// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef PACKAGE // autoheader #defines this. :( #include namespace google { namespace protobuf { class Symbol { public: enum Type { NULL_SYMBOL, MESSAGE, FIELD, ONEOF, ENUM, ENUM_VALUE, ENUM_VALUE_OTHER_PARENT, SERVICE, METHOD, PACKAGE, QUERY_KEY }; Symbol() : ptr_(nullptr) {} // Every object we store derives from internal::SymbolBase, where we store the // symbol type enum. // Storing in the object can be done without using more space in most cases, // while storing it in the Symbol type would require 8 bytes. #define DEFINE_MEMBERS(TYPE, TYPE_CONSTANT, FIELD) \ explicit Symbol(TYPE* value) : ptr_(value) { \ value->symbol_type_ = TYPE_CONSTANT; \ } \ const TYPE* FIELD() const { \ return type() == TYPE_CONSTANT ? static_cast(ptr_) : nullptr; \ } DEFINE_MEMBERS(Descriptor, MESSAGE, descriptor) DEFINE_MEMBERS(FieldDescriptor, FIELD, field_descriptor) DEFINE_MEMBERS(OneofDescriptor, ONEOF, oneof_descriptor) DEFINE_MEMBERS(EnumDescriptor, ENUM, enum_descriptor) DEFINE_MEMBERS(ServiceDescriptor, SERVICE, service_descriptor) DEFINE_MEMBERS(MethodDescriptor, METHOD, method_descriptor) // We use a special node for FileDescriptor. // It is potentially added to the table with multiple different names, so we // need a separate place to put the name. struct Package : internal::SymbolBase { const std::string* name; const FileDescriptor* file; }; DEFINE_MEMBERS(Package, PACKAGE, package_file_descriptor) // Enum values have two different parents. // We use two different identitied for the same object to determine the two // different insertions in the map. static Symbol EnumValue(EnumValueDescriptor* value, int n) { Symbol s; internal::SymbolBase* ptr; if (n == 0) { ptr = static_cast*>(value); ptr->symbol_type_ = ENUM_VALUE; } else { ptr = static_cast*>(value); ptr->symbol_type_ = ENUM_VALUE_OTHER_PARENT; } s.ptr_ = ptr; return s; } const EnumValueDescriptor* enum_value_descriptor() const { return type() == ENUM_VALUE ? static_cast( static_cast*>(ptr_)) : type() == ENUM_VALUE_OTHER_PARENT ? static_cast( static_cast*>(ptr_)) : nullptr; } // Not a real symbol. // Only used for heterogeneous lookups and never actually inserted in the // tables. struct QueryKey : internal::SymbolBase { StringPiece name; const void* parent; int field_number; }; DEFINE_MEMBERS(QueryKey, QUERY_KEY, query_key); #undef DEFINE_MEMBERS Type type() const { return ptr_ == nullptr ? NULL_SYMBOL : static_cast(ptr_->symbol_type_); } bool IsNull() const { return type() == NULL_SYMBOL; } bool IsType() const { return type() == MESSAGE || type() == ENUM; } bool IsAggregate() const { return type() == MESSAGE || type() == PACKAGE || type() == ENUM || type() == SERVICE; } const FileDescriptor* GetFile() const { switch (type()) { case MESSAGE: return descriptor()->file(); case FIELD: return field_descriptor()->file(); case ONEOF: return oneof_descriptor()->containing_type()->file(); case ENUM: return enum_descriptor()->file(); case ENUM_VALUE: return enum_value_descriptor()->type()->file(); case SERVICE: return service_descriptor()->file(); case METHOD: return method_descriptor()->service()->file(); case PACKAGE: return package_file_descriptor()->file; default: return nullptr; } } StringPiece full_name() const { switch (type()) { case MESSAGE: return descriptor()->full_name(); case FIELD: return field_descriptor()->full_name(); case ONEOF: return oneof_descriptor()->full_name(); case ENUM: return enum_descriptor()->full_name(); case ENUM_VALUE: return enum_value_descriptor()->full_name(); case SERVICE: return service_descriptor()->full_name(); case METHOD: return method_descriptor()->full_name(); case PACKAGE: return *package_file_descriptor()->name; case QUERY_KEY: return query_key()->name; default: GOOGLE_CHECK(false); } return ""; } std::pair parent_name_key() const { const auto or_file = [&](const void* p) { return p ? p : GetFile(); }; switch (type()) { case MESSAGE: return {or_file(descriptor()->containing_type()), descriptor()->name()}; case FIELD: { auto* field = field_descriptor(); return {or_file(field->is_extension() ? field->extension_scope() : field->containing_type()), field->name()}; } case ONEOF: return {oneof_descriptor()->containing_type(), oneof_descriptor()->name()}; case ENUM: return {or_file(enum_descriptor()->containing_type()), enum_descriptor()->name()}; case ENUM_VALUE: return {or_file(enum_value_descriptor()->type()->containing_type()), enum_value_descriptor()->name()}; case ENUM_VALUE_OTHER_PARENT: return {enum_value_descriptor()->type(), enum_value_descriptor()->name()}; case SERVICE: return {GetFile(), service_descriptor()->name()}; case METHOD: return {method_descriptor()->service(), method_descriptor()->name()}; case QUERY_KEY: return {query_key()->parent, query_key()->name}; default: GOOGLE_CHECK(false); } return {}; } std::pair parent_number_key() const { switch (type()) { case FIELD: return {field_descriptor()->containing_type(), field_descriptor()->number()}; case ENUM_VALUE: return {enum_value_descriptor()->type(), enum_value_descriptor()->number()}; case QUERY_KEY: return {query_key()->parent, query_key()->field_number}; default: GOOGLE_CHECK(false); } return {}; } private: const internal::SymbolBase* ptr_; }; const FieldDescriptor::CppType FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = { static_cast(0), // 0 is reserved for errors CPPTYPE_DOUBLE, // TYPE_DOUBLE CPPTYPE_FLOAT, // TYPE_FLOAT CPPTYPE_INT64, // TYPE_INT64 CPPTYPE_UINT64, // TYPE_UINT64 CPPTYPE_INT32, // TYPE_INT32 CPPTYPE_UINT64, // TYPE_FIXED64 CPPTYPE_UINT32, // TYPE_FIXED32 CPPTYPE_BOOL, // TYPE_BOOL CPPTYPE_STRING, // TYPE_STRING CPPTYPE_MESSAGE, // TYPE_GROUP CPPTYPE_MESSAGE, // TYPE_MESSAGE CPPTYPE_STRING, // TYPE_BYTES CPPTYPE_UINT32, // TYPE_UINT32 CPPTYPE_ENUM, // TYPE_ENUM CPPTYPE_INT32, // TYPE_SFIXED32 CPPTYPE_INT64, // TYPE_SFIXED64 CPPTYPE_INT32, // TYPE_SINT32 CPPTYPE_INT64, // TYPE_SINT64 }; const char* const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = { "ERROR", // 0 is reserved for errors "double", // TYPE_DOUBLE "float", // TYPE_FLOAT "int64", // TYPE_INT64 "uint64", // TYPE_UINT64 "int32", // TYPE_INT32 "fixed64", // TYPE_FIXED64 "fixed32", // TYPE_FIXED32 "bool", // TYPE_BOOL "string", // TYPE_STRING "group", // TYPE_GROUP "message", // TYPE_MESSAGE "bytes", // TYPE_BYTES "uint32", // TYPE_UINT32 "enum", // TYPE_ENUM "sfixed32", // TYPE_SFIXED32 "sfixed64", // TYPE_SFIXED64 "sint32", // TYPE_SINT32 "sint64", // TYPE_SINT64 }; const char* const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = { "ERROR", // 0 is reserved for errors "int32", // CPPTYPE_INT32 "int64", // CPPTYPE_INT64 "uint32", // CPPTYPE_UINT32 "uint64", // CPPTYPE_UINT64 "double", // CPPTYPE_DOUBLE "float", // CPPTYPE_FLOAT "bool", // CPPTYPE_BOOL "enum", // CPPTYPE_ENUM "string", // CPPTYPE_STRING "message", // CPPTYPE_MESSAGE }; const char* const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = { "ERROR", // 0 is reserved for errors "optional", // LABEL_OPTIONAL "required", // LABEL_REQUIRED "repeated", // LABEL_REPEATED }; const char* FileDescriptor::SyntaxName(FileDescriptor::Syntax syntax) { switch (syntax) { case SYNTAX_PROTO2: return "proto2"; case SYNTAX_PROTO3: return "proto3"; case SYNTAX_UNKNOWN: return "unknown"; } GOOGLE_LOG(FATAL) << "can't reach here."; return nullptr; } static const char* const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty"; #if !defined(_MSC_VER) || (_MSC_VER >= 1900 && _MSC_VER < 1912) const int FieldDescriptor::kMaxNumber; const int FieldDescriptor::kFirstReservedNumber; const int FieldDescriptor::kLastReservedNumber; #endif namespace { // Note: I distrust ctype.h due to locales. char ToUpper(char ch) { return (ch >= 'a' && ch <= 'z') ? (ch - 'a' + 'A') : ch; } char ToLower(char ch) { return (ch >= 'A' && ch <= 'Z') ? (ch - 'A' + 