaligned3SIMD(angles.Base());
	scale = ReplicateX4(M_PI_F / 180.f);
	radians = MulSIMD(radians, scale);
	SinCos3SIMD(sine, cosine, radians);
	sp = SubFloat(sine, 0);	sy = SubFloat(sine, 1);	sr = SubFloat(sine, 2);
	cp = SubFloat(cosine, 0);	cy = SubFloat(cosine, 1);	cr = SubFloat(cosine, 2);
#else
	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);
	SinCos(DEG2RAD(angles[ROLL]), &sr, &cr);
#endif

	if (pForward)
	{
		(*pForward)[FORWARD_AXIS] = cp * cy;
		(*pForward)[LEFT_AXIS] = cp * sy;
		(*pForward)[UP_AXIS] = -sp;
	}

	if (pLeft)
	{
		(*pLeft)[FORWARD_AXIS] = (sr * sp * cy + cr * -sy);
		(*pLeft)[LEFT_AXIS] = (sr * sp * sy + cr * cy);
		(*pLeft)[UP_AXIS] = sr * cp;
	}

	if (pUp)
	{
		(*pUp)[FORWARD_AXIS] = (cr * sp * cy + -sr * -sy);
		(*pUp)[LEFT_AXIS] = (cr * sp * sy + -sr * cy);
		(*pUp)[UP_AXIS] = cr * cp;
	}
}

void VectorAngles(const float* forward, float* angles)
{
	Assert(s_bMathlibInitialized);
	float	tmp, yaw, pitch;

	if (forward[1] == 0 && forward[0] == 0)
	{
		yaw = 0;
		if (forward[2] > 0)
			pitch = 270;
		else
			pitch = 90;
	}
	else
	{
		yaw = (atan2(forward[1], forward[0]) * 180 / M_PI);
		if (yaw < 0)
			yaw += 360;

		tmp = sqrt(forward[0] * forward[0] + forward[1] * forward[1]);
		pitch = (atan2(-forward[2], tmp) * 180 / M_PI);
		if (pitch < 0)
			pitch += 360;
	}

	angles[0] = pitch;
	angles[1] = yaw;
	angles[2] = 0;
}


/*
================
R_ConcatRotations
================
*/
void ConcatRotations(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out)
{
	Assert(s_bMathlibInitialized);
	Assert(in1 != out);
	Assert(in2 != out);
	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
		in1[0][2] * in2[2][0];
	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
		in1[0][2] * in2[2][1];
	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
		in1[0][2] * in2[2][2];
	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
		in1[1][2] * in2[2][0];
	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
		in1[1][2] * in2[2][1];
	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
		in1[1][2] * in2[2][2];
	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
		in1[2][2] * in2[2][0];
	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
		in1[2][2] * in2[2][1];
	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
		in1[2][2] * in2[2][2];
}
#endif // #if !defined(__SPU__)


void ConcatTransforms_Aligned(const matrix3x4a_t& m0, const matrix3x4a_t& m1, matrix3x4a_t& out)
{
	//AssertAligned(&m0);
	//AssertAligned(&m1);
	//AssertAligned(&out);

	fltx4 lastMask = *(fltx4*)(&g_SIMD_ComponentMask[3]);
	fltx4 rowA0 = LoadAlignedSIMD(m0.m_flMatVal[0]);
	fltx4 rowA1 = LoadAlignedSIMD(m0.m_flMatVal[1]);
	fltx4 rowA2 = LoadAlignedSIMD(m0.m_flMatVal[2]);

	fltx4 rowB0 = LoadAlignedSIMD(m1.m_flMatVal[0]);
	fltx4 rowB1 = LoadAlignedSIMD(m1.m_flMatVal[1]);
	fltx4 rowB2 = LoadAlignedSIMD(m1.m_flMatVal[2]);

	// now we have the rows of m0 and the columns of m1
	// first output row
	fltx4 A0 = SplatXSIMD(rowA0);
	fltx4 A1 = SplatYSIMD(rowA0);
	fltx4 A2 = SplatZSIMD(rowA0);
	fltx4 mul00 = MulSIMD(A0, rowB0);
	fltx4 mul01 = MulSIMD(A1, rowB1);
	fltx4 mul02 = MulSIMD(A2, rowB2);
	fltx4 out0 = AddSIMD(mul00, AddSIMD(mul01, mul02));

	// second output row
	A0 = SplatXSIMD(rowA1);
	A1 = SplatYSIMD(rowA1);
	A2 = SplatZSIMD(rowA1);
	fltx4 mul10 = MulSIMD(A0, rowB0);
	fltx4 mul11 = MulSIMD(A1, rowB1);
	fltx4 mul12 = MulSIMD(A2, rowB2);
	fltx4 out1 = AddSIMD(mul10, AddSIMD(mul11, mul12));

	// third output row
	A0 = SplatXSIMD(rowA2);
	A1 = SplatYSIMD(rowA2);
	A2 = SplatZSIMD(rowA2);
	fltx4 mul20 = MulSIMD(A0, rowB0);
	fltx4 mul21 = MulSIMD(A1, rowB1);
	fltx4 mul22 = MulSIMD(A2, rowB2);
	fltx4 out2 = AddSIMD(mul20, AddSIMD(mul21, mul22));

	// add in translation vector
	A0 = AndSIMD(rowA0, lastMask);
	A1 = AndSIMD(rowA1, lastMask);
	A2 = AndSIMD(rowA2, lastMask);
	out0 = AddSIMD(out0, A0);
	out1 = AddSIMD(out1, A1);
	out2 = AddSIMD(out2, A2);

	StoreAlignedSIMD(out.m_flMatVal[0], out0);
	StoreAlignedSIMD(out.m_flMatVal[1], out1);
	StoreAlignedSIMD(out.m_flMatVal[2], out2);
}

/*
================
R_ConcatTransforms
================
*/

void ConcatTransforms(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out)
{
#if 0
	// test for ones that'll be 2x faster
	if ((((size_t)&in1) % 16) == 0 && (((size_t)&in2) % 16) == 0 && (((size_t)&out) % 16) == 0)
	{
		ConcatTransforms_Aligned(in1, in2, out);
		return;
	}
#endif

	fltx4 lastMask = *(fltx4*)(&g_SIMD_ComponentMask[3]);
	fltx4 rowA0 = LoadUnalignedSIMD(in1.m_flMatVal[0]);
	fltx4 rowA1 = LoadUnalignedSIMD(in1.m_flMatVal[1]);
	fltx4 rowA2 = LoadUnalignedSIMD(in1.m_flMatVal[2]);

	fltx4 rowB0 = LoadUnalignedSIMD(in2.m_flMatVal[0]);
	fltx4 rowB1 = LoadUnalignedSIMD(in2.m_flMatVal[1]);
	fltx4 rowB2 = LoadUnalignedSIMD(in2.m_flMatVal[2]);

	// now we have the rows of m0 and the columns of m1
	// first output row
	fltx4 A0 = SplatXSIMD(rowA0);
	fltx4 A1 = SplatYSIMD(rowA0);
	fltx4 A2 = SplatZSIMD(rowA0);
	fltx4 mul00 = MulSIMD(A0, rowB0);
	fltx4 mul01 = MulSIMD(A1, rowB1);
	fltx4 mul02 = MulSIMD(A2, rowB2);
	fltx4 out0 = AddSIMD(mul00, AddSIMD(mul01, mul02));

	// second output row
	A0 = SplatXSIMD(rowA1);
	A1 = SplatYSIMD(rowA1);
	A2 = SplatZSIMD(rowA1);
	fltx4 mul10 = MulSIMD(A0, rowB0);
	fltx4 mul11 = MulSIMD(A1, rowB1);
	fltx4 mul12 = MulSIMD(A2, rowB2);
	fltx4 out1 = AddSIMD(mul10, AddSIMD(mul11, mul12));

	// third output row
	A0 = SplatXSIMD(rowA2);
	A1 = SplatYSIMD(rowA2);
	A2 = SplatZSIMD(rowA2);
	fltx4 mul20 = MulSIMD(A0, rowB0);
	fltx4 mul21 = MulSIMD(A1, rowB1);
	fltx4 mul22 = MulSIMD(A2, rowB2);
	fltx4 out2 = AddSIMD(mul20, AddSIMD(mul21, mul22));

	// add in translation vector
	A0 = AndSIMD(rowA0, lastMask);
	A1 = AndSIMD(rowA1, lastMask);
	A2 = AndSIMD(rowA2, lastMask);
	out0 = AddSIMD(out0, A0);
	out1 = AddSIMD(out1, A1);
	out2 = AddSIMD(out2, A2);

	// write to output
	StoreUnalignedSIMD(out.m_flMatVal[0], out0);
	StoreUnalignedSIMD(out.m_flMatVal[1], out1);
	StoreUnalignedSIMD(out.m_flMatVal[2], out2);
}


/*
===================
FloorDivMod

Returns mathematically correct (floor-based) quotient and remainder for
numer and denom, both of which should contain no fractional part. The
quotient must fit in 32 bits.
====================
*/
#if !defined(__SPU__)
void FloorDivMod(double numer, double denom, int* quotient,
	int* rem)
{
	Assert(s_bMathlibInitialized);
	int		q, r;
	double	x;

#ifdef PARANOID
	if (denom <= 0.0)
		Sys_Error("FloorDivMod: bad denominator %d\n", denom);

	//	if ((floor(numer) != numer) || (floor(denom) != denom))
	//		Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
	//				numer, denom);
#endif

	if (numer >= 0.0)
	{

		x = floor(numer / denom);
		q = (int)x;
		r = Floor2Int(numer - (x * denom));
	}
	else
	{
		//
		// perform operations with positive values, and fix mod to make floor-based
		//
		x = floor(-numer / denom);
		q = -(int)x;
		r = Floor2Int(-numer - (x * denom));
		if (r != 0)
		{
			q--;
			r = (int)denom - r;
		}
	}

	*quotient = q;
	*rem = r;
}


/*
===================
GreatestCommonDivisor
====================
*/
int GreatestCommonDivisor(int i1, int i2)
{
	Assert(s_bMathlibInitialized);
	if (i1 > i2)
	{
		if (i2 == 0)
			return (i1);
		return GreatestCommonDivisor(i2, i1 % i2);
	}
	else
	{
		if (i1 == 0)
			return (i2);
		return GreatestCommonDivisor(i1, i2 % i1);
	}
}


bool IsDenormal(const float& val)
{
	const int x = *reinterpret_cast <const int*> (&val); // needs 32-bit int
	const int abs_mantissa = x & 0x007FFFFF;
	const int biased_exponent = x & 0x7F800000;

	return  (biased_exponent == 0 && abs_mantissa != 0);
}

int SignbitsForPlane(cplane_t* out)
{
	Assert(s_bMathlibInitialized);
	int	bits, j;

	// for fast box on planeside test

	bits = 0;
	for (j = 0; j < 3; j++)
	{
		if (out->normal[j] < 0)
			bits |= 1 << j;
	}
	return bits;
}

/*
==================
BoxOnPlaneSide

Returns 1, 2, or 1 + 2
==================
*/
int __cdecl BoxOnPlaneSide(const float* emins, const float* emaxs, const cplane_t* p)
{
	Assert(s_bMathlibInitialized);
	float	dist1, dist2;
	int		sides;

	// fast axial cases
	if (p->type < 3)
	{
		if (p->dist <= emins[p->type])
			return 1;
		if (p->dist >= emaxs[p->type])
			return 2;
		return 3;
	}

	// general case
	switch (p->signbits)
	{
	case 0:
		dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
		dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
		break;
	case 1:
		dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
		dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
		break;
	case 2:
		dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
		dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
		break;
	case 3:
		dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
		dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
		break;
	case 4:
		dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
		dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
		break;
	case 5:
		dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
		dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
		break;
	case 6:
		dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
		dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
		break;
	case 7:
		dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
		dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
		break;
	default:
		dist1 = dist2 = 0;		// shut up compiler
		Assert(0);
		break;
	}

	sides = 0;
	if (dist1 >= p->dist)
		sides = 1;
	if (dist2 < p->dist)
		sides |= 2;

	Assert(sides != 0);

	return sides;
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Euler QAngle Composed
//-----------------------------------------------------------------------------

void AngleCompose(const QAngle& a1, const QAngle& a2, QAngle& out)
{
	Quaternion q1, q2, q3;

	AngleQuaternion(a1, q1);
	AngleQuaternion(a2, q2);

	QuaternionMult(q1, q2, q3);
	QuaternionAngles(q3, out);
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Euler QAngle Lerped
//-----------------------------------------------------------------------------

void AngleLerp(const QAngle& a1, const QAngle& a2, float t, QAngle& out)
{
	Quaternion q1, q2, q3;

	AngleQuaternion(a1, q1);
	AngleQuaternion(a2, q2);

	QuaternionSlerp(q1, q2, t, q3);
	QuaternionAngles(q3, out);
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Euler QAngle Inverted
//-----------------------------------------------------------------------------

void AngleInverse(const QAngle& angles, QAngle& out)
{
	Quaternion q1, q2;

	AngleQuaternion(angles, q1);

	QuaternionInvert(q1, q2);
	QuaternionAngles(q2, out);
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors
//-----------------------------------------------------------------------------

void AngleVectors(const QAngle& angles, Vector3D* forward)
{
	Assert(s_bMathlibInitialized);
	Assert(forward);

	float	sp, sy, cp, cy;

	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);

	forward->x = cp * cy;
	forward->y = cp * sy;
	forward->z = -sp;
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors.  Each vector is optional
//-----------------------------------------------------------------------------
void AngleVectors(const QAngle& angles, Vector3D* forward, Vector3D* right, Vector3D* up)
{
	Assert(s_bMathlibInitialized);

	float sr, sp, sy, cr, cp, cy;

#ifdef _X360
	fltx4 radians, scale, sine, cosine;
	radians = LoadUnaligned3SIMD(angles.Base());
	scale = ReplicateX4(M_PI_F / 180.f);
	radians = MulSIMD(radians, scale);
	SinCos3SIMD(sine, cosine, radians);
	sp = SubFloat(sine, 0);	sy = SubFloat(sine, 1);	sr = SubFloat(sine, 2);
	cp = SubFloat(cosine, 0);	cy = SubFloat(cosine, 1);	cr = SubFloat(cosine, 2);
#else
	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);
	SinCos(DEG2RAD(angles[ROLL]), &sr, &cr);
#endif

	if (forward)
	{
		forward->x = cp * cy;
		forward->y = cp * sy;
		forward->z = -sp;
	}

	if (right)
	{
		right->x = (-1 * sr * sp * cy + -1 * cr * -sy);
		right->y = (-1 * sr * sp * sy + -1 * cr * cy);
		right->z = -1 * sr * cp;
	}

	if (up)
	{
		up->x = (cr * sp * cy + -sr * -sy);
		up->y = (cr * sp * sy + -sr * cy);
		up->z = cr * cp;
	}
}

//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors transposed
//-----------------------------------------------------------------------------

void AngleVectorsTranspose(const QAngle& angles, Vector3D* forward, Vector3D* right, Vector3D* up)
{
	Assert(s_bMathlibInitialized);
	float sr, sp, sy, cr, cp, cy;

	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);
	SinCos(DEG2RAD(angles[ROLL]), &sr, &cr);

	if (forward)
	{
		forward->x = cp * cy;
		forward->y = (sr * sp * cy + cr * -sy);
		forward->z = (cr * sp * cy + -sr * -sy);
	}

	if (right)
	{
		right->x = cp * sy;
		right->y = (sr * sp * sy + cr * cy);
		right->z = (cr * sp * sy + -sr * cy);
	}

	if (up)
	{
		up->x = -sp;
		up->y = sr * cp;
		up->z = cr * cp;
	}
}

//-----------------------------------------------------------------------------
// Forward direction vector -> Euler angles
//-----------------------------------------------------------------------------

void VectorAngles(const Vector3D& forward, QAngle& angles)
{
	Assert(s_bMathlibInitialized);
	float	tmp, yaw, pitch;

	if (forward[1] == 0 && forward[0] == 0)
	{
		yaw = 0;
		if (forward[2] > 0)
			pitch = 270;
		else
			pitch = 90;
	}
	else
	{
		yaw = (atan2(forward[1], forward[0]) * 180 / M_PI);
		if (yaw < 0)
			yaw += 360;

		tmp = FastSqrt(forward[0] * forward[0] + forward[1] * forward[1]);
		pitch = (atan2(-forward[2], tmp) * 180 / M_PI);
		if (pitch < 0)
			pitch += 360;
	}

	angles[0] = pitch;
	angles[1] = yaw;
	angles[2] = 0;
}

//-----------------------------------------------------------------------------
// Forward direction vector with a reference up vector -> Euler angles
//-----------------------------------------------------------------------------

void VectorAngles(const Vector3D& forward, const Vector3D& pseudoup, QAngle& angles)
{
	Assert(s_bMathlibInitialized);

	Vector3D left;

	CrossProduct(pseudoup, forward, left);
	VectorNormalizeFast(left);

	float xyDist = sqrtf(forward[0] * forward[0] + forward[1] * forward[1]);

	// enough here to get angles?
	if (xyDist > 0.001f)
	{
		// (yaw)	y = ATAN( forward.y, forward.x );		-- in our space, forward is the X axis
		angles[1] = RAD2DEG(atan2f(forward[1], forward[0]));

		// The engine does pitch inverted from this, but we always end up negating it in the DLL
		// UNDONE: Fix the engine to make it consistent
		// (pitch)	x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
		angles[0] = RAD2DEG(atan2f(-forward[2], xyDist));

		float up_z = (left[1] * forward[0]) - (left[0] * forward[1]);

		// (roll)	z = ATAN( left.z, up.z );
		angles[2] = RAD2DEG(atan2f(left[2], up_z));
	}
	else	// forward is mostly Z, gimbal lock-
	{
		// (yaw)	y = ATAN( -left.x, left.y );			-- forward is mostly z, so use right for yaw
		angles[1] = RAD2DEG(atan2f(-left[0], left[1])); //This was originally copied from the "void MatrixAngles( const matrix3x4_t& matrix, float *angles )" code, and it's 180 degrees off, negated the values and it all works now (Dave Kircher)

		// The engine does pitch inverted from this, but we always end up negating it in the DLL
		// UNDONE: Fix the engine to make it consistent
		// (pitch)	x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
		angles[0] = RAD2DEG(atan2f(-forward[2], xyDist));

		// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
		angles[2] = 0;
	}
}

#endif // #if !defined(__SPU__)

void SetIdentityMatrix(matrix3x4_t& matrix)
{
	memset(matrix.Base(), 0, sizeof(float) * 3 * 4);
	matrix[0][0] = 1.0;
	matrix[1][1] = 1.0;
	matrix[2][2] = 1.0;
}


#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Builds a scale matrix
//-----------------------------------------------------------------------------
void SetScaleMatrix(float x, float y, float z, matrix3x4_t& dst)
{
	dst[0][0] = x;		dst[0][1] = 0.0f;	dst[0][2] = 0.0f;	dst[0][3] = 0.0f;
	dst[1][0] = 0.0f;	dst[1][1] = y;		dst[1][2] = 0.0f;	dst[1][3] = 0.0f;
	dst[2][0] = 0.0f;	dst[2][1] = 0.0f;	dst[2][2] = z;		dst[2][3] = 0.0f;
}


//-----------------------------------------------------------------------------
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis.
//
//		   | ax2 + (1 - ax2)cosQ		axay(1 - cosQ) - azsinQ		azax(1 - cosQ) + aysinQ |
// Ra(Q) = | axay(1 - cosQ) + azsinQ	ay2 + (1 - ay2)cosQ			ayaz(1 - cosQ) - axsinQ |
//		   | azax(1 - cosQ) - aysinQ	ayaz(1 - cosQ) + axsinQ		az2 + (1 - az2)cosQ     |
//          
// Input  : mat - 
//			vAxisOrRot - 
//			angle - 
//-----------------------------------------------------------------------------
void MatrixBuildRotationAboutAxis(const Vector3D& vAxisOfRot, float angleDegrees, matrix3x4_t& dst)
{
	float radians;
	float axisXSquared;
	float axisYSquared;
	float axisZSquared;
	float fSin;
	float fCos;

	radians = angleDegrees * (M_PI / 180.0);
	fSin = sin(radians);
	fCos = cos(radians);

	axisXSquared = vAxisOfRot[0] * vAxisOfRot[0];
	axisYSquared = vAxisOfRot[1] * vAxisOfRot[1];
	axisZSquared = vAxisOfRot[2] * vAxisOfRot[2];

	// Column 0:
	dst[0][0] = axisXSquared + (1 - axisXSquared) * fCos;
	dst[1][0] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) + vAxisOfRot[2] * fSin;
	dst[2][0] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) - vAxisOfRot[1] * fSin;

	// Column 1:
	dst[0][1] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) - vAxisOfRot[2] * fSin;
	dst[1][1] = axisYSquared + (1 - axisYSquared) * fCos;
	dst[2][1] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) + vAxisOfRot[0] * fSin;

	// Column 2:
	dst[0][2] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) + vAxisOfRot[1] * fSin;
	dst[1][2] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) - vAxisOfRot[0] * fSin;
	dst[2][2] = axisZSquared + (1 - axisZSquared) * fCos;