'a') : ch; } std::string ToCamelCase(const std::string& input, bool lower_first) { bool capitalize_next = !lower_first; std::string result; result.reserve(input.size()); for (char character : input) { if (character == '_') { capitalize_next = true; } else if (capitalize_next) { result.push_back(ToUpper(character)); capitalize_next = false; } else { result.push_back(character); } } // Lower-case the first letter. if (lower_first && !result.empty()) { result[0] = ToLower(result[0]); } return result; } std::string ToJsonName(const std::string& input) { bool capitalize_next = false; std::string result; result.reserve(input.size()); for (char character : input) { if (character == '_') { capitalize_next = true; } else if (capitalize_next) { result.push_back(ToUpper(character)); capitalize_next = false; } else { result.push_back(character); } } return result; } std::string EnumValueToPascalCase(const std::string& input) { bool next_upper = true; std::string result; result.reserve(input.size()); for (char character : input) { if (character == '_') { next_upper = true; } else { if (next_upper) { result.push_back(ToUpper(character)); } else { result.push_back(ToLower(character)); } next_upper = false; } } return result; } // Class to remove an enum prefix from enum values. class PrefixRemover { public: PrefixRemover(StringPiece prefix) { // Strip underscores and lower-case the prefix. for (char character : prefix) { if (character != '_') { prefix_ += ascii_tolower(character); } } } // Tries to remove the enum prefix from this enum value. // If this is not possible, returns the input verbatim. std::string MaybeRemove(StringPiece str) { // We can't just lowercase and strip str and look for a prefix. // We need to properly recognize the difference between: // // enum Foo { // FOO_BAR_BAZ = 0; // FOO_BARBAZ = 1; // } // // This is acceptable (though perhaps not advisable) because even when // we PascalCase, these two will still be distinct (BarBaz vs. Barbaz). size_t i, j; // Skip past prefix_ in str if we can. for (i = 0, j = 0; i < str.size() && j < prefix_.size(); i++) { if (str[i] == '_') { continue; } if (ascii_tolower(str[i]) != prefix_[j++]) { return std::string(str); } } // If we didn't make it through the prefix, we've failed to strip the // prefix. if (j < prefix_.size()) { return std::string(str); } // Skip underscores between prefix and further characters. while (i < str.size() && str[i] == '_') { i++; } // Enum label can't be the empty string. if (i == str.size()) { return std::string(str); } // We successfully stripped the prefix. str.remove_prefix(i); return std::string(str); } private: std::string prefix_; }; // A DescriptorPool contains a bunch of hash-maps to implement the // various Find*By*() methods. Since hashtable lookups are O(1), it's // most efficient to construct a fixed set of large hash-maps used by // all objects in the pool rather than construct one or more small // hash-maps for each object. // // The keys to these hash-maps are (parent, name) or (parent, number) pairs. typedef std::pair PointerStringPair; typedef std::pair DescriptorIntPair; #define HASH_MAP std::unordered_map #define HASH_SET std::unordered_set #define HASH_FXN hash template struct PointerIntegerPairHash { size_t operator()(const PairType& p) const { static const size_t prime1 = 16777499; static const size_t prime2 = 16777619; return reinterpret_cast(p.first) * prime1 ^ static_cast(p.second) * prime2; } #ifdef _MSC_VER // Used only by MSVC and platforms where hash_map is not available. static const size_t bucket_size = 4; static const size_t min_buckets = 8; #endif inline bool operator()(const PairType& a, const PairType& b) const { return a < b; } }; struct PointerStringPairHash { size_t operator()(const PointerStringPair& p) const { static const size_t prime = 16777619; hash string_hash; return reinterpret_cast(p.first) * prime ^ static_cast(string_hash(p.second)); } #ifdef _MSC_VER // Used only by MSVC and platforms where hash_map is not available. static const size_t bucket_size = 4; static const size_t min_buckets = 8; #endif inline bool operator()(const PointerStringPair& a, const PointerStringPair& b) const { return a < b; } }; const Symbol kNullSymbol; struct SymbolByFullNameHash { size_t operator()(Symbol s) const { return HASH_FXN{}(s.full_name()); } }; struct SymbolByFullNameEq { bool operator()(Symbol a, Symbol b) const { return a.full_name() == b.full_name(); } }; using SymbolsByNameSet = HASH_SET; struct SymbolByParentHash { size_t operator()(Symbol s) const { return PointerStringPairHash{}(s.parent_name_key()); } }; struct SymbolByParentEq { bool operator()(Symbol a, Symbol b) const { return a.parent_name_key() == b.parent_name_key(); } }; using SymbolsByParentSet = HASH_SET; typedef HASH_MAP> FilesByNameMap; typedef HASH_MAP FieldsByNameMap; struct FieldsByNumberHash { size_t operator()(Symbol s) const { return PointerIntegerPairHash>{}( s.parent_number_key()); } }; struct FieldsByNumberEq { bool operator()(Symbol a, Symbol b) const { return a.parent_number_key() == b.parent_number_key(); } }; using FieldsByNumberSet = HASH_SET; using EnumValuesByNumberSet = FieldsByNumberSet; // This is a map rather than a hash-map, since we use it to iterate // through all the extensions that extend a given Descriptor, and an // ordered data structure that implements lower_bound is convenient // for that. typedef std::map ExtensionsGroupedByDescriptorMap; typedef HASH_MAP LocationsByPathMap; std::set* NewAllowedProto3Extendee() { auto allowed_proto3_extendees = new std::set; const char* kOptionNames[] = { "FileOptions", "MessageOptions", "FieldOptions", "EnumOptions", "EnumValueOptions", "ServiceOptions", "MethodOptions", "OneofOptions"}; for (const char* option_name : kOptionNames) { // descriptor.proto has a different package name in opensource. We allow // both so the opensource protocol compiler can also compile internal // proto3 files with custom options. See: b/27567912 allowed_proto3_extendees->insert(std::string("google.protobuf.") + option_name); // Split the word to trick the opensource processing scripts so they // will keep the original package name. allowed_proto3_extendees->insert(std::string("proto") + "2." + option_name); } return allowed_proto3_extendees; } // Checks whether the extendee type is allowed in proto3. // Only extensions to descriptor options are allowed. We use name comparison // instead of comparing the descriptor directly because the extensions may be // defined in a different pool. bool AllowedExtendeeInProto3(const std::string& name) { static auto allowed_proto3_extendees = internal::OnShutdownDelete(NewAllowedProto3Extendee()); return allowed_proto3_extendees->find(name) != allowed_proto3_extendees->end(); } // This bump allocator arena is optimized for the use case of this file. It is // mostly optimized for memory usage, since these objects are expected to live // for the entirety of the program. // // Some differences from other arenas: // - It has a fixed number of non-trivial types it can hold. This allows // tracking the allocations with a single byte. In contrast, google::protobuf::Arena // uses 16 bytes per non-trivial object created. // - It has some extra metadata for rollbacks. This is necessary for // implementing the API below. This metadata is flushed at the end and would // not cause persistent memory usage. // - It tries to squeeze every byte of out the blocks. If an allocation is too // large for the current block we move the block to a secondary area where we // can still use it for smaller objects. This complicates rollback logic but // makes it much more memory efficient. // // The allocation strategy is as follows: // - Memory is allocated from the front, with a forced 8 byte alignment. // - Metadata is allocated from the back, one byte per