	// Column 3:
	dst[0][3] = 0;
	dst[1][3] = 0;
	dst[2][3] = 0;
}


//-----------------------------------------------------------------------------
// Computes the transpose
//-----------------------------------------------------------------------------
void MatrixTranspose(matrix3x4_t& mat)
{
	vec_t tmp;
	tmp = mat[0][1]; mat[0][1] = mat[1][0]; mat[1][0] = tmp;
	tmp = mat[0][2]; mat[0][2] = mat[2][0]; mat[2][0] = tmp;
	tmp = mat[1][2]; mat[1][2] = mat[2][1]; mat[2][1] = tmp;
}

void MatrixTranspose(const matrix3x4_t& src, matrix3x4_t& dst)
{
	dst[0][0] = src[0][0]; dst[0][1] = src[1][0]; dst[0][2] = src[2][0]; dst[0][3] = 0.0f;
	dst[1][0] = src[0][1]; dst[1][1] = src[1][1]; dst[1][2] = src[2][1]; dst[1][3] = 0.0f;
	dst[2][0] = src[0][2]; dst[2][1] = src[1][2]; dst[2][2] = src[2][2]; dst[2][3] = 0.0f;
}
#endif // #if !defined(__SPU__)

//-----------------------------------------------------------------------------
// Purpose: converts engine euler angles into a matrix
// Input  : vec3_t angles - PITCH, YAW, ROLL
// Output : *matrix - left-handed column matrix
//			the basis vectors for the rotations will be in the columns as follows:
//			matrix[][0] is forward
//			matrix[][1] is left
//			matrix[][2] is up
//-----------------------------------------------------------------------------
void AngleMatrix(RadianEuler const& angles, const Vector3D& position, matrix3x4_t& matrix)
{
	AngleMatrix(angles, matrix);
	MatrixSetColumn(position, 3, matrix);
}

void AngleMatrix(const RadianEuler& angles, matrix3x4_t& matrix)
{
	QAngle quakeEuler(RAD2DEG(angles.y), RAD2DEG(angles.z), RAD2DEG(angles.x));

	AngleMatrix(quakeEuler, matrix);
}


void AngleMatrix(const QAngle& angles, const Vector3D& position, matrix3x4_t& matrix)
{
	AngleMatrix(angles, matrix);
	MatrixSetColumn(position, 3, matrix);
}

void AngleMatrix(const QAngle& angles, matrix3x4_t& matrix)
{
#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("AngleMatrix", "Mathlib");
#endif
	Assert(s_bMathlibInitialized);

	float sr, sp, sy, cr, cp, cy;

#ifdef _X360
	fltx4 radians, scale, sine, cosine;
	radians = LoadUnaligned3SIMD(angles.Base());
	scale = ReplicateX4(M_PI_F / 180.f);
	radians = MulSIMD(radians, scale);
	SinCos3SIMD(sine, cosine, radians);

	sp = SubFloat(sine, 0);	sy = SubFloat(sine, 1);	sr = SubFloat(sine, 2);
	cp = SubFloat(cosine, 0);	cy = SubFloat(cosine, 1);	cr = SubFloat(cosine, 2);
#else
	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);
	SinCos(DEG2RAD(angles[ROLL]), &sr, &cr);
#endif

	// matrix = (YAW * PITCH) * ROLL
	matrix[0][0] = cp * cy;
	matrix[1][0] = cp * sy;
	matrix[2][0] = -sp;

	// NOTE: Do not optimize this to reduce multiplies! optimizer bug will screw this up.
	matrix[0][1] = sr * sp * cy + cr * -sy;
	matrix[1][1] = sr * sp * sy + cr * cy;
	matrix[2][1] = sr * cp;
	matrix[0][2] = (cr * sp * cy + -sr * -sy);
	matrix[1][2] = (cr * sp * sy + -sr * cy);
	matrix[2][2] = cr * cp;

	matrix[0][3] = 0.0f;
	matrix[1][3] = 0.0f;
	matrix[2][3] = 0.0f;
}

#if !defined(__SPU__)
void AngleIMatrix(const RadianEuler& angles, matrix3x4_t& matrix)
{
	QAngle quakeEuler(RAD2DEG(angles.y), RAD2DEG(angles.z), RAD2DEG(angles.x));

	AngleIMatrix(quakeEuler, matrix);
}

void AngleIMatrix(const QAngle& angles, matrix3x4_t& matrix)
{
	Assert(s_bMathlibInitialized);
	float		sr, sp, sy, cr, cp, cy;

	SinCos(DEG2RAD(angles[YAW]), &sy, &cy);
	SinCos(DEG2RAD(angles[PITCH]), &sp, &cp);
	SinCos(DEG2RAD(angles[ROLL]), &sr, &cr);

	// matrix = (YAW * PITCH) * ROLL
	matrix[0][0] = cp * cy;
	matrix[0][1] = cp * sy;
	matrix[0][2] = -sp;
	matrix[1][0] = sr * sp * cy + cr * -sy;
	matrix[1][1] = sr * sp * sy + cr * cy;
	matrix[1][2] = sr * cp;
	matrix[2][0] = (cr * sp * cy + -sr * -sy);
	matrix[2][1] = (cr * sp * sy + -sr * cy);
	matrix[2][2] = cr * cp;
	matrix[0][3] = 0.f;
	matrix[1][3] = 0.f;
	matrix[2][3] = 0.f;
}

void AngleIMatrix(const QAngle& angles, const Vector3D& position, matrix3x4_t& mat)
{
	AngleIMatrix(angles, mat);

	Vector3D vecTranslation;
	VectorRotate(position, mat, vecTranslation);
	vecTranslation *= -1.0f;
	MatrixSetColumn(vecTranslation, 3, mat);
}
#endif // #if !defined(__SPU__)

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Bounding box construction methods
//-----------------------------------------------------------------------------

void ClearBounds(Vector3D& mins, Vector3D& maxs)
{
	Assert(s_bMathlibInitialized);
	mins[0] = mins[1] = mins[2] = FLT_MAX;
	maxs[0] = maxs[1] = maxs[2] = -FLT_MAX;
}

void AddPointToBounds(const Vector3D& v, Vector3D& mins, Vector3D& maxs)
{
	Assert(s_bMathlibInitialized);
	int		i;
	vec_t	val;

	for (i = 0; i < 3; i++)
	{
		val = v[i];
		if (val < mins[i])
			mins[i] = val;
		if (val > maxs[i])
			maxs[i] = val;
	}
}

bool AreBoundsValid(const Vector3D& vMin, const Vector3D& vMax)
{
	for (int i = 0; i < 3; ++i)
	{
		if (vMin[i] > vMax[i])
		{
			return false;
		}
	}

	return true;
}

bool IsPointInBounds(const Vector3D& vPoint, const Vector3D& vMin, const Vector3D& vMax)
{
	for (int i = 0; i < 3; ++i)
	{
		if (vPoint[i] < vMin[i] || vPoint[i] > vMax[i])
		{
			return false;
		}
	}

	return true;
}

// solve a x^2 + b x + c = 0
bool SolveQuadratic(float a, float b, float c, float& root1, float& root2)
{
	Assert(s_bMathlibInitialized);
	if (a == 0)
	{
		if (b != 0)
		{
			// no x^2 component, it's a linear system
			root1 = root2 = -c / b;
			return true;
		}
		if (c == 0)
		{
			// all zero's
			root1 = root2 = 0;
			return true;
		}
		return false;
	}

	float tmp = b * b - 4.0f * a * c;

	if (tmp < 0)
	{
		// imaginary number, bah, no solution.
		return false;
	}

	tmp = sqrt(tmp);
	root1 = (-b + tmp) / (2.0f * a);
	root2 = (-b - tmp) / (2.0f * a);
	return true;
}

// solves for "a, b, c" where "a x^2 + b x + c = y", return true if solution exists
bool SolveInverseQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c)
{
	float det = (x1 - x2) * (x1 - x3) * (x2 - x3);

	// FIXME: check with some sort of epsilon
	if (det == 0.0)
		return false;

	a = (x3 * (-y1 + y2) + x2 * (y1 - y3) + x1 * (-y2 + y3)) / det;

	b = (x3 * x3 * (y1 - y2) + x1 * x1 * (y2 - y3) + x2 * x2 * (-y1 + y3)) / det;

	c = (x1 * x3 * (-x1 + x3) * y2 + x2 * x2 * (x3 * y1 - x1 * y3) + x2 * (-(x3 * x3 * y1) + x1 * x1 * y3)) / det;

	return true;
}

bool SolveInverseQuadraticMonotonic(float x1, float y1, float x2, float y2, float x3, float y3,
	float& a, float& b, float& c)
{
	// use SolveInverseQuadratic, but if the sigm of the derivative at the start point is the wrong
	// sign, displace the mid point

	// first, sort parameters
	if (x1 > x2)
	{
		V_swap(x1, x2);
		V_swap(y1, y2);
	}
	if (x2 > x3)
	{
		V_swap(x2, x3);
		V_swap(y2, y3);
	}
	if (x1 > x2)
	{
		V_swap(x1, x2);
		V_swap(y1, y2);
	}
	// this code is not fast. what it does is when the curve would be non-monotonic, slowly shifts
	// the center point closer to the linear line between the endpoints. Should anyone need htis
	// function to be actually fast, it would be fairly easy to change it to be so.
	for (float blend_to_linear_factor = 0.0; blend_to_linear_factor <= 1.0; blend_to_linear_factor += 0.05)
	{
		float tempy2 = (1 - blend_to_linear_factor) * y2 + blend_to_linear_factor * FLerp(y1, y3, x1, x3, x2);
		if (!SolveInverseQuadratic(x1, y1, x2, tempy2, x3, y3, a, b, c))
			return false;
		float derivative = 2.0 * a + b;
		if ((y1 < y2) && (y2 < y3))							// monotonically increasing
		{
			if (derivative >= 0.0)
				return true;
		}
		else
		{
			if ((y1 > y2) && (y2 > y3))							// monotonically decreasing
			{
				if (derivative <= 0.0)
					return true;
			}
			else
				return true;
		}
	}
	return true;
}


// solves for "a, b, c" where "1/(a x^2 + b x + c ) = y", return true if solution exists
bool SolveInverseReciprocalQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c)
{
	float det = (x1 - x2) * (x1 - x3) * (x2 - x3) * y1 * y2 * y3;

	// FIXME: check with some sort of epsilon
	if (det == 0.0)
		return false;

	a = (x1 * y1 * (y2 - y3) + x3 * (y1 - y2) * y3 + x2 * y2 * (-y1 + y3)) / det;

	b = (x2 * x2 * y2 * (y1 - y3) + x3 * x3 * (-y1 + y2) * y3 + x1 * x1 * y1 * (-y2 + y3)) / det;

	c = (x2 * (x2 - x3) * x3 * y2 * y3 + x1 * x1 * y1 * (x2 * y2 - x3 * y3) + x1 * (-(x2 * x2 * y1 * y2) + x3 * x3 * y1 * y3)) / det;

	return true;
}


// Rotate a vector around the Z axis (YAW)
void VectorYawRotate(const Vector3D& in, float flYaw, Vector3D& out)
{
	Assert(s_bMathlibInitialized);
	if (&in == &out)
	{
		Vector3D tmp;
		tmp = in;
		VectorYawRotate(tmp, flYaw, out);
		return;
	}

	float sy, cy;

	SinCos(DEG2RAD(flYaw), &sy, &cy);

	out.x = in.x * cy - in.y * sy;
	out.y = in.x * sy + in.y * cy;
	out.z = in.z;
}



float Bias(float x, float biasAmt)
{
	// WARNING: not thread safe
	static float lastAmt = -1;
	static float lastExponent = 0;
	if (lastAmt != biasAmt)
	{
		lastExponent = log(biasAmt) * -1.4427f; // (-1.4427 = 1 / log(0.5))
	}
	return pow(x, lastExponent);
}


float Gain(float x, float biasAmt)
{
	// WARNING: not thread safe
	if (x < 0.5)
		return 0.5f * Bias(2 * x, 1 - biasAmt);
	else
		return 1 - 0.5f * Bias(2 - 2 * x, 1 - biasAmt);
}


float SmoothCurve(float x)
{
	return (1 - cos(x * M_PI)) * 0.5f;
}


inline float MovePeak(float x, float flPeakPos)
{
	// Todo: make this higher-order?
	if (x < flPeakPos)
		return x * 0.5f / flPeakPos;
	else
		return 0.5 + 0.5 * (x - flPeakPos) / (1 - flPeakPos);
}


float SmoothCurve_Tweak(float x, float flPeakPos, float flPeakSharpness)
{
	float flMovedPeak = MovePeak(x, flPeakPos);
	float flSharpened = Gain(flMovedPeak, flPeakSharpness);
	return SmoothCurve(flSharpened);
}

#endif  // !defined(__SPU__)

//-----------------------------------------------------------------------------
// make sure quaternions are within 180 degrees of one another, if not, reverse q
//-----------------------------------------------------------------------------

void QuaternionAlign(const Quaternion& p, const Quaternion& q, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);

	// FIXME: can this be done with a quat dot product?

	int i;
	// decide if one of the quaternions is backwards
	float a = 0;
	float b = 0;
	for (i = 0; i < 4; i++)
	{
		a += (p[i] - q[i]) * (p[i] - q[i]);
		b += (p[i] + q[i]) * (p[i] + q[i]);
	}
	if (a > b)
	{
		for (i = 0; i < 4; i++)
		{
			qt[i] = -q[i];
		}
	}
	else if (&qt != &q)
	{
		for (i = 0; i < 4; i++)
		{
			qt[i] = q[i];
		}
	}
}


//-----------------------------------------------------------------------------
// Do a piecewise addition of the quaternion elements. This actually makes little 
// mathematical sense, but it's a cheap way to simulate a slerp.
//-----------------------------------------------------------------------------
void QuaternionBlend(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
#if ALLOW_SIMD_QUATERNION_MATH
	fltx4 psimd, qsimd, qtsimd;
	psimd = LoadUnalignedSIMD(p.Base());
	qsimd = LoadUnalignedSIMD(q.Base());
	qtsimd = QuaternionBlendSIMD(psimd, qsimd, t);
	StoreUnalignedSIMD(qt.Base(), qtsimd);
#else
	// decide if one of the quaternions is backwards
	Quaternion q2;
	QuaternionAlign(p, q, q2);
	QuaternionBlendNoAlign(p, q2, t, qt);
#endif
}


void QuaternionBlendNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
	float sclp, sclq;
	int i;

	// 0.0 returns p, 1.0 return q.
	sclp = 1.0f - t;
	sclq = t;
	for (i = 0; i < 4; i++) {
		qt[i] = sclp * p[i] + sclq * q[i];
	}
	QuaternionNormalize(qt);
}



void QuaternionIdentityBlend(const Quaternion& p, float t, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
	float sclp;

	sclp = 1.0f - t;

	qt.x = p.x * sclp;
	qt.y = p.y * sclp;
	qt.z = p.z * sclp;
	if (qt.w < 0.0)
	{
		qt.w = p.w * sclp - t;
	}
	else
	{
		qt.w = p.w * sclp + t;
	}
	QuaternionNormalize(qt);
}

//-----------------------------------------------------------------------------
// Quaternion spherical linear interpolation
//-----------------------------------------------------------------------------

void QuaternionSlerp(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt)
{
	Quaternion q2;
	// 0.0 returns p, 1.0 return q.

	// decide if one of the quaternions is backwards
	QuaternionAlign(p, q, q2);

	QuaternionSlerpNoAlign(p, q2, t, qt);
}


void QuaternionSlerpNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
	float omega, cosom, sinom, sclp, sclq;
	int i;

	// 0.0 returns p, 1.0 return q.

	cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3];

	if ((1.0f + cosom) > 0.000001f) {
		if ((1.0f - cosom) > 0.000001f) {
			omega = acos(cosom);
			sinom = sin(omega);
			sclp = sin((1.0f - t) * omega) / sinom;
			sclq = sin(t * omega) / sinom;
		}
		else {
			// TODO: add short circuit for cosom == 1.0f?
			sclp = 1.0f - t;
			sclq = t;
		}
		for (i = 0; i < 4; i++) {
			qt[i] = sclp * p[i] + sclq * q[i];
		}
	}
	else {
		Assert(&qt != &q);

		qt[0] = -q[1];
		qt[1] = q[0];
		qt[2] = -q[3];
		qt[3] = q[2];
		sclp = sin((1.0f - t) * (0.5f * M_PI));
		sclq = sin(t * (0.5f * M_PI));
		for (i = 0; i < 3; i++) {
			qt[i] = sclp * p[i] + sclq * qt[i];
		}
	}

	Assert(qt.IsValid());
}

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Purpose: Returns the angular delta between the two normalized quaternions in degrees.
//-----------------------------------------------------------------------------
float QuaternionAngleDiff(const Quaternion& p, const Quaternion& q)
{
#if 1
	// this code path is here for 2 reasons:
	// 1 - acos maps 1-epsilon to values much larger than epsilon (vs asin, which maps epsilon to itself)
	//     this means that in floats, anything below ~0.05 degrees truncates to 0
	// 2 - normalized quaternions are frequently slightly non-normalized due to float precision issues,
	//     and the epsilon off of normalized can be several percents of a degree
	Quaternion qInv, diff;
	QuaternionConjugate(q, qInv);
	QuaternionMult(p, qInv, diff);

	// Note if the quaternion is slightly non-normalized the square root below may be more than 1,
	// the value is clamped to one otherwise it may result in asin() returning an undefined result.
	float sinang = MIN(1.0f, sqrt(diff.x * diff.x + diff.y * diff.y + diff.z * diff.z));
	float angle = RAD2DEG(2 * asin(sinang));
	return angle;
#else
	Quaternion q2;
	QuaternionAlign(p, q, q2);

	Assert(s_bMathlibInitialized);
	float cosom = p.x * q2.x + p.y * q2.y + p.z * q2.z + p.w * q2.w;

	if (cosom > -1.0f)
	{
		if (cosom < 1.0f)
		{
			float omega = 2 * fabs(acos(cosom));
			return RAD2DEG(omega);
		}
		return 0.0f;
	}

	return 180.0f;
#endif
}

void QuaternionConjugate(const Quaternion& p, Quaternion& q)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

	q.x = -p.x;
	q.y = -p.y;
	q.z = -p.z;
	q.w = p.w;
}

void QuaternionInvert(const Quaternion& p, Quaternion& q)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

	QuaternionConjugate(p, q);

	float magnitudeSqr = QuaternionDotProduct(p, p);
	Assert(magnitudeSqr);
	if (magnitudeSqr)
	{
		float inv = 1.0f / magnitudeSqr;
		q.x *= inv;
		q.y *= inv;
		q.z *= inv;
		q.w *= inv;
	}
}

void QuaternionMultiply(const Quaternion& q, const Vector3D& v, Vector3D& result)
{
	Vector3D t, t2;
	CrossProduct(q.ImaginaryPart(), v, t);
	t *= 2.0f;
	VectorMA(v, q.RealPart(), t, result);
	CrossProduct(q.ImaginaryPart(), t, t2);
	result += t2;
}

#endif // #if !defined(__SPU__)

//-----------------------------------------------------------------------------
// Make sure the quaternion is of unit length
//-----------------------------------------------------------------------------
float QuaternionNormalize(Quaternion& q)
{
	Assert(s_bMathlibInitialized);
	float radius, iradius;

	Assert(q.IsValid());

	radius = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3];

	if (radius) // > FLT_EPSILON && ((radius < 1.0f - 4*FLT_EPSILON) || (radius > 1.0f + 4*FLT_EPSILON))
	{
		radius = sqrt(radius);
		iradius = 1.0f / radius;
		q[3] *= iradius;
		q[2] *= iradius;
		q[1] *= iradius;
		q[0] *= iradius;
	}
	return radius;
}


void QuaternionScale(const Quaternion& p, float t, Quaternion& q)
{
	Assert(s_bMathlibInitialized);

#if 0
	Quaternion p0;
	Quaternion q;
	p0.Init(0.0, 0.0, 0.0, 1.0);

	// slerp in "reverse order" so that p doesn't get realigned
	QuaternionSlerp(p, p0, 1.0 - fabs(t), q);
	if (t < 0.0)
	{
		q.w = -q.w;
	}
#else
	float r;

	// FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to 
	// use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale.
	float sinom = sqrt(DotProduct(&p.x, &p.x));
	sinom = MIN(sinom, 1.f);

	float sinsom = sin(asin(sinom) * t);

	t = sinsom / (sinom + FLT_EPSILON);
	VectorScale(&p.x, t, &q.x);

	// rescale rotation
	r = 1.0f - sinsom * sinsom;

	// Assert( r >= 0 );
	if (r < 0.0f)
		r = 0.0f;
	r = sqrt(r);

	// keep sign of rotation
	if (p.w < 0)
		q.w = -r;
	else
		q.w = r;
#endif

	Assert(q.IsValid());

	return;
}


void QuaternionAdd(const Quaternion& p, const Quaternion& q, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
	Assert(p.IsValid());
	Assert(q.IsValid());

	// decide if one of the quaternions is backwards
	Quaternion q2;
	QuaternionAlign(p, q, q2);

	// is this right???
	qt[0] = p[0] + q2[0];
	qt[1] = p[1] + q2[1];
	qt[2] = p[2] + q2[2];
	qt[3] = p[3] + q2[3];

	return;
}


float QuaternionDotProduct(const Quaternion& p, const Quaternion& q)
{
	Assert(s_bMathlibInitialized);
	Assert(p.IsValid());
	Assert(q.IsValid());

	return p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
}


// qt = p * q
void QuaternionMult(const Quaternion& p, const Quaternion& q, Quaternion& qt)
{
	Assert(s_bMathlibInitialized);
	Assert(p.IsValid());
	Assert(q.IsValid());

	if (&p == &qt)
	{
		Quaternion p2 = p;
		QuaternionMult(p2, q, qt);
		return;
	}

	// decide if one of the quaternions is backwards
	Quaternion q2;
	QuaternionAlign(p, q, q2);

	qt.x = p.x * q2.w + p.y * q2.z - p.z * q2.y + p.w * q2.x;
	qt.y = -p.x * q2.z + p.y * q2.w + p.z * q2.x + p.w * q2.y;
	qt.z = p.x * q2.y - p.y * q2.x + p.z * q2.w + p.w * q2.z;
	qt.w = -p.x * q2.x - p.y * q2.y - p.z * q2.z + p.w * q2.w;
}


#if !defined(__SPU__)

void QuaternionExp(const Quaternion& p, Quaternion& q)
{
	float r = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
	float et = exp(p[3]);
	float s = r >= 0.00001f ? et * sin(r) / r : 0.f;
	q.Init(s * p[0], s * p[1], s * p[2], et * cos(r));
}

void QuaternionLn(const Quaternion& p, Quaternion& q)
{
	float r = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
	float t = r > 0.00001f ? atan2(r, p[3]) / r : 0.f;
	float norm = p[0] * p[0] + p[1] * p[1] + p[2] * p[2] + p[3] * p[3];
	q.Init(t * p[0], t * p[1], t * p[2], 0.5 * log(norm));
}

// Average using exponential method
// Qave = exp( 1 / n * log( Q1 ) + ... + 1 / n * log( Qn ) ) where
// if pflWeights passed in 1/n is replaced by normalized weighting
void QuaternionAverageExponential(Quaternion& q, int nCount, const Quaternion* pQuaternions, const float* pflWeights /*=NULL*/)
{
	Assert(nCount >= 1);
	Assert(pQuaternions);

	// Nothing to do if only one input quaternions
	if (nCount == 1)
	{
		q = pQuaternions[0];
		return;
	}

	float ooWeightSum = 1.0f;
	float flWeightSum = 0.0f;
	for (int i = 0; i < nCount; ++i)
	{
		if (pflWeights)
		{
			flWeightSum += pflWeights[i];
		}
		else
		{
			flWeightSum += 1.0f;
		}
	}

	if (flWeightSum > 0.0f)
	{
		ooWeightSum = 1.0f / flWeightSum;
	}

	Quaternion sum(0, 0, 0, 0);
	// Now sum the ln of the quaternions
	for (int i = 0; i < nCount; ++i)
	{
		float weight = ooWeightSum;
		if (pflWeights)
		{
			weight *= pflWeights[i];
		}

		// Make sure all quaternions are aligned with the 
		// first to avoid blending the wrong direction.
		Quaternion alignedQuat;
		QuaternionAlign(pQuaternions[0], pQuaternions[i], alignedQuat);

		Quaternion qLn;
		QuaternionLn(alignedQuat, qLn);
		for (int j = 0; j < 4; ++j)
		{
			sum[j] += (qLn[j] * weight);
		}
	}

	// then exponentiate to get final value
	QuaternionExp(sum, q);
}

// Given a vector and a pseudo-up reference vector, create a quaternion which represents
//  the orientation of the forward vector.  Note, will be unstable if vecForward is close
//  to referenceUp
void QuaternionLookAt(const Vector3D& vecForward, const Vector3D& referenceUp, Quaternion& q)
{
	Vector3D forward = vecForward;
	forward.NormalizeInPlace();
	float ratio = DotProduct(forward, referenceUp);
	Vector3D up = referenceUp - (forward * ratio);
	up.NormalizeInPlace();

	Vector3D right = forward.Cross(up);
	right.NormalizeInPlace();

	const Vector3D& x = right;
	const Vector3D& y = forward;
	const Vector3D& z = up;

	float tr = x.x + y.y + z.z;
	q.Init(y.z - z.y, z.x - x.z, x.y - y.x, tr + 1.0f);
	QuaternionNormalize(q);

	/*
	Vector z = vecForward;
	z.NormalizeInPlace();
	Vector x = referenceUp.Cross( z );
	x.NormalizeInPlace();
	Vector y = z.Cross( x );
	y.NormalizeInPlace();

	float tr = x.x + y.y + z.z;
	q.Init( y.z - z.y , z.x - x.z, x.y - y.x, tr + 1.0f );
	QuaternionNormalize( q );
	*/
}

#endif // !defined(__SPU__)

void QuaternionMatrix(const Quaternion& q, const Vector3D& pos, matrix3x4_t& matrix)
{
	Assert(pos.IsValid());

	QuaternionMatrix(q, matrix);

	matrix[0][3] = pos.x;
	matrix[1][3] = pos.y;
	matrix[2][3] = pos.z;
}

void QuaternionMatrix(const Quaternion& q, const Vector3D& pos, const Vector3D& vScale, matrix3x4_t& mat)
{
	Assert(pos.IsValid());
	Assert(q.IsValid());
	Assert(vScale.IsValid());

	QuaternionMatrix(q, mat);

	mat[0][0] *= vScale.x; mat[1][0] *= vScale.x; mat[2][0] *= vScale.x;
	mat[0][1] *= vScale.y; mat[1][1] *= vScale.y; mat[2][1] *= vScale.y;
	mat[0][2] *= vScale.z; mat[1][2] *= vScale.z; mat[2][2] *= vScale.z;
	mat[0][3] = pos.x; mat[1][3] = pos.y; mat[2][3] = pos.z;
}


void QuaternionMatrix(const Quaternion& q, matrix3x4_t& matrix)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("QuaternionMatrix", "Mathlib");
#endif

	// Original code
	// This should produce the same code as below with optimization, but looking at the assembly,
	// it doesn't.  There are 7 extra multiplies in the release build of this, go figure.
#if 1
	matrix[0][0] = 1.0 - 2.0 * q.y * q.y - 2.0 * q.z * q.z;
	matrix[1][0] = 2.0 * q.x * q.y + 2.0 * q.w * q.z;
	matrix[2][0] = 2.0 * q.x * q.z - 2.0 * q.w * q.y;

	matrix[0][1] = 2.0f * q.x * q.y - 2.0f * q.w * q.z;
	matrix[1][1] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.z * q.z;
	matrix[2][1] = 2.0f * q.y * q.z + 2.0f * q.w * q.x;

	matrix[0][2] = 2.0f * q.x * q.z + 2.0f * q.w * q.y;
	matrix[1][2] = 2.0f * q.y * q.z - 2.0f * q.w * q.x;
	matrix[2][2] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.y * q.y;

	matrix[0][3] = 0.0f;
	matrix[1][3] = 0.0f;
	matrix[2][3] = 0.0f;
#else
	float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;

	// precalculate common multiplitcations
	x2 = q.x + q.x;
	y2 = q.y + q.y;
	z2 = q.z + q.z;
	xx = q.x * x2;
	xy = q.x * y2;
	xz = q.x * z2;
	yy = q.y * y2;
	yz = q.y * z2;
	zz = q.z * z2;
	wx = q.w * x2;
	wy = q.w * y2;
	wz = q.w * z2;

	matrix[0][0] = 1.0 - (yy + zz);
	matrix[0][1] = xy - wz;
	matrix[0][2] = xz + wy;
	matrix[0][3] = 0.0f;

	matrix[1][0] = xy + wz;
	matrix[1][1] = 1.0 - (xx + zz);
	matrix[1][2] = yz - wx;
	matrix[1][3] = 0.0f;

	matrix[2][0] = xz - wy;
	matrix[2][1] = yz + wx;
	matrix[2][2] = 1.0 - (xx + yy);
	matrix[2][3] = 0.0f;
#endif
}


const Vector3D Quaternion::GetForward()const
{
	Vector3D vAxisX;
	vAxisX.x = 1.0 - 2.0 * y * y - 2.0 * z * z;
	vAxisX.y = 2.0 * x * y + 2.0 * w * z;
	vAxisX.z = 2.0 * x * z - 2.0 * w * y;
	return vAxisX;
}


const Vector3D Quaternion::GetLeft()const
{
	Vector3D vAxisY;
	vAxisY.x = 2.0f * x * y - 2.0f * w * z;
	vAxisY.y = 1.0f - 2.0f * x * x - 2.0f * z * z;
	vAxisY.z = 2.0f * y * z + 2.0f * w * x;
	return vAxisY;
}



const Vector3D Quaternion::GetUp()const
{
	Vector3D vAxisZ;
	vAxisZ.x = 2.0f * x * z + 2.0f * w * y;
	vAxisZ.y = 2.0f * y * z - 2.0f * w * x;
	vAxisZ.z = 1.0f - 2.0f * x * x - 2.0f * y * y;
	return vAxisZ;
}



const Quaternion RotateBetween(const Vector3D& v1, const Vector3D& v2)
{
	// Find quaternion that rotates v1 into v2
	Quaternion qOut;

	Vector3D vBisector = 0.5f * (v1 + v2);
	if (vBisector.LengthSqr() > 1e-9f)
	{
		qOut.Init(CrossProduct(v1, vBisector), DotProduct(v1, vBisector));
	}
	else
	{
		// Anti-parallel: Use a perpendicular vector
		if (fabsf(v1.x) > 0.5f)
		{
			qOut.x = v1.y;
			qOut.y = -v1.x;
			qOut.z = 0.0f;
		}
		else
		{
			qOut.x = 0.0f;
			qOut.y = v1.z;
			qOut.z = -v1.y;
		}

		qOut.w = 0.0f;
	}

	// The algorithm is simplified and made more accurate by normalizing at the end
	QuaternionNormalize(qOut);

	Assert((VectorTransform(v1, QuaternionMatrix(qOut)) - v2).Length() < 2e-3f);

	return qOut;
}


void UnitTestQuatExpLog()
{
	for (int i = 0; i < 300000; ++i)
	{
		Quaternion q = RandomQuaternion();
		Vector3D l = QuaternionLog(q);
		Quaternion q2 = Exp(l);
		Assert(QuaternionLength(q - q2) < 0.0001f);
	}
}


void UnitTestRotateBetween()
{
	RandomSeed(1);
	float flMaxError = 0;
	int nMaxError;
	for (int i = 0; i < 3000000; ++i)
	{
		Vector3D u = RandomVectorOnUnitSphere(), v = RandomVectorOnUnitSphere();
		Quaternion q = RotateBetween(u, v);

		float flError = (VectorTransform(u, QuaternionMatrix(q)) - v).Length();
		if (flMaxError < flError)
		{
			flMaxError = flError;
			nMaxError = i;
		}
	}
	Assert(flMaxError < 0.001f);
}


//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion into engine angles
// Input  : *quaternion - q3 + q0.i + q1.j + q2.k
//			*outAngles - PITCH, YAW, ROLL
//-----------------------------------------------------------------------------
void QuaternionAngles(const Quaternion& q, QAngle& angles)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("QuaternionAngles", "Mathlib");
#endif

#if 1
	// FIXME: doing it this way calculates too much data, needs to do an optimized version...
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	MatrixAngles(matrix, angles);
#else
	float m11, m12, m13, m23, m33;

	m11 = (2.0f * q.w * q.w) + (2.0f * q.x * q.x) - 1.0f;
	m12 = (2.0f * q.x * q.y) + (2.0f * q.w * q.z);
	m13 = (2.0f * q.x * q.z) - (2.0f * q.w * q.y);
	m23 = (2.0f * q.y * q.z) + (2.0f * q.w * q.x);
	m33 = (2.0f * q.w * q.w) + (2.0f * q.z * q.z) - 1.0f;

	// FIXME: this code has a singularity near PITCH +-90
	angles[YAW] = RAD2DEG(atan2(m12, m11));
	angles[PITCH] = RAD2DEG(asin(-m13));
	angles[ROLL] = RAD2DEG(atan2(m23, m33));
#endif

	Assert(angles.IsValid());
}


float QuaternionionGetYaw(const Quaternion& q)
{
	// FIXME: doing it this way calculates too much data, need to do an optimized version...
	QAngle angles;
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	MatrixAngles(matrix, angles);
	return angles[YAW];
}

float QuaternionionGetPitch(const Quaternion& q)
{
	// FIXME: doing it this way calculates too much data, need to do an optimized version...
	QAngle angles;
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	MatrixAngles(matrix, angles);
	return angles[PITCH];
}

float QuaternionionGetRoll(const Quaternion& q)
{
	// FIXME: doing it this way calculates too much data, need to do an optimized version...
	QAngle angles;
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	MatrixAngles(matrix, angles);
	return angles[ROLL];
}


//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion into FLU vectors
// Input  : *quaternion - q3 + q0.i + q1.j + q2.k
//			basis vectors, each vector is optional
//-----------------------------------------------------------------------------
void QuaternionVectorsFLU(Quaternion const& q, Vector3D* pForward, Vector3D* pLeft, Vector3D* pUp)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

#ifdef _VPROF_MATHLIB
	// @TODO: VPROF_BUDGET( "QuaternionVectorsFLU", "Mathlib" );
#endif

	// Note: it's pretty much identical to just computing the quaternion matrix and assigning its columns to the vectors
	* pForward = q.GetForward();
	*pLeft = q.GetLeft();
	*pUp = q.GetUp();
#ifdef DBGFLAG_ASSERT
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	Vector3D forward, left, up;
	MatrixVectorsFLU(matrix, &forward, &left, &up);
	Assert((forward - *pForward).Length() + (left - *pLeft).Length() + (up - *pUp).Length() < 1e-4f);
#endif
}

void QuaternionVectorsForward(const Quaternion& q, Vector3D* pForward)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

#ifdef _VPROF_MATHLIB
	// @TODO: VPROF_BUDGET( "QuaternionVectorsForward", "Mathlib" );
#endif

	* pForward = q.GetForward();
#ifdef DBGFLAG_ASSERT
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	Assert((MatrixGetColumn(matrix, FORWARD_AXIS) - *pForward).Length() < 1e-4f);
#endif
}


void UnitTestVectorFLU()
{
	for (int i = 0; i < 100000; ++i)
	{
		Quaternion q = RandomQuaternion();
		Vector3D forward, left, up;
		QuaternionVectorsForward(q, &forward);
		QuaternionVectorsFLU(q, &forward, &left, &up);
	}
}



#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion to an axis / angle in degrees
//			(exponential map)
//-----------------------------------------------------------------------------
void QuaternionAxisAngle(const Quaternion& q, Vector3D& axis, float& angle)
{
	angle = RAD2DEG(2 * acos(q.w));
	if (angle > 180)
	{
		angle -= 360;
	}
	axis.x = q.x;
	axis.y = q.y;
	axis.z = q.z;
	VectorNormalize(axis);
}

//-----------------------------------------------------------------------------
// Purpose: Converts an exponential map (ang/axis) to a quaternion
//-----------------------------------------------------------------------------
void AxisAngleQuaternion(const Vector3D& axis, float angle, Quaternion& q)
{
	float sa, ca;

	SinCos(DEG2RAD(angle) * 0.5f, &sa, &ca);

	q.x = axis.x * sa;
	q.y = axis.y * sa;
	q.z = axis.z * sa;
	q.w = ca;
}
#endif // #if !defined(__SPU__)

//-----------------------------------------------------------------------------
// Purpose: Converts radian-euler axis aligned angles to a quaternion
// Input  : *pfAngles - Right-handed Euler angles in radians
//			*outQuat - quaternion of form (i,j,k,real)
//-----------------------------------------------------------------------------
void AngleQuaternion(const RadianEuler& angles, Quaternion& outQuat)
{
	Assert(s_bMathlibInitialized);
	//	Assert( angles.IsValid() );

#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("AngleQuaternion", "Mathlib");
#endif

	float sr, sp, sy, cr, cp, cy;

#ifdef _X360
	fltx4 radians, scale, sine, cosine;
	radians = LoadUnaligned3SIMD(&angles.x);
	scale = ReplicateX4(0.5f);
	radians = MulSIMD(radians, scale);
	SinCos3SIMD(sine, cosine, radians);

	// NOTE: The ordering here is *different* from the AngleQuaternion below
	// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
	sr = SubFloat(sine, 0);	sp = SubFloat(sine, 1);	sy = SubFloat(sine, 2);
	cr = SubFloat(cosine, 0);	cp = SubFloat(cosine, 1);	cy = SubFloat(cosine, 2);
#else
	SinCos(angles.z * 0.5f, &sy, &cy);
	SinCos(angles.y * 0.5f, &sp, &cp);
	SinCos(angles.x * 0.5f, &sr, &cr);
#endif

	// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
	float srXcp = sr * cp, crXsp = cr * sp;
	outQuat.x = srXcp * cy - crXsp * sy; // X
	outQuat.y = crXsp * cy + srXcp * sy; // Y

	float crXcp = cr * cp, srXsp = sr * sp;
	outQuat.z = crXcp * sy - srXsp * cy; // Z
	outQuat.w = crXcp * cy + srXsp * sy; // W (real component)
}

#ifdef _X360
//-----------------------------------------------------------------------------
// Purpose: Converts radian-euler axis aligned angles to a quaternion, returning
//			it on a vector register.
// Input  : *vAngles - Right-handed Euler angles in radians (roll pitch yaw)
//
// Algorithm based on that found in the XDK (which really uses RPY order, as
//  opposed to this which takes the parameters in RPY order but catenates them
//  in PYR order).
//-----------------------------------------------------------------------------
fltx4 AngleQuaternionSIMD(FLTX4 vAngles)
{
	Assert(s_bMathlibInitialized);
	//	Assert( angles.IsValid() );

#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("AngleQuaternion", "Mathlib");
#endif

	// we compute the sin and cos of half all the angles.
	// in the comments I'll call these components
	// sr = sin(r/2), cp = cos(p/2), sy = sin(y/2), etc.

	fltx4 OneHalf = __vspltisw(1);
	OneHalf = __vcfsx(OneHalf, 1);

	fltx4 HalfAngles = MulSIMD(vAngles, OneHalf);
	fltx4 sine, cosine;
	SinCos3SIMD(sine, cosine, HalfAngles);

	fltx4 SignMask = __vspltisw(-1);
	fltx4 Zero = __vspltisw(0);
	SignMask = __vslw(SignMask, SignMask); // shift left so 1 is only in the sign bit
	SignMask = __vrlimi(SignMask, Zero, 0x5, 0); // { -1, 0, -1, 0 }

	fltx4 Rc, Pc, Yc, Rs, Ps, Ys, retsum, retval;

	Rc = __vspltw(cosine, 0);	// cr cr cr cr
	Pc = __vspltw(cosine, 1);	// cp cp cp cp
	Yc = __vspltw(cosine, 2);	// cy cy cy cy
	Rs = __vspltw(sine, 0);		// sr sr sr sr
	Ps = __vspltw(sine, 1);		// sp sp sp sp
	Ys = __vspltw(sine, 2);		// sy sy sy sy

	Rc = __vrlimi(Rc, sine, 0x8, 0);	// sr cr cr cr
	Rs = __vrlimi(Rs, cosine, 0x8, 0);	// cr sr sr sr
	Pc = __vrlimi(Pc, sine, 0x4, 0);	// cp sp cp cp 
	Ps = __vrlimi(Ps, cosine, 0x4, 0);	// sp cp sp sp 
	Yc = __vrlimi(Yc, sine, 0x2, 0);	// cy cy sy cy 
	Ys = __vrlimi(Ys, cosine, 0x2, 0);	// sy sy cy sy

	retsum = __vxor(Rs, SignMask);	// -cr sr -sr sr
	retval = __vmulfp(Pc, Yc);		//  cp*cy  sp*cy  cp*sy  cp*cy
	retsum = __vmulfp(retsum, Ys);	// -cr*sy  sr*sy -sr*cy  sr*sy
	retval = __vmulfp(retval, Rc);	//  cp*cy*sr  sp*cy*cr  cp*sy*cr  cp*cy*cr
	retval = __vmaddfp(retsum, Ps, retval); //  cp*cy*sr + -cr*sy*sp ...

	return retval;
}

inline fltx4 AngleQuaternionSIMD(const RadianEuler& angles)
{
	return AngleQuaternionSIMD(LoadUnaligned3SIMD(angles.Base()));
}
#endif


//-----------------------------------------------------------------------------
// Purpose: Converts engine-format euler angles to a quaternion
// Input  : angles - Right-handed Euler angles in degrees as follows:
//				[0]: PITCH: Clockwise rotation around the Y axis.
//				[1]: YAW:	Counterclockwise rotation around the Z axis.
//				[2]: ROLL:	Counterclockwise rotation around the X axis.
//			*outQuat - quaternion of form (i,j,k,real)
//-----------------------------------------------------------------------------
void AngleQuaternion(const QAngle& angles, Quaternion& outQuat)
{
#ifdef _VPROF_MATHLIB
	VPROF_BUDGET("AngleQuaternion", "Mathlib");
#endif

	float sr, sp, sy, cr, cp, cy;