element. // - The metadata encodes one of two things: // * For types we want to track, the index into KnownTypes. // * For raw memory blocks, the size of the block (in 8 byte increments // to allow for a larger limit). // - When the raw data is too large to represent in the metadata byte, we // allocate this memory separately in the heap and store an OutOfLineAlloc // object instead. These come from large array allocations and alike. // // Blocks are kept in 3 areas: // - `current_` is the one we are currently allocating from. When we need to // allocate a block that doesn't fit there, we make a new block and move the // old `current_` to one of the areas below. // - Blocks that have no more usable space left (ie less than 9 bytes) are // stored in `full_blocks_`. // - Blocks that have some usable space are categorized in // `small_size_blocks_` depending on how much space they have left. // See `kSmallSizes` to see which sizes we track. // class TableArena { public: // Allocate a block on `n` bytes, with no destructor information saved. void* AllocateMemory(uint32_t n) { uint32_t tag = SizeToRawTag(n) + kFirstRawTag; if (tag > 255) { // We can't fit the size, use an OutOfLineAlloc. return Create(OutOfLineAlloc{::operator new(n), n})->ptr; } return AllocRawInternal(n, static_cast(tag)); } // Allocate and construct an element of type `T` as if by // `T(std::forward(args...))`. // The object is registered for destruction, if its destructor is not trivial. template T* Create(Args&&... args) { static_assert(alignof(T) <= 8, ""); return ::new (AllocRawInternal(sizeof(T), TypeTag(KnownTypes{}))) T(std::forward(args)...); } TableArena() {} TableArena(const TableArena&) = delete; TableArena& operator=(const TableArena&) = delete; ~TableArena() { // Uncomment this to debug usage statistics of the arena blocks. // PrintUsageInfo(); for (Block* list : GetLists()) { while (list != nullptr) { Block* b = list; list = list->next; b->VisitBlock(DestroyVisitor{}); b->Destroy(); } } } // This function exists for debugging only. // It can be called from the destructor to dump some info in the tests to // inspect the usage of the arena. void PrintUsageInfo() const { const auto print_histogram = [](Block* b, int size) { std::map unused_space_count; int count = 0; for (; b != nullptr; b = b->next) { ++unused_space_count[b->space_left()]; ++count; } if (size > 0) { fprintf(stderr, " Blocks `At least %d`", size); } else { fprintf(stderr, " Blocks `full`"); } fprintf(stderr, ": %d blocks.\n", count); for (auto p : unused_space_count) { fprintf(stderr, " space=%4u, count=%3u\n", p.first, p.second); } }; fprintf(stderr, "TableArena unused space histogram:\n"); fprintf(stderr, " Current: %u\n", current_ != nullptr ? current_->space_left() : 0); print_histogram(full_blocks_, 0); for (size_t i = 0; i < kSmallSizes.size(); ++i) { print_histogram(small_size_blocks_[i], kSmallSizes[i]); } } // Current allocation count. // This can be used for checkpointing. size_t num_allocations() const { return num_allocations_; } // Rollback the latest allocations until we reach back to `checkpoint` // num_allocations. void RollbackTo(size_t checkpoint) { while (num_allocations_ > checkpoint) { GOOGLE_DCHECK(!rollback_info_.empty()); auto& info = rollback_info_.back(); Block* b = info.block; VisitAlloc(b->data(), &b->start_offset, &b->end_offset, DestroyVisitor{}, KnownTypes{}); if (--info.count == 0) { rollback_info_.pop_back(); } --num_allocations_; } // Reconstruct the lists and destroy empty blocks. auto lists = GetLists(); current_ = full_blocks_ = nullptr; small_size_blocks_.fill(nullptr); for (Block* list : lists) { while (list != nullptr) { Block* b = list; list = list->next; if (b->start_offset == 0) { // This is empty, free it. b->Destroy(); } else { RelocateToUsedList(b); } } } } // Clear all rollback information. Reduces memory usage. // Trying to rollback past num_allocations() is now