#ifdef _X360
	fltx4 radians, scale, sine, cosine;
	radians = LoadUnaligned3SIMD(angles.Base());
	scale = ReplicateX4(0.5f * M_PI_F / 180.f);
	radians = MulSIMD(radians, scale);
	SinCos3SIMD(sine, cosine, radians);

	// NOTE: The ordering here is *different* from the AngleQuaternion above
	// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
	sp = SubFloat(sine, 0);	sy = SubFloat(sine, 1);	sr = SubFloat(sine, 2);
	cp = SubFloat(cosine, 0);	cy = SubFloat(cosine, 1);	cr = SubFloat(cosine, 2);
#else
	SinCos(DEG2RAD(angles.y) * 0.5f, &sy, &cy);
	SinCos(DEG2RAD(angles.x) * 0.5f, &sp, &cp);
	SinCos(DEG2RAD(angles.z) * 0.5f, &sr, &cr);
#endif

	// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
	float srXcp = sr * cp, crXsp = cr * sp;
	outQuat.x = srXcp * cy - crXsp * sy; // X
	outQuat.y = crXsp * cy + srXcp * sy; // Y

	float crXcp = cr * cp, srXsp = sr * sp;
	outQuat.z = crXcp * sy - srXsp * cy; // Z
	outQuat.w = crXcp * cy + srXsp * sy; // W (real component)
}

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Purpose: Converts a basis to a quaternion
//-----------------------------------------------------------------------------
void BasisToQuaternion(const Vector3D& vecForward, const Vector3D& vecRight, const Vector3D& vecUp, Quaternion& q)
{
	Assert(fabs(vecForward.LengthSqr() - 1.0f) < 1e-3);
	Assert(fabs(vecRight.LengthSqr() - 1.0f) < 1e-3);
	Assert(fabs(vecUp.LengthSqr() - 1.0f) < 1e-3);

	Vector3D vecLeft;
	VectorMultiply(vecRight, -1.0f, vecLeft);

	// FIXME: Don't know why, but this doesn't match at all with other result
	// so we can't use this super-fast way.
	/*
	// Find the trace of the matrix:
	float flTrace = vecForward.x + vecLeft.y + vecUp.z + 1.0f;
	if ( flTrace > 1e-6 )
	{
		float flSqrtTrace = FastSqrt( flTrace );
		float s = 0.5f / flSqrtTrace;
		q.x = ( vecUp.y - vecLeft.z ) * s;
		q.y = ( vecForward.z - vecUp.x ) * s;
		q.z = ( vecLeft.x - vecForward.y ) * s;
		q.w = 0.5f * flSqrtTrace;
	}
	else
	{
		if (( vecForward.x > vecLeft.y ) && ( vecForward.x > vecUp.z ) )
		{
			float flSqrtTrace = FastSqrt( 1.0f + vecForward.x - vecLeft.y - vecUp.z );
			float s = 0.5f / flSqrtTrace;
			q.x = 0.5f * flSqrtTrace;
			q.y = ( vecForward.y + vecLeft.x ) * s;
			q.z = ( vecUp.x + vecForward.z ) * s;
			q.w = ( vecUp.y - vecLeft.z ) * s;
		}
		else if ( vecLeft.y > vecUp.z )
		{
			float flSqrtTrace = FastSqrt( 1.0f + vecLeft.y - vecForward.x - vecUp.z );
			float s = 0.5f / flSqrtTrace;
			q.x = ( vecForward.y + vecLeft.x ) * s;
			q.y = 0.5f * flSqrtTrace;
			q.z = ( vecUp.y + vecLeft.z ) * s;
			q.w = ( vecForward.z - vecUp.x ) * s;
		}
		else
		{
			float flSqrtTrace = FastSqrt( 1.0 + vecUp.z - vecForward.x - vecLeft.y );
			float s = 0.5f / flSqrtTrace;
			q.x = ( vecUp.x + vecForward.z ) * s;
			q.y = ( vecUp.y + vecLeft.z ) * s;
			q.z = 0.5f * flSqrtTrace;
			q.w = ( vecLeft.x - vecForward.y ) * s;
		}
	}
	QuaternionNormalize( q );
	*/

	// Version 2: Go through angles

	matrix3x4_t mat;
	MatrixSetColumn(vecForward, 0, mat);
	MatrixSetColumn(vecLeft, 1, mat);
	MatrixSetColumn(vecUp, 2, mat);

	QAngle angles;
	MatrixAngles(mat, angles);

	//	Quaternion q2;
	AngleQuaternion(angles, q);

	//	Assert( fabs(q.x - q2.x) < 1e-3 );
	//	Assert( fabs(q.y - q2.y) < 1e-3 );
	//	Assert( fabs(q.z - q2.z) < 1e-3 );
	//	Assert( fabs(q.w - q2.w) < 1e-3 );
}

// FIXME: Optimize!
void MatrixQuaternion(const matrix3x4_t& mat, Quaternion& q)
{
	QAngle angles;
	MatrixAngles(mat, angles);
	AngleQuaternion(angles, q);
}
#endif // #if !defined(__SPU__)

void MatrixQuaternionFast(const matrix3x4_t& mat, Quaternion& q)
{
	float t;
	if (mat[2][2] < 0)
	{
		if (mat[0][0] > mat[1][1])
		{
			t = 1 + mat[0][0] - mat[1][1] - mat[2][2];
			q.Init(t, mat[0][1] + mat[1][0], mat[2][0] + mat[0][2], mat[2][1] - mat[1][2]);
		}
		else
		{
			t = 1 - mat[0][0] + mat[1][1] - mat[2][2];
			q.Init(mat[0][1] + mat[1][0], t, mat[1][2] + mat[2][1], mat[0][2] - mat[2][0]);
		}
	}
	else
	{
		if (mat[0][0] < -mat[1][1])
		{
			t = 1 - mat[0][0] - mat[1][1] + mat[2][2];
			q.Init(mat[2][0] + mat[0][2], mat[1][2] + mat[2][1], t, mat[1][0] - mat[0][1]);
		}
		else
		{
			t = 1 + mat[0][0] + mat[1][1] + mat[2][2];
			q.Init(mat[2][1] - mat[1][2], mat[0][2] - mat[2][0], mat[1][0] - mat[0][1], t);
		}
	}
	q = q * (0.5f / sqrtf(t));
}


float MatrixQuaternionTest(uint nCount)
{
	float flMaxError = 0, flSumError = 0;
	for (uint i = 0; i < nCount; ++i)
	{
		Quaternion q = RandomQuaternion(), r;
		Assert(fabsf(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w - 1) < 1e-5f);
		matrix3x4_t mat;
		QuaternionMatrix(q, mat);
		MatrixQuaternion(mat, r);
		if (QuaternionDotProduct(q, r) < 0)
		{
			r = -r;
		}
		float flError = Sqr(q.x - r.x) + Sqr(q.y - r.y) + Sqr(q.z - r.z) + Sqr(q.w - r.w);
		flSumError += flError;
		if (flError > flMaxError)
		{
			flMaxError = flError;
		}
	}
	NOTE_UNUSED(flMaxError); NOTE_UNUSED(flSumError);
	return flSumError / nCount;
}

float MatrixQuaternionFastTest(uint nCount)
{
	float flMaxError = 0, flSumError = 0;
	for (uint i = 0; i < nCount; ++i)
	{
		Quaternion q = RandomQuaternion(), r;
		Assert(fabsf(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w - 1) < 1e-5f);
		matrix3x4_t mat;
		QuaternionMatrix(q, mat);
		MatrixQuaternionFast(mat, r);
		if (QuaternionDotProduct(q, r) < 0)
		{
			r = -r;
		}
		float flError = Sqr(q.x - r.x) + Sqr(q.y - r.y) + Sqr(q.z - r.z) + Sqr(q.w - r.w);
		flSumError += flError;
		if (flError > flMaxError)
		{
			flMaxError = flError;
		}
	}
	NOTE_UNUSED(flMaxError); NOTE_UNUSED(flSumError);
	return flSumError / nCount;
}

// the same as MatrixQuaternionTest, but uses inline helper functions that return matrix and quaternion instead of using return-by-reference versions
// on MSVC10, this generates the same code as MatrixQuaternionTest, but it's easier to read, write and maintain code
float MatrixQuaternionTest2(uint nCount)
{
	float flMaxError = 0, flSumError = 0;
	for (uint i = 0; i < nCount; ++i)
	{
		Quaternion q = RandomQuaternion(), r;
		Assert(fabsf(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w - 1) < 1e-5f);
		matrix3x4_t mat = QuaternionMatrix(q);
		r = MatrixQuaternion(mat);
		if (QuaternionDotProduct(q, r) < 0)
		{
			r = -r;
		}
		float flError = Sqr(q.x - r.x) + Sqr(q.y - r.y) + Sqr(q.z - r.z) + Sqr(q.w - r.w);
		flSumError += flError;
		if (flError > flMaxError)
		{
			flMaxError = flError;
		}
	}
	NOTE_UNUSED(flMaxError); NOTE_UNUSED(flSumError);
	return flSumError / nCount;
}

//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion into engine angles
// Input  : *quaternion - q3 + q0.i + q1.j + q2.k
//			*outAngles - PITCH, YAW, ROLL
//-----------------------------------------------------------------------------
void QuaternionAngles(const Quaternion& q, RadianEuler& angles)
{
	Assert(s_bMathlibInitialized);
	Assert(q.IsValid());

	// FIXME: doing it this way calculates too much data, needs to do an optimized version...
	matrix3x4_t matrix;
	QuaternionMatrix(q, matrix);
	MatrixAngles(matrix, angles);

	Assert(angles.IsValid());
}

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Purpose: A helper function to normalize p2.x->p1.x and p3.x->p4.x to 
//  be the same length as p2.x->p3.x
// Input  : &p2 - 
//			&p4 - 
//			p4n - 
//-----------------------------------------------------------------------------
void Spline_Normalize(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	Vector3D& p1n,
	Vector3D& p4n)
{
	float dt = p3.x - p2.x;

	p1n = p1;
	p4n = p4;

	if (dt != 0.0)
	{
		if (p1.x != p2.x)
		{
			// Equivalent to p1n = p2 - (p2 - p1) * (dt / (p2.x - p1.x));
			VectorLerp(p2, p1, dt / (p2.x - p1.x), p1n);
		}
		if (p4.x != p3.x)
		{
			// Equivalent to p4n = p3 + (p4 - p3) * (dt / (p4.x - p3.x));
			VectorLerp(p3, p4, dt / (p4.x - p3.x), p4n);
		}
	}
}
#endif // #if !defined(__SPU__)

#if !defined(__SPU__)
//-----------------------------------------------------------------------------
// Purpose: 
// Input  : 
//-----------------------------------------------------------------------------

void Catmull_Rom_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);
	float tSqr = t * t * 0.5f;
	float tSqrSqr = t * tSqr;
	t *= 0.5f;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	VectorScale(p1, -tSqrSqr, a);		// 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
	VectorScale(p2, tSqrSqr * 3, b);
	VectorScale(p3, tSqrSqr * -3, c);
	VectorScale(p4, tSqrSqr, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 2
	VectorScale(p1, tSqr * 2, a);		// 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
	VectorScale(p2, tSqr * -5, b);
	VectorScale(p3, tSqr * 4, c);
	VectorScale(p4, -tSqr, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 3
	VectorScale(p1, -t, a);			// 0.5 t * [ (-1*p1) + p3 ]
	VectorScale(p3, t, b);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);

	// matrix row 4
	VectorAdd(p2, output, output);	// p2
}

void Catmull_Rom_Spline_Tangent(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);
	float tOne = 3 * t * t * 0.5f;
	float tTwo = 2 * t * 0.5f;
	float tThree = 0.5;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	VectorScale(p1, -tOne, a);		// 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
	VectorScale(p2, tOne * 3, b);
	VectorScale(p3, tOne * -3, c);
	VectorScale(p4, tOne, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 2
	VectorScale(p1, tTwo * 2, a);		// 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
	VectorScale(p2, tTwo * -5, b);
	VectorScale(p3, tTwo * 4, c);
	VectorScale(p4, -tTwo, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 3
	VectorScale(p1, -tThree, a);			// 0.5 t * [ (-1*p1) + p3 ]
	VectorScale(p3, tThree, b);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
}

// area under the curve [0..t]
void Catmull_Rom_Spline_Integral(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	output = p2 * t
		- 0.25f * (p1 - p3) * t * t
		+ (1.0f / 6.0f) * (2.0f * p1 - 5.0f * p2 + 4.0f * p3 - p4) * t * t * t
		- 0.125f * (p1 - 3.0f * p2 + 3.0f * p3 - p4) * t * t * t * t;
}


// area under the curve [0..1]
void Catmull_Rom_Spline_Integral(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	Vector3D& output)
{
	output = (-0.25f * p1 + 3.25f * p2 + 3.25f * p3 - 0.25f * p4) * (1.0f / 6.0f);
}


void Catmull_Rom_Spline_Normalize(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
	float dt = p3.DistTo(p2);

	Vector3D p1n, p4n;
	VectorSubtract(p1, p2, p1n);
	VectorSubtract(p4, p3, p4n);

	VectorNormalize(p1n);
	VectorNormalize(p4n);

	VectorMA(p2, dt, p1n, p1n);
	VectorMA(p3, dt, p4n, p4n);

	Catmull_Rom_Spline(p1n, p2, p3, p4n, t, output);
}


void Catmull_Rom_Spline_Integral_Normalize(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
	float dt = p3.DistTo(p2);

	Vector3D p1n, p4n;
	VectorSubtract(p1, p2, p1n);
	VectorSubtract(p4, p3, p4n);

	VectorNormalize(p1n);
	VectorNormalize(p4n);

	VectorMA(p2, dt, p1n, p1n);
	VectorMA(p3, dt, p4n, p4n);

	Catmull_Rom_Spline_Integral(p1n, p2, p3, p4n, t, output);
}


void Catmull_Rom_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Vector3D p1n, p4n;
	Spline_Normalize(p1, p2, p3, p4, p1n, p4n);
	Catmull_Rom_Spline(p1n, p2, p3, p4n, t, output);
}

#endif // !defined(__SPU__)

//-----------------------------------------------------------------------------
// Purpose: basic hermite spline.  t = 0 returns p1, t = 1 returns p2, 
//			d1 and d2 are used to entry and exit slope of curve
// Input  : 
//-----------------------------------------------------------------------------

void Hermite_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& d1,
	const Vector3D& d2,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);
	float tSqr = t * t;
	float tCube = t * tSqr;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &d1);
	Assert(&output != &d2);

	float b1 = 2.0f * tCube - 3.0f * tSqr + 1.0f;
	float b2 = 1.0f - b1; // -2*tCube+3*tSqr;
	float b3 = tCube - 2 * tSqr + t;
	float b4 = tCube - tSqr;

	VectorScale(p1, b1, output);
	VectorMA(output, b2, p2, output);
	VectorMA(output, b3, d1, output);
	VectorMA(output, b4, d2, output);
}

float Hermite_Spline(
	float p1,
	float p2,
	float d1,
	float d2,
	float t)
{
	Assert(s_bMathlibInitialized);
	float output;
	float tSqr = t * t;
	float tCube = t * tSqr;

	float b1 = 2.0f * tCube - 3.0f * tSqr + 1.0f;
	float b2 = 1.0f - b1; // -2*tCube+3*tSqr;
	float b3 = tCube - 2 * tSqr + t;
	float b4 = tCube - tSqr;

	output = p1 * b1;
	output += p2 * b2;
	output += d1 * b3;
	output += d2 * b4;

	return output;
}


void Hermite_SplineBasis(float t, float basis[4])
{
	float tSqr = t * t;
	float tCube = t * tSqr;

	basis[0] = 2.0f * tCube - 3.0f * tSqr + 1.0f;
	basis[1] = 1.0f - basis[0]; // -2*tCube+3*tSqr;
	basis[2] = tCube - 2 * tSqr + t;
	basis[3] = tCube - tSqr;
}

//-----------------------------------------------------------------------------
// Purpose: simple three data point hermite spline.  
//			t = 0 returns p1, t = 1 returns p2, 
//			slopes are generated from the p0->p1 and p1->p2 segments
//			this is reasonable C1 method when there's no "p3" data yet.
// Input  : 
//-----------------------------------------------------------------------------

// BUG: the VectorSubtract()'s calls go away if the global optimizer is enabled
#if !defined(__SPU__)
#pragma optimize( "g", off )
#endif

void Hermite_Spline(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2, float t, Vector3D& output)
{
	Vector3D e10, e21;
	VectorSubtract(p1, p0, e10);
	VectorSubtract(p2, p1, e21);
	Hermite_Spline(p1, p2, e10, e21, t, output);
}

#if !defined(__SPU__)
#pragma optimize( "", on )
#endif

float Hermite_Spline(float p0, float p1, float p2, float t)
{
	return Hermite_Spline(p1, p2, p1 - p0, p2 - p1, t);
}


void Hermite_Spline(const Quaternion& q0, const Quaternion& q1, const Quaternion& q2, float t, Quaternion& output)
{
	// cheap, hacked version of quaternions
	Quaternion q0a;
	Quaternion q1a;

	QuaternionAlign(q2, q0, q0a);
	QuaternionAlign(q2, q1, q1a);

	output.x = Hermite_Spline(q0a.x, q1a.x, q2.x, t);
	output.y = Hermite_Spline(q0a.y, q1a.y, q2.y, t);
	output.z = Hermite_Spline(q0a.z, q1a.z, q2.z, t);
	output.w = Hermite_Spline(q0a.w, q1a.w, q2.w, t);

	QuaternionNormalize(output);
}


#if !defined(__SPU__)
// See http://en.wikipedia.org/wiki/Kochanek-Bartels_curves
// 
// Tension:  -1 = Round -> 1 = Tight
// Bias:     -1 = Pre-shoot (bias left) -> 1 = Post-shoot (bias right)
// Continuity: -1 = Box corners -> 1 = Inverted corners
//
// If T=B=C=0 it's the same matrix as Catmull-Rom.
// If T=1 & B=C=0 it's the same as Cubic.
// If T=B=0 & C=-1 it's just linear interpolation
// 
// See http://news.povray.org/povray.binaries.tutorials/attachment/%3CXns91B880592482seed7@povray.org%3E/Splines.bas.txt
// for example code and descriptions of various spline types...
// 
void Kochanek_Bartels_Spline(
	float tension,
	float bias,
	float continuity,
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);

	float ffa, ffb, ffc, ffd;

	ffa = (1.0f - tension) * (1.0f + continuity) * (1.0f + bias);
	ffb = (1.0f - tension) * (1.0f - continuity) * (1.0f - bias);
	ffc = (1.0f - tension) * (1.0f - continuity) * (1.0f + bias);
	ffd = (1.0f - tension) * (1.0f + continuity) * (1.0f - bias);

	float tSqr = t * t * 0.5f;
	float tSqrSqr = t * tSqr;
	t *= 0.5f;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	VectorScale(p1, tSqrSqr * -ffa, a);
	VectorScale(p2, tSqrSqr * (4.0f + ffa - ffb - ffc), b);
	VectorScale(p3, tSqrSqr * (-4.0f + ffb + ffc - ffd), c);
	VectorScale(p4, tSqrSqr * ffd, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 2
	VectorScale(p1, tSqr * 2 * ffa, a);
	VectorScale(p2, tSqr * (-6 - 2 * ffa + 2 * ffb + ffc), b);
	VectorScale(p3, tSqr * (6 - 2 * ffb - ffc + ffd), c);
	VectorScale(p4, tSqr * -ffd, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 3
	VectorScale(p1, t * -ffa, a);
	VectorScale(p2, t * (ffa - ffb), b);
	VectorScale(p3, t * ffb, c);
	// p4 unchanged

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);

	// matrix row 4
	// p1, p3, p4 unchanged
	// p2 is multiplied by 1 and added, so just added it directly

	VectorAdd(p2, output, output);
}

void Kochanek_Bartels_Spline_NormalizeX(
	float tension,
	float bias,
	float continuity,
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Vector3D p1n, p4n;
	Spline_Normalize(p1, p2, p3, p4, p1n, p4n);
	Kochanek_Bartels_Spline(tension, bias, continuity, p1n, p2, p3, p4n, t, output);
}

void Cubic_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);

	float tSqr = t * t;
	float tSqrSqr = t * tSqr;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	VectorScale(p2, tSqrSqr * 2, b);
	VectorScale(p3, tSqrSqr * -2, c);

	VectorAdd(b, output, output);
	VectorAdd(c, output, output);

	// matrix row 2
	VectorScale(p2, tSqr * -3, b);
	VectorScale(p3, tSqr * 3, c);

	VectorAdd(b, output, output);
	VectorAdd(c, output, output);

	// matrix row 3
	// no influence
	// p4 unchanged

	// matrix row 4
	// p1, p3, p4 unchanged
	VectorAdd(p2, output, output);
}

void Cubic_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Vector3D p1n, p4n;
	Spline_Normalize(p1, p2, p3, p4, p1n, p4n);
	Cubic_Spline(p1n, p2, p3, p4n, t, output);
}

void BSpline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);

	float oneOver6 = 1.0f / 6.0f;

	float tSqr = t * t * oneOver6;
	float tSqrSqr = t * tSqr;
	t *= oneOver6;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	VectorScale(p1, -tSqrSqr, a);
	VectorScale(p2, tSqrSqr * 3.0f, b);
	VectorScale(p3, tSqrSqr * -3.0f, c);
	VectorScale(p4, tSqrSqr, d);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
	VectorAdd(d, output, output);

	// matrix row 2
	VectorScale(p1, tSqr * 3.0f, a);
	VectorScale(p2, tSqr * -6.0f, b);
	VectorScale(p3, tSqr * 3.0f, c);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);

	// matrix row 3
	VectorScale(p1, t * -3.0f, a);
	VectorScale(p3, t * 3.0f, c);
	// p4 unchanged

	VectorAdd(a, output, output);
	VectorAdd(c, output, output);

	// matrix row 4
	// p1 and p3 scaled by 1.0f, so done below
	VectorScale(p1, oneOver6, a);
	VectorScale(p2, 4.0f * oneOver6, b);
	VectorScale(p3, oneOver6, c);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);
}

void BSpline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Vector3D p1n, p4n;
	Spline_Normalize(p1, p2, p3, p4, p1n, p4n);
	BSpline(p1n, p2, p3, p4n, t, output);
}

void Parabolic_Spline(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Assert(s_bMathlibInitialized);

	float tSqr = t * t * 0.5f;
	t *= 0.5f;

	Assert(&output != &p1);
	Assert(&output != &p2);
	Assert(&output != &p3);
	Assert(&output != &p4);

	output.Init();

	Vector3D a, b, c, d;

	// matrix row 1
	// no influence from t cubed

	// matrix row 2
	VectorScale(p1, tSqr, a);
	VectorScale(p2, tSqr * -2.0f, b);
	VectorScale(p3, tSqr, c);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
	VectorAdd(c, output, output);

	// matrix row 3
	VectorScale(p1, t * -2.0f, a);
	VectorScale(p2, t * 2.0f, b);
	// p4 unchanged

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);

	// matrix row 4
	VectorScale(p1, 0.5f, a);
	VectorScale(p2, 0.5f, b);

	VectorAdd(a, output, output);
	VectorAdd(b, output, output);
}

void Parabolic_Spline_NormalizeX(
	const Vector3D& p1,
	const Vector3D& p2,
	const Vector3D& p3,
	const Vector3D& p4,
	float t,
	Vector3D& output)
{
	Vector3D p1n, p4n;
	Spline_Normalize(p1, p2, p3, p4, p1n, p4n);
	Parabolic_Spline(p1n, p2, p3, p4n, t, output);
}

//-----------------------------------------------------------------------------
// Cubic Bernstein basis functions
// http://mathworld.wolfram.com/BernsteinPolynomial.html
//
// Purpose: Evaluate the cubic Bernstein basis for the input parametric coordinate.
// Output is the coefficient for that basis polynomial.
//-----------------------------------------------------------------------------
float CubicBasis0(float t)
{
	float invT = 1.0f - t;
	return invT * invT * invT;
}
float CubicBasis1(float t)
{
	float invT = 1.0f - t;
	return 3.0f * t * invT * invT;
}
float CubicBasis2(float t)
{
	float invT = 1.0f - t;
	return 3.0f * t * t * invT;
}
float CubicBasis3(float t)
{
	return t * t * t;
}

//-----------------------------------------------------------------------------
// Purpose: Compress the input values for a ranged result such that from 75% to 200% smoothly of the range maps 
//-----------------------------------------------------------------------------

float RangeCompressor(float flValue, float flMin, float flMax, float flBase)
{
	// clamp base
	if (flBase < flMin)
		flBase = flMin;
	if (flBase > flMax)
		flBase = flMax;

	flValue += flBase;

	// convert to 0 to 1 value
	float flMid = (flValue - flMin) / (flMax - flMin);
	// convert to -1 to 1 value
	float flTarget = flMid * 2 - 1;

	if (fabs(flTarget) > 0.75)
	{
		float t = (fabs(flTarget) - 0.75) / (1.25);
		if (t < 1.0)
		{
			if (flTarget > 0)
			{
				flTarget = Hermite_Spline(0.75, 1, 0.75, 0, t);
			}
			else
			{
				flTarget = -Hermite_Spline(0.75, 1, 0.75, 0, t);
			}
		}
		else
		{
			flTarget = (flTarget > 0) ? 1.0f : -1.0f;
		}
	}

	flMid = (flTarget + 1) / 2.0;
	flValue = flMin * (1 - flMid) + flMax * flMid;

	flValue -= flBase;

	return flValue;
}


//#pragma optimize( "", on )

//-----------------------------------------------------------------------------
// Transforms a AABB into another space; which will inherently grow the box.
//-----------------------------------------------------------------------------
void TransformAABB(const matrix3x4_t& transform, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut)
{
	Vector3D localCenter;
	VectorAdd(vecMinsIn, vecMaxsIn, localCenter);
	localCenter *= 0.5f;

	Vector3D localExtents;
	VectorSubtract(vecMaxsIn, localCenter, localExtents);

	Vector3D worldCenter;
	VectorTransform(localCenter, transform, worldCenter);

	Vector3D worldExtents;
	worldExtents.x = DotProductAbs(localExtents, transform[0]);
	worldExtents.y = DotProductAbs(localExtents, transform[1]);
	worldExtents.z = DotProductAbs(localExtents, transform[2]);

	VectorSubtract(worldCenter, worldExtents, vecMinsOut);
	VectorAdd(worldCenter, worldExtents, vecMaxsOut);
	// sanity check
	Assert(vecMinsOut.LengthSqr() + vecMaxsOut.LengthSqr() < 1e+12);
}


//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void ITransformAABB(const matrix3x4_t& transform, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut)
{
	Vector3D worldCenter;
	VectorAdd(vecMinsIn, vecMaxsIn, worldCenter);
	worldCenter *= 0.5f;

	Vector3D worldExtents;
	VectorSubtract(vecMaxsIn, worldCenter, worldExtents);

	Vector3D localCenter;
	VectorITransform(worldCenter, transform, localCenter);

	Vector3D localExtents;
	localExtents.x = FloatMakePositive(worldExtents.x * transform[0][0]) +
		FloatMakePositive(worldExtents.y * transform[1][0]) +
		FloatMakePositive(worldExtents.z * transform[2][0]);
	localExtents.y = FloatMakePositive(worldExtents.x * transform[0][1]) +
		FloatMakePositive(worldExtents.y * transform[1][1]) +
		FloatMakePositive(worldExtents.z * transform[2][1]);
	localExtents.z = FloatMakePositive(worldExtents.x * transform[0][2]) +
		FloatMakePositive(worldExtents.y * transform[1][2]) +
		FloatMakePositive(worldExtents.z * transform[2][2]);

	VectorSubtract(localCenter, localExtents, vecMinsOut);
	VectorAdd(localCenter, localExtents, vecMaxsOut);
}


//-----------------------------------------------------------------------------
// Rotates a AABB into another space; which will inherently grow the box. 
// (same as TransformAABB, but doesn't take the translation into account)
//-----------------------------------------------------------------------------
void RotateAABB(const matrix3x4_t& transform, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut)
{
	Vector3D localCenter;
	VectorAdd(vecMinsIn, vecMaxsIn, localCenter);
	localCenter *= 0.5f;

	Vector3D localExtents;
	VectorSubtract(vecMaxsIn, localCenter, localExtents);

	Vector3D newCenter;
	VectorRotate(localCenter, transform, newCenter);

	Vector3D newExtents;
	newExtents.x = DotProductAbs(localExtents, transform[0]);
	newExtents.y = DotProductAbs(localExtents, transform[1]);
	newExtents.z = DotProductAbs(localExtents, transform[2]);

	VectorSubtract(newCenter, newExtents, vecMinsOut);
	VectorAdd(newCenter, newExtents, vecMaxsOut);
}


//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void IRotateAABB(const matrix3x4_t& transform, const Vector3D& vecMinsIn, const Vector3D& vecMaxsIn, Vector3D& vecMinsOut, Vector3D& vecMaxsOut)
{
	Vector3D oldCenter;
	VectorAdd(vecMinsIn, vecMaxsIn, oldCenter);
	oldCenter *= 0.5f;

	Vector3D oldExtents;
	VectorSubtract(vecMaxsIn, oldCenter, oldExtents);

	Vector3D newCenter;
	VectorIRotate(oldCenter, transform, newCenter);

	Vector3D newExtents;
	newExtents.x = FloatMakePositive(oldExtents.x * transform[0][0]) +
		FloatMakePositive(oldExtents.y * transform[1][0]) +
		FloatMakePositive(oldExtents.z * transform[2][0]);
	newExtents.y = FloatMakePositive(oldExtents.x * transform[0][1]) +
		FloatMakePositive(oldExtents.y * transform[1][1]) +
		FloatMakePositive(oldExtents.z * transform[2][1]);
	newExtents.z = FloatMakePositive(oldExtents.x * transform[0][2]) +
		FloatMakePositive(oldExtents.y * transform[1][2]) +
		FloatMakePositive(oldExtents.z * transform[2][2]);

	VectorSubtract(newCenter, newExtents, vecMinsOut);
	VectorAdd(newCenter, newExtents, vecMaxsOut);
}


float CalcSqrDistanceToAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point)
{
	float flDelta;
	float flDistSqr = 0.0f;

	if (point.x < mins.x)
	{
		flDelta = (mins.x - point.x);
		flDistSqr += flDelta * flDelta;
	}
	else if (point.x > maxs.x)
	{
		flDelta = (point.x - maxs.x);
		flDistSqr += flDelta * flDelta;
	}

	if (point.y < mins.y)
	{
		flDelta = (mins.y - point.y);
		flDistSqr += flDelta * flDelta;
	}
	else if (point.y > maxs.y)
	{
		flDelta = (point.y - maxs.y);
		flDistSqr += flDelta * flDelta;
	}

	if (point.z < mins.z)
	{
		flDelta = (mins.z - point.z);
		flDistSqr += flDelta * flDelta;
	}
	else if (point.z > maxs.z)
	{
		flDelta = (point.z - maxs.z);
		flDistSqr += flDelta * flDelta;
	}

	return flDistSqr;
}


void CalcClosestPointOnAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point, Vector3D& closestOut)
{
	closestOut.x = clamp(point.x, mins.x, maxs.x);
	closestOut.y = clamp(point.y, mins.y, maxs.y);
	closestOut.z = clamp(point.z, mins.z, maxs.z);
}

void CalcSqrDistAndClosestPointOnAABB(const Vector3D& mins, const Vector3D& maxs, const Vector3D& point, Vector3D& closestOut, float& distSqrOut)
{
	distSqrOut = 0.0f;
	for (int i = 0; i < 3; i++)
	{
		if (point[i] < mins[i])
		{
			closestOut[i] = mins[i];
			float flDelta = closestOut[i] - mins[i];
			distSqrOut += flDelta * flDelta;
		}
		else if (point[i] > maxs[i])
		{
			closestOut[i] = maxs[i];
			float flDelta = closestOut[i] - maxs[i];
			distSqrOut += flDelta * flDelta;
		}
		else
		{
			closestOut[i] = point[i];
		}
	}

}

float CalcClosestPointToLineT(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, Vector3D& vDir)
{
	Assert(s_bMathlibInitialized);
	VectorSubtract(vLineB, vLineA, vDir);

	// D dot [P - (A + D*t)] = 0
	// t = ( DP - DA) / DD
	float div = vDir.Dot(vDir);
	if (div < 0.00001f)
	{
		return 0;
	}
	else
	{
		return (vDir.Dot(P) - vDir.Dot(vLineA)) / div;
	}
}

void CalcClosestPointOnLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, Vector3D& vClosest, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector3D vDir;
	float t = CalcClosestPointToLineT(P, vLineA, vLineB, vDir);
	if (outT) *outT = t;
	vClosest.MulAdd(vLineA, vDir, t);
}


float CalcDistanceToLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector3D vClosest;
	CalcClosestPointOnLine(P, vLineA, vLineB, vClosest, outT);
	return P.DistTo(vClosest);
}

float CalcDistanceSqrToLine(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector3D vClosest;
	CalcClosestPointOnLine(P, vLineA, vLineB, vClosest, outT);
	return P.DistToSqr(vClosest);
}

void CalcClosestPointOnLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, Vector3D& vClosest, float* outT)
{
	Vector3D vDir;
	float t = CalcClosestPointToLineT(P, vLineA, vLineB, vDir);
	t = clamp(static_cast<int>(t), 0, 1);
	if (outT)
	{
		*outT = t;
	}
	vClosest.MulAdd(vLineA, vDir, t);
}


float CalcDistanceToLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector3D vClosest;
	CalcClosestPointOnLineSegment(P, vLineA, vLineB, vClosest, outT);
	return P.DistTo(vClosest);
}

float CalcDistanceSqrToLineSegment(const Vector3D& P, const Vector3D& vLineA, const Vector3D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector3D vClosest;
	CalcClosestPointOnLineSegment(P, vLineA, vLineB, vClosest, outT);
	return P.DistToSqr(vClosest);
}

float CalcClosestPointToLineT2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, Vector2D& vDir)
{
	Assert(s_bMathlibInitialized);
	Vector2DSubtract(vLineB, vLineA, vDir);

	// D dot [P - (A + D*t)] = 0
	// t = (DP - DA) / DD
	float div = vDir.Dot(vDir);
	if (div < 0.00001f)
	{
		return 0;
	}
	else
	{
		return (vDir.Dot(P) - vDir.Dot(vLineA)) / div;
	}
}

void CalcClosestPointOnLine2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, Vector2D& vClosest, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector2D vDir;
	float t = CalcClosestPointToLineT2D(P, vLineA, vLineB, vDir);
	if (outT) *outT = t;
	vClosest.MulAdd(vLineA, vDir, t);
}

float CalcDistanceToLine2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector2D vClosest;
	CalcClosestPointOnLine2D(P, vLineA, vLineB, vClosest, outT);
	return P.DistTo(vClosest);
}

float CalcDistanceSqrToLine2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector2D vClosest;
	CalcClosestPointOnLine2D(P, vLineA, vLineB, vClosest, outT);
	return P.DistToSqr(vClosest);
}

void CalcClosestPointOnLineSegment2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, Vector2D& vClosest, float* outT)
{
	Vector2D vDir;
	float t = CalcClosestPointToLineT2D(P, vLineA, vLineB, vDir);
	t = clamp(static_cast<int>(t), 0, 1);
	if (outT)
	{
		*outT = t;
	}
	vClosest.MulAdd(vLineA, vDir, t);
}

float CalcDistanceToLineSegment2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector2D vClosest;
	CalcClosestPointOnLineSegment2D(P, vLineA, vLineB, vClosest, outT);
	return P.DistTo(vClosest);
}

float CalcDistanceSqrToLineSegment2D(const Vector2D& P, const Vector2D& vLineA, const Vector2D& vLineB, float* outT)
{
	Assert(s_bMathlibInitialized);
	Vector2D vClosest;
	CalcClosestPointOnLineSegment2D(P, vLineA, vLineB, vClosest, outT);
	return P.DistToSqr(vClosest);
}

// Do we have another epsilon we could use
#define LINE_EPS ( 0.000001f )

//-----------------------------------------------------------------------------
// Purpose: Given lines p1->p2 and p3->p4, computes a line segment (pa->pb) and returns the parameters 0->1 multipliers
//  along each segment for the returned points
// Input  : p1 - 
//			p2 - 
//			p3 - 
//			p4 - 
//			*s1 - 
//			*s2 - 
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CalcLineToLineIntersectionSegment(
	const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, const Vector3D& p4, Vector3D* s1, Vector3D* s2,
	float* t1, float* t2)
{
	Vector3D p13, p43, p21;
	float d1343, d4321, d1321, d4343, d2121;
	float numer, denom;

	p13.x = p1.x - p3.x;
	p13.y = p1.y - p3.y;
	p13.z = p1.z - p3.z;
	p43.x = p4.x - p3.x;
	p43.y = p4.y - p3.y;
	p43.z = p4.z - p3.z;

	if (fabs(p43.x) < LINE_EPS && fabs(p43.y) < LINE_EPS && fabs(p43.z) < LINE_EPS)
		return false;
	p21.x = p2.x - p1.x;
	p21.y = p2.y - p1.y;
	p21.z = p2.z - p1.z;
	if (fabs(p21.x) < LINE_EPS && fabs(p21.y) < LINE_EPS && fabs(p21.z) < LINE_EPS)
		return false;

	d1343 = p13.x * p43.x + p13.y * p43.y + p13.z * p43.z;
	d4321 = p43.x * p21.x + p43.y * p21.y + p43.z * p21.z;
	d1321 = p13.x * p21.x + p13.y * p21.y + p13.z * p21.z;
	d4343 = p43.x * p43.x + p43.y * p43.y + p43.z * p43.z;
	d2121 = p21.x * p21.x + p21.y * p21.y + p21.z * p21.z;

	denom = d2121 * d4343 - d4321 * d4321;
	if (fabs(denom) < LINE_EPS)
		return false;
	numer = d1343 * d4321 - d1321 * d4343;

	*t1 = numer / denom;
	*t2 = (d1343 + d4321 * (*t1)) / d4343;

	if (s1 != NULL && s2 != NULL)
	{
		s1->x = p1.x + *t1 * p21.x;
		s1->y = p1.y + *t1 * p21.y;
		s1->z = p1.z + *t1 * p21.z;
		s2->x = p3.x + *t2 * p43.x;
		s2->y = p3.y + *t2 * p43.y;
		s2->z = p3.z + *t2 * p43.z;
	}

	return true;
}

#pragma optimize( "", off )

#ifndef EXCEPTION_EXECUTE_HANDLER
#define EXCEPTION_EXECUTE_HANDLER       1
#endif

#pragma optimize( "", on )


#ifndef NDEBUG
volatile static char const* pDebugString;
#endif

void MathLib_Init(float gamma, float texGamma, float brightness, int overbright, bool bAllow3DNow, bool bAllowSSE, bool bAllowSSE2, bool bAllowMMX)
{
	if (s_bMathlibInitialized)
		return;
#ifdef _WIN32
	Assert(_rotl(0xC7654321, 1) == 0x8ECA8643);
	Assert(_rotl64(0xC7654321ABCDEF00ull, 1) == 0x8ECA8643579BDE01ull);
#endif
#ifndef NDEBUG
	pDebugString = "mathlib.lib built debug!";
#endif

	// FIXME: Hook SSE into VectorAligned + Vector4DAligned

#if !defined( _GAMECONSOLE )
	// Grab the processor information:
	const CPUInformation& pi = GetCPUInformation();

	if (!(pi.m_bSSE && pi.m_bSSE2))
	{
		Assert(0);
		if (MessageBoxA(NULL, "SSE and SSE2 are required.", "Unsupported CPU", MB_ICONERROR | MB_OK))
		{
			TerminateProcess(GetCurrentProcess(), EXIT_FAILURE);
		}
	}
#endif //!360


	s_bMathlibInitialized = true;

	InitSinCosTable();
	BuildGammaTable(gamma, texGamma, brightness, overbright);
	SeedRandSIMD(0x31415926);
}


bool MathLib_MMXEnabled(void)
{
	Assert(s_bMathlibInitialized);
	return true;
}

bool MathLib_SSEEnabled(void)
{
	Assert(s_bMathlibInitialized);
	return true;
}

bool MathLib_SSE2Enabled(void)
{
	Assert(s_bMathlibInitialized);
	return true;
}


// BUGBUG: Why doesn't this call angle diff?!?!?
float ApproachAngle(float target, float value, float speed)
{
	target = anglemod(target);
	value = anglemod(value);

	float delta = target - value;

	// Speed is assumed to be positive
	if (speed < 0)
		speed = -speed;

	if (delta < -180)
		delta += 360;
	else if (delta > 180)
		delta -= 360;

	if (delta > speed)
		value += speed;
	else if (delta < -speed)
		value -= speed;
	else
		value = target;

	return value;
}


// BUGBUG: Why do we need both of these?
float AngleDiff(float destAngle, float srcAngle)
{
	float delta;

	delta = fmodf(destAngle - srcAngle, 360.0f);
	if (destAngle > srcAngle)
	{
		if (delta >= 180)
			delta -= 360;
	}
	else
	{
		if (delta <= -180)
			delta += 360;
	}
	return delta;
}


float AngleDistance(float next, float cur)
{
	float delta = next - cur;

	if (delta < -180)
		delta += 360;
	else if (delta > 180)
		delta -= 360;

	return delta;
}


float AngleNormalize(float angle)
{
	angle = fmodf(angle, 360.0f);
	if (angle > 180)
	{
		angle -= 360;
	}
	if (angle < -180)
	{
		angle += 360;
	}
	return angle;
}