impossible. void ClearRollbackData() { rollback_info_.clear(); rollback_info_.shrink_to_fit(); } private: static constexpr size_t RoundUp(size_t n) { return (n + 7) & ~7; } using Tag = unsigned char; void* AllocRawInternal(uint32_t size, Tag tag) { GOOGLE_DCHECK_GT(size, 0); size = RoundUp(size); Block* to_relocate = nullptr; Block* to_use = nullptr; for (size_t i = 0; i < kSmallSizes.size(); ++i) { if (small_size_blocks_[i] != nullptr && size <= kSmallSizes[i]) { to_use = to_relocate = PopBlock(small_size_blocks_[i]); break; } } if (to_relocate != nullptr) { // We found one in the loop. } else if (current_ != nullptr && size + 1 <= current_->space_left()) { to_use = current_; } else { // No space left anywhere, make a new block. to_relocate = current_; // For now we hardcode the size to one page. Note that the maximum we can // allocate in the block according to the limits of Tag is less than 2k, // so this can fit anything that Tag can represent. constexpr size_t kBlockSize = 4096; to_use = current_ = ::new (::operator new(kBlockSize)) Block(kBlockSize); GOOGLE_DCHECK_GE(current_->space_left(), size + 1); } ++num_allocations_; if (!rollback_info_.empty() && rollback_info_.back().block == to_use) { ++rollback_info_.back().count; } else { rollback_info_.push_back({to_use, 1}); } void* p = to_use->Allocate(size, tag); if (to_relocate != nullptr) { RelocateToUsedList(to_relocate); } return p; } static void OperatorDelete(void* p, size_t s) { #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation) ::operator delete(p, s); #else ::operator delete(p); #endif } struct OutOfLineAlloc { void* ptr; uint32_t size; }; template struct TypeList { static constexpr Tag kSize = static_cast(sizeof...(T)); }; template static void RunVisitor(char* p, uint16_t* start, Visitor visit) { *start -= RoundUp(sizeof(T)); visit(reinterpret_cast(p + *start)); } // Visit the allocation at the passed location. // It updates start/end to be after the visited object. // This allows visiting a whole block by calling the function in a loop. template static void VisitAlloc(char* p, uint16_t* start, uint16_t* end, Visitor visit, TypeList) { const Tag tag = static_cast(p[*end]); if (tag >= kFirstRawTag) { // Raw memory. Skip it. *start -= TagToSize(tag); } else { using F = void (*)(char*, uint16_t*, Visitor); static constexpr F kFuncs[] = {&RunVisitor...}; kFuncs[tag](p, start, visit); } ++*end; } template static constexpr Tag TypeTag(TypeList) { return 0; } template < typename U, typename T, typename... Ts, typename = typename std::enable_if::value>::type> static constexpr Tag TypeTag(TypeList) { return 1 + TypeTag(TypeList{}); } template static constexpr Tag TypeTag(TypeList<>) { static_assert(std::is_trivially_destructible::value, ""); return SizeToRawTag(sizeof(U)); } using KnownTypes = TypeList, std::array, std::array, std::array, FileDescriptorTables, SourceCodeInfo, FileOptions, MessageOptions, FieldOptions, ExtensionRangeOptions, OneofOptions, EnumOptions, EnumValueOptions, ServiceOptions, MethodOptions>; static constexpr Tag kFirstRawTag = KnownTypes::kSize; struct DestroyVisitor { template void operator()(T* p) { p->~T(); } void operator()(OutOfLineAlloc* p) { OperatorDelete(p->ptr, p->size); } }; static uint32_t SizeToRawTag(size_t n) { return (RoundUp(n) / 8) - 1; } static uint32_t TagToSize(Tag tag) { GOOGLE_DCHECK_GE(tag, kFirstRawTag); return static_cast(tag - kFirstRawTag + 1) * 8; } struct Block { uint16_t start_offset; uint16_t end_offset; uint16_t capacity; Block* next; // `allocated_size` is the total size of the memory block allocated. // The `Block` structure is constructed at the start and the rest of the // memory is used as the payload of the `Block`. explicit Block(uint32_t allocated_size) { start_offset = 0; end_offset = capacity = reinterpret_cast(this) + allocated_size - data(); next = nullptr; } char* data() { return reinterpret_cast(this) + RoundUp(sizeof(Block)); } uint32_t