//--------------------------------------------------------------------------------------------------------------
// ensure that 0 <= angle <= 360
float AngleNormalizePositive(float angle)
{
	angle = fmodf(angle, 360.0f);

	if (angle < 0.0f)
	{
		angle += 360.0f;
	}

	return angle;
}

//--------------------------------------------------------------------------------------------------------------
bool AnglesAreEqual(float a, float b, float tolerance)
{
	return (fabs(AngleDiff(a, b)) < tolerance);
}

void RotationDeltaAxisAngle(const QAngle& srcAngles, const QAngle& destAngles, Vector3D& deltaAxis, float& deltaAngle)
{
	Quaternion srcQuat, destQuat, srcQuatInv, out;
	AngleQuaternion(srcAngles, srcQuat);
	AngleQuaternion(destAngles, destQuat);
	QuaternionScale(srcQuat, -1, srcQuatInv);
	QuaternionMult(destQuat, srcQuatInv, out);

	QuaternionNormalize(out);
	QuaternionAxisAngle(out, deltaAxis, deltaAngle);
}

void RotationDelta(const QAngle& srcAngles, const QAngle& destAngles, QAngle* out)
{
	matrix3x4_t src, srcInv;
	matrix3x4_t dest;
	AngleMatrix(srcAngles, src);
	AngleMatrix(destAngles, dest);
	// xform = src(-1) * dest
	MatrixInvert(src, srcInv);
	matrix3x4_t xform;
	ConcatTransforms(dest, srcInv, xform);
	QAngle xformAngles;
	MatrixAngles(xform, xformAngles);
	if (out)
	{
		*out = xformAngles;
	}
}

void ClipLineSegmentToPlane(const Vector3D& vNormal, const Vector3D& vPlanePoint, Vector3D* p1, Vector3D* p2, float flBias)
{
	float flDot1, flDot2;
	flDot1 = (*p1 - vPlanePoint).Dot(vNormal) + flBias;
	flDot2 = (*p2 - vPlanePoint).Dot(vNormal) + flBias;

	if (flDot1 >= 0 && flDot2 >= 0)
	{
		return;
	}

	if (flDot1 >= 0)
	{
		Vector3D vRay = *p2 - *p1;
		*p2 = *p1 + vRay * flDot1 / (flDot1 - flDot2);
	}
	else if (flDot2 >= 0)
	{
		Vector3D vRay = *p1 - *p2;
		*p1 = *p2 + vRay * flDot2 / (flDot2 - flDot1);
	}
	else
	{
		*p1 = vec3_invalid;
		*p2 = vec3_invalid;
	}
}

//-----------------------------------------------------------------------------
// Purpose: Computes a triangle normal
//-----------------------------------------------------------------------------
void ComputeTrianglePlane(const Vector3D& v1, const Vector3D& v2, const Vector3D& v3, Vector3D& normal, float& intercept)
{
	Vector3D e1, e2;
	VectorSubtract(v2, v1, e1);
	VectorSubtract(v3, v1, e2);
	CrossProduct(e1, e2, normal);
	VectorNormalize(normal);
	intercept = DotProduct(normal, v1);
}

//-----------------------------------------------------------------------------
// Purpose: Calculate the volume of a tetrahedron with these vertices
// Input  : p0 - points of tetrahedron
//			p1 - 
//			p2 - 
//			p3 - 
// Output : float (volume in units^3)
//-----------------------------------------------------------------------------
float TetrahedronVolume(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2, const Vector3D& p3)
{
	Vector3D a, b, c, cross;
	float volume = 1.0f / 6.0f;

	a = p1 - p0;
	b = p2 - p0;
	c = p3 - p0;
	cross = CrossProduct(b, c);

	volume *= DotProduct(a, cross);
	if (volume < 0)
		return -volume;
	return volume;
}


// computes the area of a triangle given three verts
float TriangleArea(const Vector3D& v0, const Vector3D& v1, const Vector3D& v2)
{
	Vector3D vecEdge0, vecEdge1, vecCross;
	VectorSubtract(v1, v0, vecEdge0);
	VectorSubtract(v2, v0, vecEdge1);
	CrossProduct(vecEdge0, vecEdge1, vecCross);
	return (VectorLength(vecCross) * 0.5f);
}

//-----------------------------------------------------------------------------
// Purpose: This is a clone of BaseWindingForPlane()
// Input  : *pOutVerts - an array of preallocated verts to build the polygon in
//			normal - the plane normal
//			dist - the plane constant
// Output : int - vert count (always 4)
//-----------------------------------------------------------------------------
int PolyFromPlane(Vector3D* pOutVerts, const Vector3D& normal, float dist, float fHalfScale)
{
	int		i, x;
	vec_t	max, v;
	Vector3D	org, vright, vup;

	// find the major axis

	max = -16384; //MAX_COORD_INTEGER
	x = -1;
	for (i = 0; i < 3; i++)
	{
		v = fabs(normal[i]);
		if (v > max)
		{
			x = i;
			max = v;
		}
	}

	if (x == -1)
		return 0;

	// Build a unit vector along something other than the major axis
	VectorCopy(vec3_origin, vup);
	switch (x)
	{
	case 0:
	case 1:
		vup[2] = 1;
		break;
	case 2:
		vup[0] = 1;
		break;
	}

	// Remove the component of this vector along the normal
	v = DotProduct(vup, normal);
	VectorMA(vup, -v, normal, vup);
	// Make it a unit (perpendicular)
	VectorNormalize(vup);

	// Center of the poly is at normal * dist
	VectorScale(normal, dist, org);
	// Calculate the third orthonormal basis vector for our plane space (this one and vup are in the plane)
	CrossProduct(vup, normal, vright);

	// Make the plane's basis vectors big (these are the half-sides of the polygon we're making)
	VectorScale(vup, fHalfScale, vup);
	VectorScale(vright, fHalfScale, vright);

	// Move diagonally away from org to create the corner verts
	VectorSubtract(org, vright, pOutVerts[0]);	// left
	VectorAdd(pOutVerts[0], vup, pOutVerts[0]);	// up

	VectorAdd(org, vright, pOutVerts[1]);		// right
	VectorAdd(pOutVerts[1], vup, pOutVerts[1]);	// up

	VectorAdd(org, vright, pOutVerts[2]);		// right
	VectorSubtract(pOutVerts[2], vup, pOutVerts[2]);	// down

	VectorSubtract(org, vright, pOutVerts[3]);		// left
	VectorSubtract(pOutVerts[3], vup, pOutVerts[3]);	// down

	// The four corners form a planar quadrilateral normal to "normal"
	return 4;
}

// Returns void as it was impossible for the function to returns anything other than 4.
// Any absolute of a floating value will always return a number greater than -16384. That test seemed bogus.
void PolyFromPlane_SIMD(fltx4* pOutVerts, const fltx4& plane, float fHalfScale)
{
	// So we need to find the biggest component of all three,
	// And depending of the value, we need to build a unit vector along something that is not the major axis.

	fltx4 f4Abs = AbsSIMD(plane);
	fltx4 x = SplatXSIMD(f4Abs);
	fltx4 y = SplatYSIMD(f4Abs);
	fltx4 z = SplatZSIMD(f4Abs);
	fltx4 max = MaxSIMD(x, y);
	max = MaxSIMD(max, z);

	// Simplify the code, if Z is the biggest component, we will use 1 0 0.
	// If X or Y are the biggest, we will use 0 0 1.
	bi32x4 fIsMax = CmpEqSIMD(max, f4Abs);		// isMax will be set for the components that are the max
	fltx4 fIsZMax = SplatZSIMD((fltx4)fIsMax);	// 0 if Z is not the max, 0xffffffff is Z is the max
	// And depending if Z is max or not, we are going to select one unit vector or the other
	fltx4 vup = MaskedAssign((bi32x4)fIsZMax, g_SIMD_Identity[0], g_SIMD_Identity[2]);

	fltx4 normal = SetWToZeroSIMD(plane);
	fltx4 dist = SplatWSIMD(plane);

	// Remove the component of this vector along the normal
	fltx4 v = Dot3SIMD(vup, normal);
	vup = MaddSIMD(-v, normal, vup);
	// Make it a unit (perpendicular)
	vup = Normalized3SIMD(vup);

	// Center of the poly is at normal * dist
	fltx4 org = MulSIMD(dist, normal);
	// Calculate the third orthonormal basis vector for our plane space (this one and vup are in the plane)
	fltx4 vright = CrossProductSIMD(vup, normal);

	// Make the plane's basis vectors big (these are the half-sides of the polygon we're making)
	fltx4 f4HalfScale = ReplicateX4(fHalfScale);
	vup = MulSIMD(f4HalfScale, vup);
	vright = MulSIMD(f4HalfScale, vright);

	// Move diagonally away from org to create the corner verts
	fltx4 vleft = SubSIMD(org, vright);
	vright = AddSIMD(org, vright);

	pOutVerts[0] = AddSIMD(vleft, vup);		// left + up
	pOutVerts[1] = AddSIMD(vright, vup);		// right + up
	pOutVerts[2] = SubSIMD(vright, vup);		// right + down
	pOutVerts[3] = SubSIMD(vleft, vup);		// left + down
}

//-----------------------------------------------------------------------------
// Purpose: clip a poly to the plane and return the poly on the front side of the plane
// Input  : *inVerts - input polygon
//			vertCount - # verts in input poly
//			*outVerts - destination poly
//			normal - plane normal
//			dist - plane constant
// Output : int - # verts in output poly
//-----------------------------------------------------------------------------

int ClipPolyToPlane(Vector3D* inVerts, int vertCount, Vector3D* outVerts, const Vector3D& normal, float dist, float fOnPlaneEpsilon)
{
	vec_t* dists = (vec_t*)stackalloc(sizeof(vec_t) * vertCount * 4); //4x vertcount should cover all cases
	int* sides = (int*)stackalloc(sizeof(vec_t) * vertCount * 4);
	int		counts[3];
	vec_t	dot;
	int		i, j;
	Vector3D	mid = vec3_origin;
	int		outCount;

	counts[0] = counts[1] = counts[2] = 0;

	// determine sides for each point
	for (i = 0; i < vertCount; i++)
	{
		dot = DotProduct(inVerts[i], normal) - dist;
		dists[i] = dot;
		if (dot > fOnPlaneEpsilon)
		{
			sides[i] = SIDE_FRONT;
		}
		else if (dot < -fOnPlaneEpsilon)
		{
			sides[i] = SIDE_BACK;
		}
		else
		{
			sides[i] = SIDE_ON;
		}
		counts[sides[i]]++;
	}
	sides[i] = sides[0];
	dists[i] = dists[0];

	if (!counts[0])
		return 0;

	if (!counts[1])
	{
		// Copy to output verts
		for (i = 0; i < vertCount; i++)
		{
			VectorCopy(inVerts[i], outVerts[i]);
		}
		return vertCount;
	}

	outCount = 0;
	for (i = 0; i < vertCount; i++)
	{
		Vector3D& p1 = inVerts[i];

		if (sides[i] == SIDE_ON)
		{
			VectorCopy(p1, outVerts[outCount]);
			outCount++;
			continue;
		}

		if (sides[i] == SIDE_FRONT)
		{
			VectorCopy(p1, outVerts[outCount]);
			outCount++;
		}

		if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i])
			continue;

		// generate a split point
		Vector3D& p2 = inVerts[(i + 1) % vertCount];

		dot = dists[i] / (dists[i] - dists[i + 1]);
		for (j = 0; j < 3; j++)
		{	// avoid round off error when possible
			if (normal[j] == 1)
				mid[j] = dist;
			else if (normal[j] == -1)
				mid[j] = -dist;
			else
				mid[j] = p1[j] + dot * (p2[j] - p1[j]);
		}

		VectorCopy(mid, outVerts[outCount]);
		outCount++;
	}

	return outCount;
}

int ClipPolyToPlane_SIMD(fltx4* pInVerts, int nVertCount, fltx4* pOutVerts, const fltx4& plane, float fOnPlaneEpsilon)
{
	vec_t* dists = (vec_t*)stackalloc(sizeof(vec_t) * nVertCount * 4); //4* nVertCount should cover all cases
	uint8* sides = (uint8*)stackalloc(sizeof(uint8) * nVertCount * 4);
	int		i;

	/*
	 * It seems something could be done here... Especially in relation with the code below i, i + 1, etc...
		fltx4 f4OnPlaneEpsilonP = ReplicateX4( fOnPlaneEpsilon );
		fltx4 f4OnPlaneEpsilonM = -f4OnPlaneEpsilonP;
		Also we could store the full fltx4 instead of a single float. It would avoid doing a SubFloat() here,
		and a ReplicateX4() later. Trading off potential LHS against L2 cache misses?
	*/
	// determine sides for each point
	int nAllSides = 0;
	fltx4 f4Dist = SplatWSIMD(plane);
	for (i = 0; i < nVertCount; i++)
	{
		// dot = DotProduct( pInVerts[i], normal) - dist;
		fltx4 dot = Dot3SIMD(pInVerts[i], plane);
		dot = SubSIMD(dot, f4Dist);
		float fDot = SubFloat(dot, 0);
		dists[i] = fDot;
		// Look how to update sides with a branch-less version
		int nSide = OR_SIDE_ON;
		if (fDot > fOnPlaneEpsilon)
		{
			nSide = OR_SIDE_FRONT;
		}
		else if (fDot < -fOnPlaneEpsilon)
		{
			nSide = OR_SIDE_BACK;
		}
		sides[i] = nSide;
		nAllSides |= nSide;
	}
	sides[i] = sides[0];
	dists[i] = dists[0];

	// Shortcuts (either completely clipped or not clipped at all)
	if ((nAllSides & OR_SIDE_FRONT) == 0)
	{
		return 0;	// Completely clipped
	}

	if ((nAllSides & OR_SIDE_BACK) == 0)
	{
		// Not clipped at all, copy to output verts
		Assert(i == nVertCount);
		int nIndex = 0;
		while (i >= 4)
		{
			pOutVerts[nIndex] = pInVerts[nIndex];
			pOutVerts[nIndex + 1] = pInVerts[nIndex + 1];
			pOutVerts[nIndex + 2] = pInVerts[nIndex + 2];
			pOutVerts[nIndex + 3] = pInVerts[nIndex + 3];
			nIndex += 4;
			i -= 4;
		}
		while (i > 0)
		{
			pOutVerts[nIndex] = pInVerts[nIndex];
			++nIndex;
			--i;
		}
		return nVertCount;
	}

	fltx4 f4one = Four_Ones;
	fltx4 f4MOne = -f4one;

	fltx4 f4OneMask = (fltx4)CmpEqSIMD(plane, f4one);
	fltx4 f4mOneMask = (fltx4)CmpEqSIMD(plane, f4MOne);
	fltx4 f4AllMask = OrSIMD(f4OneMask, f4mOneMask);					// 0xffffffff where normal was 1 or -1, 0 otherwise
	f4OneMask = AndSIMD(f4OneMask, f4Dist);							// Dist where normal.* was 1
	f4mOneMask = AndSIMD(f4mOneMask, -f4Dist);						// -Dist where normal.* was -1
	fltx4 f4AllValue = OrSIMD(f4OneMask, f4mOneMask);					// Dist and -Dist where normal.* was 1 and -1
	// f4AllMask and f4AllValue will be used together (to override the default calculation).

	int nOutCount = 0;
	for (i = 0; i < nVertCount; i++)
	{
		const fltx4& p1 = pInVerts[i];

		if (sides[i] == OR_SIDE_ON)
		{
			pOutVerts[nOutCount++] = p1;
			continue;
		}

		if (sides[i] == OR_SIDE_FRONT)
		{
			pOutVerts[nOutCount++] = p1;
		}

		if (sides[i + 1] == OR_SIDE_ON || sides[i + 1] == sides[i])
			continue;

		// generate a split point
		fltx4& p2 = pInVerts[(i + 1) % nVertCount];

		float fDot = dists[i] / (dists[i] - dists[i + 1]);
		fltx4 f4Dot = ReplicateX4(fDot);

		// mid[j] = v1[j] + dot*(v2[j]-v1[j]);		- For j=0...2
		fltx4 f4Result = MaddSIMD(f4Dot, SubSIMD(p2, p1), p1);
		// If normal.* is 1, it should be dist, if -1, it should be -dist, otherwise it should be mid[j] = v1[j] + dot*(v2[j]-v1[j]);
		fltx4 mid = MaskedAssign((bi32x4)f4AllMask, f4AllValue, f4Result);
		pOutVerts[nOutCount++] = mid;
	}

	return nOutCount;
}

int ClipPolyToPlane_Precise(double* inVerts, int vertCount, double* outVerts, const double* normal, double dist, double fOnPlaneEpsilon)
{
	double* dists = (double*)stackalloc(sizeof(double) * vertCount * 4); //4x vertcount should cover all cases
	int* sides = (int*)stackalloc(sizeof(double) * vertCount * 4);
	int		counts[3];
	double	dot;
	int		i, j;
	//Vector	mid = vec3_origin;
	double mid[3];
	mid[0] = 0.0;
	mid[1] = 0.0;
	mid[2] = 0.0;
	int		outCount;

	counts[0] = counts[1] = counts[2] = 0;

	// determine sides for each point
	for (i = 0; i < vertCount; i++)
	{
		//dot = DotProduct( inVerts[i], normal) - dist;
		dot = ((inVerts[i * 3 + 0] * normal[0]) + (inVerts[i * 3 + 1] * normal[1]) + (inVerts[i * 3 + 2] * normal[2])) - dist;
		dists[i] = dot;
		if (dot > fOnPlaneEpsilon)
		{
			sides[i] = SIDE_FRONT;
		}
		else if (dot < -fOnPlaneEpsilon)
		{
			sides[i] = SIDE_BACK;
		}
		else
		{
			sides[i] = SIDE_ON;
		}
		counts[sides[i]]++;
	}
	sides[i] = sides[0];
	dists[i] = dists[0];

	if (!counts[0])
		return 0;

	if (!counts[1])
	{
		// Copy to output verts
		//for ( i = 0; i < vertCount; i++ )
		for (i = 0; i < vertCount * 3; i++)
		{
			//VectorCopy( inVerts[i], outVerts[i] );
			outVerts[i] = inVerts[i];
		}
		return vertCount;
	}

	outCount = 0;
	for (i = 0; i < vertCount; i++)
	{
		//Vector& p1 = inVerts[i];
		double* p1 = &inVerts[i * 3];
		//p1[0] = inVerts[i*3 + 0];
		//p1[1] = inVerts[i*3 + 1];
		//p1[2] = inVerts[i*3 + 2];

		if (sides[i] == SIDE_ON)
		{
			//VectorCopy( p1, outVerts[outCount]);
			outVerts[outCount * 3 + 0] = p1[0];
			outVerts[outCount * 3 + 1] = p1[1];
			outVerts[outCount * 3 + 2] = p1[2];
			outCount++;
			continue;
		}

		if (sides[i] == SIDE_FRONT)
		{
			//VectorCopy( p1, outVerts[outCount]);
			outVerts[outCount * 3 + 0] = p1[0];
			outVerts[outCount * 3 + 1] = p1[1];
			outVerts[outCount * 3 + 2] = p1[2];
			outCount++;
		}

		if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i])
			continue;

		// generate a split point
		//Vector& p2 = inVerts[(i+1)%vertCount];
		int wrappedindex = (i + 1) % vertCount;
		double* p2 = &inVerts[wrappedindex * 3];
		//p2[0] = inVerts[wrappedindex*3 + 0];
		//p2[1] = inVerts[wrappedindex*3 + 1];
		//p2[2] = inVerts[wrappedindex*3 + 2];

		dot = dists[i] / (dists[i] - dists[i + 1]);
		for (j = 0; j < 3; j++)
		{
			mid[j] = (double)p1[j] + dot * ((double)p2[j] - (double)p1[j]);
		}

		//VectorCopy (mid, outVerts[outCount]);
		outVerts[outCount * 3 + 0] = mid[0];
		outVerts[outCount * 3 + 1] = mid[1];
		outVerts[outCount * 3 + 2] = mid[2];
		outCount++;
	}

	return outCount;
}

int CeilPow2(int in)
{
	int retval;

	retval = 1;
	while (retval < in)
		retval <<= 1;
	return retval;
}

int FloorPow2(int in)
{
	int retval;

	retval = 1;
	while (retval < in)
		retval <<= 1;
	return retval >> 1;
}


//-----------------------------------------------------------------------------
// Computes Y fov from an X fov and a screen aspect ratio
//-----------------------------------------------------------------------------
float CalcFovY(float flFovX, float flAspect)
{
	if (flFovX < 1 || flFovX > 179)
	{
		flFovX = 90;	// error, set to 90
	}

	// The long, but illustrative version (more closely matches CShaderAPIDX8::PerspectiveX, which
	// is what it's based on).
	//
	//float width = 2 * zNear * tan( DEG2RAD( fov_x / 2.0 ) );
	//float height = width / screenaspect;
	//float yRadians = atan( (height/2.0) / zNear );
	//return RAD2DEG( yRadians ) * 2;

	// The short and sweet version.
	float val = atan(tan(DEG2RAD(flFovX) * 0.5f) / flAspect);
	val = RAD2DEG(val) * 2.0f;
	return val;
}

float CalcFovX(float flFovY, float flAspect)
{
	return RAD2DEG(atan(tan(DEG2RAD(flFovY) * 0.5f) * flAspect)) * 2.0f;
}

#endif // !defined(__SPU__)

#if !defined(__SPU__) 
//-----------------------------------------------------------------------------
// Generate a frustum based on perspective view parameters
//-----------------------------------------------------------------------------
void GeneratePerspectiveFrustum(const Vector3D& origin, const Vector3D& forward,
	const Vector3D& right, const Vector3D& up, float flZNear, float flZFar,
	float flFovX, float flFovY, VPlane* pPlanesOut)
{
	float flIntercept = DotProduct(origin, forward);

	// Setup the near and far planes.
	pPlanesOut[FRUSTUM_FARZ].Init(-forward, -flZFar - flIntercept);
	pPlanesOut[FRUSTUM_NEARZ].Init(forward, flZNear + flIntercept);

	flFovX *= 0.5f;
	flFovY *= 0.5f;

	float flTanX = tan(DEG2RAD(flFovX));
	float flTanY = tan(DEG2RAD(flFovY));

	// OPTIMIZE: Normalizing these planes is not necessary for culling
	Vector3D normalPos, normalNeg;

	VectorMA(right, flTanX, forward, normalPos);
	VectorMA(normalPos, -2.0f, right, normalNeg);

	VectorNormalize(normalPos);
	VectorNormalize(normalNeg);

	pPlanesOut[FRUSTUM_LEFT].Init(normalPos, normalPos.Dot(origin));
	pPlanesOut[FRUSTUM_RIGHT].Init(normalNeg, normalNeg.Dot(origin));

	VectorMA(up, flTanY, forward, normalPos);
	VectorMA(normalPos, -2.0f, up, normalNeg);

	VectorNormalize(normalPos);
	VectorNormalize(normalNeg);

	pPlanesOut[FRUSTUM_BOTTOM].Init(normalPos, normalPos.Dot(origin));
	pPlanesOut[FRUSTUM_TOP].Init(normalNeg, normalNeg.Dot(origin));
}

//-----------------------------------------------------------------------------
// Generate a frustum based on orthographic parameters
//-----------------------------------------------------------------------------
void GenerateOrthoFrustum(const Vector3D& origin, const Vector3D& forward, const Vector3D& right, const Vector3D& up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar, VPlane* pPlanesOut)
{
	float flIntercept = DotProduct(origin, forward);

	pPlanesOut[FRUSTUM_NEARZ].Init(forward, flZNear + flIntercept);
	pPlanesOut[FRUSTUM_FARZ].Init(-forward, -flZFar - flIntercept);

	flIntercept = DotProduct(origin, right);

	pPlanesOut[FRUSTUM_RIGHT].Init(-right, -flRight - flIntercept);
	pPlanesOut[FRUSTUM_LEFT].Init(right, flLeft + flIntercept);

	flIntercept = DotProduct(origin, up);

	pPlanesOut[FRUSTUM_BOTTOM].Init(up, flBottom + flIntercept);
	pPlanesOut[FRUSTUM_TOP].Init(-up, -flTop - flIntercept);
}

//-----------------------------------------------------------------------------
// Version that accepts angles instead of vectors
//-----------------------------------------------------------------------------
void GeneratePerspectiveFrustum(const Vector3D& origin, const QAngle& angles, float flZNear, float flZFar, float flFovX, float flAspectRatio, Frustum_t& frustum)
{
	VPlane planes[FRUSTUM_NUMPLANES];
	Vector3D vecForward, vecRight, vecUp;
	AngleVectors(angles, &vecForward, &vecRight, &vecUp);
	float flFovY = CalcFovY(flFovX, flAspectRatio);
	GeneratePerspectiveFrustum(origin, vecForward, vecRight, vecUp, flZNear, flZFar, flFovX, flFovY, planes);
	frustum.SetPlanes(planes);
}

void fourplanes_t::ComputeSignbits()
{
	xSign = CmpLtSIMD(nX, Four_Zeros);
	ySign = CmpLtSIMD(nY, Four_Zeros);
	zSign = CmpLtSIMD(nZ, Four_Zeros);
	nXAbs = fabs(nX);
	nYAbs = fabs(nY);
	nZAbs = fabs(nZ);
}

void fourplanes_t::GetPlane(int index, Vector3D* pNormalOut, float* pDistOut) const
{
	pNormalOut->x = SubFloat(nX, index);
	pNormalOut->y = SubFloat(nY, index);
	pNormalOut->z = SubFloat(nZ, index);
	*pDistOut = SubFloat(dist, index);
}
void fourplanes_t::SetPlane(int index, const Vector3D& vecNormal, float planeDist)
{
	SubFloat(nX, index) = vecNormal.x;
	SubFloat(nY, index) = vecNormal.y;
	SubFloat(nZ, index) = vecNormal.z;
	SubFloat(dist, index) = planeDist;
	ComputeSignbits();
}

void fourplanes_t::Set4Planes(const VPlane* pPlanes)
{
	nX = LoadUnalignedSIMD(&pPlanes[0].m_Normal.x);
	nY = LoadUnalignedSIMD(&pPlanes[1].m_Normal.x);
	nZ = LoadUnalignedSIMD(&pPlanes[2].m_Normal.x);
	dist = LoadUnalignedSIMD(&pPlanes[3].m_Normal.x);
	TransposeSIMD(nX, nY, nZ, dist);
	ComputeSignbits();
}

void fourplanes_t::Set2Planes(const VPlane* pPlanes)
{
	nX = LoadUnalignedSIMD(&pPlanes[0].m_Normal.x);
	nY = LoadUnalignedSIMD(&pPlanes[1].m_Normal.x);
	nZ = Four_Zeros;
	dist = Four_Zeros;
	TransposeSIMD(nX, nY, nZ, dist);
	ComputeSignbits();
}

void fourplanes_t::Get4Planes(VPlane* pPlanesOut) const
{
	fltx4 p0 = nX;
	fltx4 p1 = nY;
	fltx4 p2 = nZ;
	fltx4 p3 = dist;
	TransposeSIMD(p0, p1, p2, p3);
	StoreUnalignedSIMD(&pPlanesOut[0].m_Normal.x, p0);
	StoreUnalignedSIMD(&pPlanesOut[1].m_Normal.x, p1);
	StoreUnalignedSIMD(&pPlanesOut[2].m_Normal.x, p2);
	StoreUnalignedSIMD(&pPlanesOut[3].m_Normal.x, p3);
}

void fourplanes_t::Get2Planes(VPlane* pPlanesOut) const
{
	fltx4 p0 = nX;
	fltx4 p1 = nY;
	fltx4 p2 = nZ;
	fltx4 p3 = dist;
	TransposeSIMD(p0, p1, p2, p3);
	StoreUnalignedSIMD(&pPlanesOut[0].m_Normal.x, p0);
	StoreUnalignedSIMD(&pPlanesOut[1].m_Normal.x, p1);
}


Frustum_t::Frustum_t()
{
	memset(this, 0, sizeof(*this));
}

void Frustum_t::SetPlane(int i, const Vector3D& vecNormal, float dist)
{
	if (i < 4)
	{
		planes[0].SetPlane(i, vecNormal, dist);
	}
	else
	{
		planes[1].SetPlane(i - 4, vecNormal, dist);
	}
}

void Frustum_t::GetPlane(int i, Vector3D* pNormalOut, float* pDistOut) const
{
	if (i < 4)
	{
		planes[0].GetPlane(i, pNormalOut, pDistOut);
	}
	else
	{
		planes[1].GetPlane(i - 4, pNormalOut, pDistOut);
	}
}

void Frustum_t::SetPlanes(const VPlane* pPlanes)
{
	planes[0].Set4Planes(pPlanes);
	planes[1].Set2Planes(pPlanes + 4);
}

void Frustum_t::GetPlanes(VPlane* pPlanesOut) const
{
	planes[0].Get4Planes(pPlanesOut);
	planes[1].Get2Planes(pPlanesOut + 4);
}


bool Frustum_t::CullBox(const Vector3D& mins, const Vector3D& maxs) const
{
	fltx4 mins4 = LoadUnalignedSIMD(&mins.x);
	fltx4 minx = SplatXSIMD(mins4);
	fltx4 miny = SplatYSIMD(mins4);
	fltx4 minz = SplatZSIMD(mins4);
	fltx4 maxs4 = LoadUnalignedSIMD(&maxs.x);
	fltx4 maxx = SplatXSIMD(maxs4);
	fltx4 maxy = SplatYSIMD(maxs4);
	fltx4 maxz = SplatZSIMD(maxs4);

	// compute the dot product of the normal and the farthest corner
	// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = MulSIMD(planes[i].nX, MaskedAssign(planes[i].xSign, minx, maxx));
		fltx4 yTotalBack = MulSIMD(planes[i].nY, MaskedAssign(planes[i].ySign, miny, maxy));
		fltx4 zTotalBack = MulSIMD(planes[i].nZ, MaskedAssign(planes[i].zSign, minz, maxz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
		if (IsVector4LessThan(dotBack, planes[i].dist))
			return true;
	}
	return false;
}

bool Frustum_t::CullBox(const fltx4& mins4, const fltx4& maxs4) const
{
	fltx4 minx = SplatXSIMD(mins4);
	fltx4 miny = SplatYSIMD(mins4);
	fltx4 minz = SplatZSIMD(mins4);
	fltx4 maxx = SplatXSIMD(maxs4);
	fltx4 maxy = SplatYSIMD(maxs4);
	fltx4 maxz = SplatZSIMD(maxs4);

	// compute the dot product of the normal and the farthest corner
	// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = MulSIMD(planes[i].nX, MaskedAssign(planes[i].xSign, minx, maxx));
		fltx4 yTotalBack = MulSIMD(planes[i].nY, MaskedAssign(planes[i].ySign, miny, maxy));
		fltx4 zTotalBack = MulSIMD(planes[i].nZ, MaskedAssign(planes[i].zSign, minz, maxz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
		if (IsVector4LessThan(dotBack, planes[i].dist))
			return true;
	}
	return false;
}

bool Frustum_t::CullBoxCenterExtents(const Vector3D& center, const Vector3D& extents) const
{
	fltx4 center4 = LoadUnalignedSIMD(&center.x);
	fltx4 centerx = SplatXSIMD(center4);
	fltx4 centery = SplatYSIMD(center4);
	fltx4 centerz = SplatZSIMD(center4);
	fltx4 extents4 = LoadUnalignedSIMD(&extents.x);
	fltx4 extx = SplatXSIMD(extents4);
	fltx4 exty = SplatYSIMD(extents4);
	fltx4 extz = SplatZSIMD(extents4);

	// compute the dot product of the normal and the farthest corner
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = AddSIMD(MulSIMD(planes[i].nX, centerx), MulSIMD(planes[i].nXAbs, extx));
		fltx4 yTotalBack = AddSIMD(MulSIMD(planes[i].nY, centery), MulSIMD(planes[i].nYAbs, exty));
		fltx4 zTotalBack = AddSIMD(MulSIMD(planes[i].nZ, centerz), MulSIMD(planes[i].nZAbs, extz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
		if (IsVector4LessThan(dotBack, planes[i].dist))
			return true;
	}
	return false;
}


bool Frustum_t::CullBoxCenterExtents(const fltx4& fl4Center, const fltx4& fl4Extents) const
{
	fltx4 centerx = SplatXSIMD(fl4Center);
	fltx4 centery = SplatYSIMD(fl4Center);
	fltx4 centerz = SplatZSIMD(fl4Center);
	fltx4 extx = SplatXSIMD(fl4Extents);
	fltx4 exty = SplatYSIMD(fl4Extents);
	fltx4 extz = SplatZSIMD(fl4Extents);

	// compute the dot product of the normal and the farthest corner
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = AddSIMD(MulSIMD(planes[i].nX, centerx), MulSIMD(planes[i].nXAbs, extx));
		fltx4 yTotalBack = AddSIMD(MulSIMD(planes[i].nY, centery), MulSIMD(planes[i].nYAbs, exty));
		fltx4 zTotalBack = AddSIMD(MulSIMD(planes[i].nZ, centerz), MulSIMD(planes[i].nZAbs, extz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
		if (IsVector4LessThan(dotBack, planes[i].dist))
			return true;
	}
	return false;
}

// Return true if this bounding volume is contained in the frustum, false if it is not
// TODO SIMDIFY
bool Frustum_t::Contains(const Vector3D& mins, const Vector3D& maxs) const
{
	// Get box corners 
	Vector3D vCorners[8];
	vCorners[0] = mins;
	vCorners[1] = Vector3D(mins.x, mins.y, maxs.z);
	vCorners[2] = Vector3D(mins.x, maxs.y, mins.z);
	vCorners[3] = Vector3D(mins.x, maxs.y, maxs.z);

	vCorners[4] = Vector3D(maxs.x, mins.y, mins.z);
	vCorners[5] = Vector3D(maxs.x, mins.y, maxs.z);
	vCorners[6] = Vector3D(maxs.x, maxs.y, mins.z);
	vCorners[7] = maxs;


	// if we are in with all points, then we are fully in
	for (int j = 0; j < FRUSTUM_NUMPLANES; ++j)
	{
		for (int i = 0; i < 8; ++i)
		{
			// compute the dot product of the normal and the corner
			Vector3D vNormal;
			float dist;
			GetPlane(i, &vNormal, &dist);
			if (DotProduct(vCorners[j], vNormal) <= 0)
			{
				return false;
			}
		}
	}

	return true;	// all pts were inside
}

// Brute force SAT frustum intersection between two frustums
bool Frustum_t::Intersects(Frustum_t& otherFrustum) const
{
	Vector3D pPointsA[8];
	bool bResult = false;
	bResult = GetCorners(pPointsA);
	Assert(bResult);
	VPlane pPlanesA[FRUSTUM_NUMPLANES];
	GetPlanes(pPlanesA);

	Vector3D pPointsB[8];
	bResult = otherFrustum.GetCorners(pPointsB);
	Assert(bResult);
	VPlane pPlanesB[FRUSTUM_NUMPLANES];
	otherFrustum.GetPlanes(pPlanesB);

	// See if all points in B are on one side of any plane in A
	for (int p = 0; p < 6; ++p)
	{
		bool bPointsOnOutside = true;
		for (int i = 0; i < 8; ++i)
		{
			float flDist = pPlanesA[p].DistTo(pPointsB[i]);

			// If dist is pos, we are not on the outside
			if (flDist > 0)
			{
				bPointsOnOutside = false;
				break;
			}
		}

		// We never hit a negative case, we have a separating axis
		if (bPointsOnOutside)
		{
			return false;
		}
	}

	// See if all points in A are on one side of any plane in B
	for (int p = 0; p < 6; ++p)
	{
		bool bPointsOnOutside = true;
		for (int i = 0; i < 8; ++i)
		{
			float flDist = pPlanesB[p].DistTo(pPointsA[i]);

			// If dist is pos, we are not on the outside
			if (flDist > 0)
			{
				bPointsOnOutside = false;
				break;
			}
		}

		// We never hit a negative case, we have a separating axis
		if (bPointsOnOutside)
		{
			return false;
		}
	}

	// They intersect
	return true;
}

// Return true if this bounding volume intersects the frustum, false if it is outside
bool Frustum_t::Intersects(const Vector3D& mins, const Vector3D& maxs) const
{
	fltx4 mins4 = LoadUnalignedSIMD(&mins.x);
	fltx4 minx = SplatXSIMD(mins4);
	fltx4 miny = SplatYSIMD(mins4);
	fltx4 minz = SplatZSIMD(mins4);
	fltx4 maxs4 = LoadUnalignedSIMD(&maxs.x);
	fltx4 maxx = SplatXSIMD(maxs4);
	fltx4 maxy = SplatYSIMD(maxs4);
	fltx4 maxz = SplatZSIMD(maxs4);

	// compute the dot product of the normal and the farthest corner
	// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = MulSIMD(planes[i].nX, MaskedAssign(planes[i].xSign, minx, maxx));
		fltx4 yTotalBack = MulSIMD(planes[i].nY, MaskedAssign(planes[i].ySign, miny, maxy));
		fltx4 zTotalBack = MulSIMD(planes[i].nZ, MaskedAssign(planes[i].zSign, minz, maxz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
#if _X360
		if (!XMVector3GreaterOrEqual(dotBack, planes[i].dist))
			return false;
#elif defined( _PS3 )
		bi32x4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#else
		fltx4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#endif
	}
	return true;
}

bool Frustum_t::Intersects(const fltx4& mins4, const fltx4& maxs4) const
{
	fltx4 minx = SplatXSIMD(mins4);
	fltx4 miny = SplatYSIMD(mins4);
	fltx4 minz = SplatZSIMD(mins4);
	fltx4 maxx = SplatXSIMD(maxs4);
	fltx4 maxy = SplatYSIMD(maxs4);
	fltx4 maxz = SplatZSIMD(maxs4);

	// compute the dot product of the normal and the farthest corner
	// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = MulSIMD(planes[i].nX, MaskedAssign(planes[i].xSign, minx, maxx));
		fltx4 yTotalBack = MulSIMD(planes[i].nY, MaskedAssign(planes[i].ySign, miny, maxy));
		fltx4 zTotalBack = MulSIMD(planes[i].nZ, MaskedAssign(planes[i].zSign, minz, maxz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
#if _X360
		if (!XMVector4GreaterOrEqual(dotBack, planes[i].dist))
			return false;
#elif defined( _PS3 )
		bi32x4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#else
		fltx4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#endif
	}
	return true;
}

bool Frustum_t::IntersectsCenterExtents(const Vector3D& center, const Vector3D& extents) const
{
	fltx4 center4 = LoadUnalignedSIMD(&center.x);
	fltx4 centerx = SplatXSIMD(center4);
	fltx4 centery = SplatYSIMD(center4);
	fltx4 centerz = SplatZSIMD(center4);
	fltx4 extents4 = LoadUnalignedSIMD(&extents.x);
	fltx4 extx = SplatXSIMD(extents4);
	fltx4 exty = SplatYSIMD(extents4);
	fltx4 extz = SplatZSIMD(extents4);

	// compute the dot product of the normal and the farthest corner
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = AddSIMD(MulSIMD(planes[i].nX, centerx), MulSIMD(planes[i].nXAbs, extx));
		fltx4 yTotalBack = AddSIMD(MulSIMD(planes[i].nY, centery), MulSIMD(planes[i].nYAbs, exty));
		fltx4 zTotalBack = AddSIMD(MulSIMD(planes[i].nZ, centerz), MulSIMD(planes[i].nZAbs, extz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
#if _X360
		if (!XMVector4GreaterOrEqual(dotBack, planes[i].dist))
			return false;
#elif defined( _PS3 )
		bi32x4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#else
		fltx4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#endif
	}
	return true;
}


bool Frustum_t::IntersectsCenterExtents(const fltx4& fl4Center, const fltx4& fl4Extents) const
{
	fltx4 centerx = SplatXSIMD(fl4Center);
	fltx4 centery = SplatYSIMD(fl4Center);
	fltx4 centerz = SplatZSIMD(fl4Center);
	fltx4 extx = SplatXSIMD(fl4Extents);
	fltx4 exty = SplatYSIMD(fl4Extents);
	fltx4 extz = SplatZSIMD(fl4Extents);

	// compute the dot product of the normal and the farthest corner
	for (int i = 0; i < 2; i++)
	{
		fltx4 xTotalBack = AddSIMD(MulSIMD(planes[i].nX, centerx), MulSIMD(planes[i].nXAbs, extx));
		fltx4 yTotalBack = AddSIMD(MulSIMD(planes[i].nY, centery), MulSIMD(planes[i].nYAbs, exty));
		fltx4 zTotalBack = AddSIMD(MulSIMD(planes[i].nZ, centerz), MulSIMD(planes[i].nZAbs, extz));
		fltx4 dotBack = AddSIMD(xTotalBack, AddSIMD(yTotalBack, zTotalBack));
		// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
#if _X360
		if (!XMVector3GreaterOrEqual(dotBack, planes[i].dist))
			return false;
#elif defined( _PS3 )
		bi32x4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#else
		fltx4 isOut = CmpLtSIMD(dotBack, planes[i].dist);
		if (IsAnyNegative(isOut))
			return false;
#endif
	}
	return true;
}

//-----------------------------------------------------------------------------
// Generate a frustum based on orthographic parameters
//-----------------------------------------------------------------------------
void GenerateOrthoFrustumFLU(const Vector3D& origin, const Vector3D& forward, const Vector3D& vLeft, const Vector3D& up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar, VPlane* pPlanesOut)
{
	// YUP_ACTIVE: FIXME : This is actually producing incorrect planes (see the VectorMA below)
	Vector3D vRight = vLeft;
	vRight *= -1.0f;

	float flIntercept = DotProduct(origin, forward);

	pPlanesOut[FRUSTUM_NEARZ].Init(forward, flZNear + flIntercept);
	pPlanesOut[FRUSTUM_FARZ].Init(-forward, -flZFar - flIntercept);

	flIntercept = DotProduct(origin, vRight);

	pPlanesOut[FRUSTUM_RIGHT].Init(-vRight, -flRight - flIntercept);
	pPlanesOut[FRUSTUM_LEFT].Init(vRight, flLeft + flIntercept);

	flIntercept = DotProduct(origin, up);

	pPlanesOut[FRUSTUM_BOTTOM].Init(up, flBottom + flIntercept);
	pPlanesOut[FRUSTUM_TOP].Init(-up, -flTop - flIntercept);
}