memory_used() { return data() + capacity - reinterpret_cast(this); } uint32_t space_left() const { return end_offset - start_offset; } void* Allocate(uint32_t n, Tag tag) { GOOGLE_DCHECK_LE(n + 1, space_left()); void* p = data() + start_offset; start_offset += n; data()[--end_offset] = tag; return p; } void Destroy() { OperatorDelete(this, memory_used()); } void PrependTo(Block*& list) { next = list; list = this; } template void VisitBlock(Visitor visit) { for (uint16_t s = start_offset, e = end_offset; s != 0;) { VisitAlloc(data(), &s, &e, visit, KnownTypes{}); } } }; Block* PopBlock(Block*& list) { Block* res = list; list = list->next; return res; } void RelocateToUsedList(Block* to_relocate) { if (current_ == nullptr) { current_ = to_relocate; current_->next = nullptr; return; } else if (current_->space_left() < to_relocate->space_left()) { std::swap(current_, to_relocate); current_->next = nullptr; } for (int i = kSmallSizes.size(); --i >= 0;) { if (to_relocate->space_left() >= 1 + kSmallSizes[i]) { to_relocate->PrependTo(small_size_blocks_[i]); return; } } to_relocate->PrependTo(full_blocks_); } static constexpr std::array kSmallSizes = { {// Sizes for pointer arrays. 8, 16, 24, 32, // Sizes for string arrays (for descriptor names). // The most common array sizes are 2 and 3. 2 * sizeof(std::string), 3 * sizeof(std::string)}}; // Helper function to iterate all lists. std::array GetLists() const { std::array res; res[0] = current_; res[1] = full_blocks_; std::copy(small_size_blocks_.begin(), small_size_blocks_.end(), &res[2]); return res; } Block* current_ = nullptr; std::array small_size_blocks_ = {{}}; Block* full_blocks_ = nullptr; size_t num_allocations_ = 0; struct RollbackInfo { Block* block; size_t count; }; std::vector rollback_info_; }; constexpr std::array TableArena::kSmallSizes; } // anonymous namespace // =================================================================== // DescriptorPool::Tables class DescriptorPool::Tables { public: Tables(); ~Tables(); // Record the current state of the tables to the stack of checkpoints. // Each call to AddCheckpoint() must be paired with exactly one call to either // ClearLastCheckpoint() or RollbackToLastCheckpoint(). // // This is used when building files, since some kinds of validation errors // cannot be detected until the file's descriptors have already been added to // the tables. // // This supports recursive checkpoints, since building a file may trigger // recursive building of other files. Note that recursive checkpoints are not // normally necessary; explicit dependencies are built prior to checkpointing. // So although we recursively build transitive imports, there is at most one // checkpoint in the stack during dependency building. // // Recursive checkpoints only arise during cross-linking of the descriptors. // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and // friends. If the pending file references an unknown symbol // (e.g., it is not defined in the pending file's explicit dependencies), and // the pool is using a fallback database, and that database contains a file // defining that symbol, and that file has not yet been built by the pool, // the pool builds the file during cross-linking, leading to another // checkpoint. void AddCheckpoint(); // Mark the last checkpoint as having cleared successfully, removing it from // the stack. If the stack is empty, all pending symbols will be committed. // // Note that this does not guarantee that the symbols added since the last // checkpoint won't be rolled back: if a checkpoint gets rolled back, // everything past that point gets rolled back, including symbols added after // checkpoints that were pushed onto the stack after it and marked as cleared. void ClearLastCheckpoint(); // Roll back the Tables to the state of the checkpoint at the top of the // stack, removing everything that was added after