//-----------------------------------------------------------------------------
// Generate a frustum based on perspective view parameters
//-----------------------------------------------------------------------------
void GeneratePerspectiveFrustumFLU(const Vector3D& origin, const Vector3D& forward,
	const Vector3D& vLeft, const Vector3D& up, float flZNear, float flZFar,
	float flFovX, float flAspect, VPlane* pPlanesOut)
{
	// YUP_ACTIVE: FIXME : This is actually producing incorrect planes (see the VectorMA below)
	Vector3D vRight = vLeft;
	vRight *= -1.0f;

	float flIntercept = DotProduct(origin, forward);

	// Setup the near and far planes.
	pPlanesOut[FRUSTUM_FARZ].Init(-forward, -flZFar - flIntercept);
	pPlanesOut[FRUSTUM_NEARZ].Init(forward, flZNear + flIntercept);

	flFovX *= 0.5f;

	float flTanX = tan(DEG2RAD(flFovX));
	float flTanY = flTanX / flAspect;

	// OPTIMIZE: Normalizing these planes is not necessary for culling
	Vector3D normalPos, normalNeg;

	// NOTE: This should be using left and not right to produce correct planes, not changing it quite yet
	// because I'm not able to test whether fixing this breaks anything.
	VectorMA(vRight, flTanX, forward, normalPos);
	VectorMA(normalPos, -2.0f, vRight, normalNeg);

	VectorNormalize(normalPos);
	VectorNormalize(normalNeg);

	pPlanesOut[FRUSTUM_LEFT].Init(normalPos, normalPos.Dot(origin));
	pPlanesOut[FRUSTUM_RIGHT].Init(normalNeg, normalNeg.Dot(origin));

	VectorMA(up, flTanY, forward, normalPos);
	VectorMA(normalPos, -2.0f, up, normalNeg);

	VectorNormalize(normalPos);
	VectorNormalize(normalNeg);

	pPlanesOut[FRUSTUM_BOTTOM].Init(normalPos, normalPos.Dot(origin));
	pPlanesOut[FRUSTUM_TOP].Init(normalNeg, normalNeg.Dot(origin));
}

// Generate a frustum based on perspective view parameters
void Frustum_t::CreatePerspectiveFrustumFLU(const Vector3D& vOrigin, const Vector3D& vForward,
	const Vector3D& vLeft, const Vector3D& vUp, float flZNear, float flZFar,
	float flFovX, float flAspect)
{
	VPlane planes[FRUSTUM_NUMPLANES];
	GeneratePerspectiveFrustumFLU(vOrigin, vForward, vLeft, vUp, flZNear, flZFar, flFovX, flAspect, planes);
	SetPlanes(planes);
}

//#ifndef YUP_ACTIVE
void Frustum_t::CreatePerspectiveFrustum(const Vector3D& origin, const Vector3D& forward,
	const Vector3D& right, const Vector3D& up, float flZNear, float flZFar,
	float flFovX, float flAspect)
{
	Vector3D vLeft = right;
	vLeft *= -1.0f;
	CreatePerspectiveFrustumFLU(origin, forward, vLeft, up, flZNear, flZFar, flFovX, flAspect);
}
//#endif

// Version that accepts angles instead of vectors
void Frustum_t::CreatePerspectiveFrustum(const Vector3D& origin, const QAngle& angles, float flZNear, float flZFar, float flFovX, float flAspectRatio)
{
	VPlane planes[FRUSTUM_NUMPLANES];
	Vector3D vecForward, vecLeft, vecUp;
	AngleVectorsFLU(angles, &vecForward, &vecLeft, &vecUp);
	GeneratePerspectiveFrustumFLU(origin, vecForward, vecLeft, vecUp, flZNear, flZFar, flFovX, flAspectRatio, planes);
	SetPlanes(planes);
}

// Generate a frustum based on orthographic parameters
void Frustum_t::CreateOrthoFrustumFLU(const Vector3D& origin, const Vector3D& forward, const Vector3D& vLeft, const Vector3D& up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar)
{
	VPlane planes[FRUSTUM_NUMPLANES];
	GenerateOrthoFrustumFLU(origin, forward, vLeft, up, flLeft, flRight, flBottom, flTop, flZNear, flZFar, planes);
	SetPlanes(planes);
}

//#ifndef YUP_ACTIVE
void Frustum_t::CreateOrthoFrustum(const Vector3D& origin, const Vector3D& forward, const Vector3D& right, const Vector3D& up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar)
{
	Vector3D vLeft = right;
	vLeft *= -1.0f;
	CreateOrthoFrustumFLU(origin, forward, vLeft, up, flLeft, flRight, flBottom, flTop, flZNear, flZFar);
}

// The points returned correspond to the corners of the frustum faces 
// Points 0 to 3 correspond to the near face 
// Points 4 to 7 correspond to the far face 
// Returns points in a face in this order:
//  2--3
//	|  |
//	0--1
bool Frustum_t::GetCorners(Vector3D* pPoints) const
{
	VPlane planes[FRUSTUM_NUMPLANES];
	GetPlanes(planes);

	// Near face
	// Bottom Left
	if (!PlaneIntersection(planes[FRUSTUM_NEARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_BOTTOM], pPoints[0]))
		return false;

	// Bottom right
	if (!PlaneIntersection(planes[FRUSTUM_NEARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_BOTTOM], pPoints[1]))
		return false;

	// Upper Left
	if (!PlaneIntersection(planes[FRUSTUM_NEARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_TOP], pPoints[2]))
		return false;

	// Upper right
	if (!PlaneIntersection(planes[FRUSTUM_NEARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_TOP], pPoints[3]))
		return false;

	// Far face
	// Bottom Left
	if (!PlaneIntersection(planes[FRUSTUM_FARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_BOTTOM], pPoints[4]))
		return false;

	// Bottom right
	if (!PlaneIntersection(planes[FRUSTUM_FARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_BOTTOM], pPoints[5]))
		return false;

	// Upper Left
	if (!PlaneIntersection(planes[FRUSTUM_FARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_TOP], pPoints[6]))
		return false;

	// Upper right
	if (!PlaneIntersection(planes[FRUSTUM_FARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_TOP], pPoints[7]))
		return false;


	return true;
}

// NOTE: This routine was taken (and modified) from NVidia's BlinnReflection demo
// Creates basis vectors, based on a vertex and index list.
// See the NVidia white paper 'GDC2K PerPixel Lighting' for a description
// of how this computation works
#define SMALL_FLOAT 1e-12

void CalcTriangleTangentSpace(const Vector3D& p0, const Vector3D& p1, const Vector3D& p2,
	const Vector2D& t0, const Vector2D& t1, const Vector2D& t2,
	Vector3D& sVect, Vector3D& tVect)
{
	/* Compute the partial derivatives of X, Y, and Z with respect to S and T. */
	sVect.Init(0.0f, 0.0f, 0.0f);
	tVect.Init(0.0f, 0.0f, 0.0f);

	// x, s, t
	Vector3D edge01(p1.x - p0.x, t1.x - t0.x, t1.y - t0.y);
	Vector3D edge02(p2.x - p0.x, t2.x - t0.x, t2.y - t0.y);

	Vector3D cross;
	CrossProduct(edge01, edge02, cross);
	if (fabs(cross.x) > SMALL_FLOAT)
	{
		sVect.x += -cross.y / cross.x;
		tVect.x += -cross.z / cross.x;
	}

	// y, s, t
	edge01.Init(p1.y - p0.y, t1.x - t0.x, t1.y - t0.y);
	edge02.Init(p2.y - p0.y, t2.x - t0.x, t2.y - t0.y);

	CrossProduct(edge01, edge02, cross);
	if (fabs(cross.x) > SMALL_FLOAT)
	{
		sVect.y += -cross.y / cross.x;
		tVect.y += -cross.z / cross.x;
	}

	// z, s, t
	edge01.Init(p1.z - p0.z, t1.x - t0.x, t1.y - t0.y);
	edge02.Init(p2.z - p0.z, t2.x - t0.x, t2.y - t0.y);

	CrossProduct(edge01, edge02, cross);
	if (fabs(cross.x) > SMALL_FLOAT)
	{
		sVect.z += -cross.y / cross.x;
		tVect.z += -cross.z / cross.x;
	}

	// Normalize sVect and tVect
	VectorNormalize(sVect);
	VectorNormalize(tVect);
}


//-----------------------------------------------------------------------------
// Convert RGB to HSV
//-----------------------------------------------------------------------------
void RGBtoHSV(const Vector3D& rgb, Vector3D& hsv)
{
	float flMax = MAX(rgb.x, rgb.y);
	flMax = MAX(flMax, rgb.z);
	float flMin = MIN(rgb.x, rgb.y);
	flMin = MIN(flMin, rgb.z);

	// hsv.z is the value
	hsv.z = flMax;

	// hsv.y is the saturation
	if (flMax != 0.0F)
	{
		hsv.y = (flMax - flMin) / flMax;
	}
	else
	{
		hsv.y = 0.0F;
	}

	// hsv.x is the hue
	if (hsv.y == 0.0F)
	{
		hsv.x = -1.0f;
	}
	else
	{
		float32 d = flMax - flMin;
		if (rgb.x == flMax)
		{
			hsv.x = (rgb.y - rgb.z) / d;
		}
		else if (rgb.y == flMax)
		{
			hsv.x = 2.0F + (rgb.z - rgb.x) / d;
		}
		else
		{
			hsv.x = 4.0F + (rgb.x - rgb.y) / d;
		}
		hsv.x *= 60.0F;
		if (hsv.x < 0.0F)
		{
			hsv.x += 360.0F;
		}
	}
}


//-----------------------------------------------------------------------------
// Convert HSV to RGB
//-----------------------------------------------------------------------------
void HSVtoRGB(const Vector3D& hsv, Vector3D& rgb)
{
	if (hsv.y == 0.0F)
	{
		rgb.Init(hsv.z, hsv.z, hsv.z);
		return;
	}

	float32 hue = hsv.x;
	if (hue == 360.0F)
	{
		hue = 0.0F;
	}
	hue /= 60.0F;
	int     i = Float2Int(hue);        // integer part
	float32 f = hue - i;    // fractional part
	float32 p = hsv.z * (1.0F - hsv.y);
	float32 q = hsv.z * (1.0F - hsv.y * f);
	float32 t = hsv.z * (1.0F - hsv.y * (1.0F - f));
	switch (i)
	{
	case 0: rgb.Init(hsv.z, t, p); break;
	case 1: rgb.Init(q, hsv.z, p); break;
	case 2: rgb.Init(p, hsv.z, t); break;
	case 3: rgb.Init(p, q, hsv.z); break;
	case 4: rgb.Init(t, p, hsv.z); break;
	case 5: rgb.Init(hsv.z, p, q); break;
	}
}


void GetInterpolationData(float const* pKnotPositions,
	float const* pKnotValues,
	int nNumValuesinList,
	int nInterpolationRange,
	float flPositionToInterpolateAt,
	bool bWrap,
	float* pValueA,
	float* pValueB,
	float* pInterpolationValue)
{
	// first, find the bracketting knots by looking for the first knot >= our index

	int idx;
	for (idx = 0; idx < nNumValuesinList; idx++)
	{
		if (pKnotPositions[idx] >= flPositionToInterpolateAt)
			break;
	}
	int nKnot1, nKnot2;
	float flOffsetFromStartOfGap, flSizeOfGap;
	if (idx == 0)
	{
		if (bWrap)
		{
			nKnot1 = nNumValuesinList - 1;
			nKnot2 = 0;
			flSizeOfGap =
				(pKnotPositions[nKnot2] + (nInterpolationRange - pKnotPositions[nKnot1]));
			flOffsetFromStartOfGap =
				flPositionToInterpolateAt + (nInterpolationRange - pKnotPositions[nKnot1]);
		}
		else
		{
			*pValueA = *pValueB = pKnotValues[0];
			*pInterpolationValue = 1.0;
			return;
		}
	}
	else if (idx == nNumValuesinList)						// ran out of values
	{
		if (bWrap)
		{
			nKnot1 = nNumValuesinList - 1;
			nKnot2 = 0;
			flSizeOfGap = (pKnotPositions[nKnot2] +
				(nInterpolationRange - pKnotPositions[nKnot1]));
			flOffsetFromStartOfGap = flPositionToInterpolateAt - pKnotPositions[nKnot1];
		}
		else
		{
			*pValueA = *pValueB = pKnotValues[nNumValuesinList - 1];
			*pInterpolationValue = 1.0;
			return;
		}

	}
	else
	{
		nKnot1 = idx - 1;
		nKnot2 = idx;
		flSizeOfGap = pKnotPositions[nKnot2] - pKnotPositions[nKnot1];
		flOffsetFromStartOfGap = flPositionToInterpolateAt - pKnotPositions[nKnot1];
	}

	*pValueA = pKnotValues[nKnot1];
	*pValueB = pKnotValues[nKnot2];
	*pInterpolationValue = FLerp(0, 1, 0, flSizeOfGap, flOffsetFromStartOfGap);
	return;
}


static Vector3D RandomVectorOnUnitSphere(float u, float v)
{
	float flPhi = acos(1 - 2 * u);
	float flTheta = 2 * M_PI * v;

	float flSinPhi, flCosPhi;
	float flSinTheta, flCosTheta;
	SinCos(flPhi, &flSinPhi, &flCosPhi);
	SinCos(flTheta, &flSinTheta, &flCosTheta);

	return Vector3D(flSinPhi * flCosTheta, flSinPhi * flSinTheta, flCosPhi);
}


Vector3D RandomVectorOnUnitSphere()
{
	// Guarantee uniform random distribution on a sphere
	// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
	float u = RandomFloat(0., 1.);
	float v = RandomFloat(0., 1.);
	return RandomVectorOnUnitSphere(u, v);
}


Vector3D RandomVectorOnUnitSphere(IUniformRandomStream* pRnd)
{
	return RandomVectorOnUnitSphere(pRnd->RandomFloat(), pRnd->RandomFloat());
}

float RandomVectorInUnitSphere(Vector3D* pVector)
{
	// Guarantee uniform random distribution within a sphere
	// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
	float u = ((float)rand() / VALVE_RAND_MAX);
	float v = ((float)rand() / VALVE_RAND_MAX);
	float w = ((float)rand() / VALVE_RAND_MAX);

	float flPhi = acos(1 - 2 * u);
	float flTheta = 2 * M_PI * v;
	float flRadius = powf(w, 1.0f / 3.0f);

	float flSinPhi, flCosPhi;
	float flSinTheta, flCosTheta;
	SinCos(flPhi, &flSinPhi, &flCosPhi);
	SinCos(flTheta, &flSinTheta, &flCosTheta);

	pVector->x = flRadius * flSinPhi * flCosTheta;
	pVector->y = flRadius * flSinPhi * flSinTheta;
	pVector->z = flRadius * flCosPhi;
	return flRadius;
}


Vector3D RandomVectorInUnitSphere()
{
	Vector3D vOut;
	RandomVectorInUnitSphere(&vOut);
	return vOut;
}

Vector3D RandomVectorInUnitSphere(IUniformRandomStream* pRnd)
{
	float w = pRnd->RandomFloat();
	float flRadius = powf(w, 1.0f / 3.0f);

	Vector3D v = RandomVectorOnUnitSphere(pRnd) * flRadius;

	return v;
}




float RandomVectorInUnitCircle(Vector2D* pVector)
{
	// Guarantee uniform random distribution within a sphere
	// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
	float u = ((float)rand() / VALVE_RAND_MAX);
	float v = ((float)rand() / VALVE_RAND_MAX);

	float flTheta = 2 * M_PI * v;
	float flRadius = powf(u, 1.0f / 2.0f);

	float flSinTheta, flCosTheta;
	SinCos(flTheta, &flSinTheta, &flCosTheta);

	pVector->x = flRadius * flCosTheta;
	pVector->y = flRadius * flSinTheta;
	return flRadius;
}


const Quaternion RandomQuaternion()
{
	// Guarantee uniform distribution within S^3. Found on the internet, looked through the proof very briefly, looks sound enough to tentatively trust it before testing or checking the proof for real.
	// http://mathproofs.blogspot.com/2005/05/uniformly-distributed-random-unit.html
	float u = RandomFloat(0, 2 * M_PI), flSinU = sinf(u);
	float v = acosf(RandomFloat(-1, 1)), flSinV = sinf(v);
	float w = 0.5f * (RandomFloat(0, M_PI) + acosf(RandomFloat(0, 1)) + M_PI / 2), flSinW = sinf(w);
	return Quaternion(cosf(u), flSinU * cosf(v), flSinU * flSinV * cosf(w), flSinU * flSinV * flSinW);
}

const Quaternion RandomQuaternion(IUniformRandomStream* pRnd)
{
	// Guarantee uniform distribution within S^3. Found on the internet, looked through the proof very briefly, looks sound enough to tentatively trust it before testing or checking the proof for real.
	// http://mathproofs.blogspot.com/2005/05/uniformly-distributed-random-unit.html
	float u = pRnd->RandomFloat(0, 2 * M_PI), flSinU = sinf(u);
	float v = acosf(pRnd->RandomFloat(-1, 1)), flSinV = sinf(v);
	float w = 0.5f * (pRnd->RandomFloat(0, M_PI) + acosf(pRnd->RandomFloat(0, 1)) + M_PI / 2), flSinW = sinf(w);
	return Quaternion(cosf(u), flSinU * cosf(v), flSinU * flSinV * cosf(w), flSinU * flSinV * flSinW);
}

// Originally from hammer_mathlib.cpp
//
// Generate the corner points of a box:
// +y       _+z
// ^        /|
// |       /
// |  3---7   
//   /|  /|
//  / | / |
// 2---6  |
// |  1|--5
// | / | /
// |/  |/
// 0---4   --> +x
void PointsFromBox(const Vector3D& mins, const Vector3D& maxs, Vector3D* points)
{
	points[0][0] = mins[0];
	points[0][1] = mins[1];
	points[0][2] = mins[2];

	points[1][0] = mins[0];
	points[1][1] = mins[1];
	points[1][2] = maxs[2];

	points[2][0] = mins[0];
	points[2][1] = maxs[1];
	points[2][2] = mins[2];

	points[3][0] = mins[0];
	points[3][1] = maxs[1];
	points[3][2] = maxs[2];

	points[4][0] = maxs[0];
	points[4][1] = mins[1];
	points[4][2] = mins[2];

	points[5][0] = maxs[0];
	points[5][1] = mins[1];
	points[5][2] = maxs[2];

	points[6][0] = maxs[0];
	points[6][1] = maxs[1];
	points[6][2] = mins[2];

	points[7][0] = maxs[0];
	points[7][1] = maxs[1];
	points[7][2] = maxs[2];
}

void BuildTransformedBox(Vector3D* v2, Vector3D const& bbmin, Vector3D const& bbmax, const matrix3x4_t& m)
{
	Vector3D v[8];
	PointsFromBox(bbmin, bbmax, v);

	VectorTransform(v[0], m, v2[0]);
	VectorTransform(v[1], m, v2[1]);
	VectorTransform(v[2], m, v2[2]);
	VectorTransform(v[3], m, v2[3]);
	VectorTransform(v[4], m, v2[4]);
	VectorTransform(v[5], m, v2[5]);
	VectorTransform(v[6], m, v2[6]);
	VectorTransform(v[7], m, v2[7]);
}

// Generate the corner points of a angled box:
// +y*r     _+z*u
// ^        /|
// |       /
// |  3---7   
//   /|  /|
//  / | / |
// 2---6  |
// |  1|--5
// | / | /
// |/  |/
// 0---4   --> +x*f
void PointsFromAngledBox(const QAngle& angles, const Vector3D& mins, const Vector3D& maxs, Vector3D* points)
{
	Vector3D forward;
	Vector3D up;
	Vector3D right;

	AngleVectors(angles, &forward, &right, &up);

	points[0] = (forward * mins.x) + (right * maxs.y) + (up * maxs.z);
	points[1] = (forward * mins.x) + (right * mins.y) + (up * maxs.z);
	points[2] = (forward * maxs.x) + (right * mins.y) + (up * maxs.z);
	points[3] = (forward * maxs.x) + (right * maxs.y) + (up * maxs.z);
	points[4] = (forward * mins.x) + (right * maxs.y) + (up * mins.z);
	points[5] = (forward * mins.x) + (right * mins.y) + (up * mins.z);
	points[6] = (forward * maxs.x) + (right * mins.y) + (up * mins.z);
	points[7] = (forward * maxs.x) + (right * maxs.y) + (up * mins.z);
}

void BuildTransformedAngledBox(Vector3D* v2, const QAngle& a, Vector3D const& bbmin, Vector3D const& bbmax, const matrix3x4_t& m)
{
	Vector3D v[8];
	PointsFromAngledBox(a, bbmin, bbmax, v);

	VectorTransform(v[0], m, v2[0]);
	VectorTransform(v[1], m, v2[1]);
	VectorTransform(v[2], m, v2[2]);
	VectorTransform(v[3], m, v2[3]);
	VectorTransform(v[4], m, v2[4]);
	VectorTransform(v[5], m, v2[5]);
	VectorTransform(v[6], m, v2[6]);
	VectorTransform(v[7], m, v2[7]);
}


#endif // !defined(__SPU__)