that point. void RollbackToLastCheckpoint(); // The stack of files which are currently being built. Used to detect // cyclic dependencies when loading files from a DescriptorDatabase. Not // used when fallback_database_ == nullptr. std::vector pending_files_; // A set of files which we have tried to load from the fallback database // and encountered errors. We will not attempt to load them again during // execution of the current public API call, but for compatibility with // legacy clients, this is cleared at the beginning of each public API call. // Not used when fallback_database_ == nullptr. HASH_SET known_bad_files_; // A set of symbols which we have tried to load from the fallback database // and encountered errors. We will not attempt to load them again during // execution of the current public API call, but for compatibility with // legacy clients, this is cleared at the beginning of each public API call. HASH_SET known_bad_symbols_; // The set of descriptors for which we've already loaded the full // set of extensions numbers from fallback_database_. HASH_SET extensions_loaded_from_db_; // Maps type name to Descriptor::WellKnownType. This is logically global // and const, but we make it a member here to simplify its construction and // destruction. This only has 20-ish entries and is one per DescriptorPool, // so the overhead is small. HASH_MAP well_known_types_; // ----------------------------------------------------------------- // Finding items. // Find symbols. This returns a null Symbol (symbol.IsNull() is true) // if not found. inline Symbol FindSymbol(StringPiece key) const; // This implements the body of DescriptorPool::Find*ByName(). It should // really be a private method of DescriptorPool, but that would require // declaring Symbol in descriptor.h, which would drag all kinds of other // stuff into the header. Yay C++. Symbol FindByNameHelper(const DescriptorPool* pool, StringPiece name); // These return nullptr if not found. inline const FileDescriptor* FindFile(StringPiece key) const; inline const FieldDescriptor* FindExtension(const Descriptor* extendee, int number) const; inline void FindAllExtensions(const Descriptor* extendee, std::vector* out) const; // ----------------------------------------------------------------- // Adding items. // These add items to the corresponding tables. They return false if // the key already exists in the table. For AddSymbol(), the string passed // in must be one that was constructed using AllocateString(), as it will // be used as a key in the symbols_by_name_ map without copying. bool AddSymbol(const std::string& full_name, Symbol symbol); bool AddFile(const FileDescriptor* file); bool AddExtension(const FieldDescriptor* field); // ----------------------------------------------------------------- // Allocating memory. // Allocate an object which will be reclaimed when the pool is // destroyed. Note that the object's destructor will never be called, // so its fields must be plain old data (primitive data types and // pointers). All of the descriptor types are such objects. template Type* Allocate(); // Allocate an array of objects which will be reclaimed when the // pool in destroyed. Again, destructors are never called. template Type* AllocateArray(int count); // Allocate a string which will be destroyed when the pool is destroyed. // The string is initialized to the given value for convenience. const std::string* AllocateString(StringPiece value); // Copy the input into a NUL terminated string whose lifetime is managed by // the pool. const char* Strdup(StringPiece value); // Allocates an array of strings which will be destroyed when the pool is // destroyed. The array is initialized with the input values. template const std::string* AllocateStringArray(In&&... values); struct FieldNamesResult { std::string* array; int lowercase_index; int camelcase_index; int json_index; }; // Allocate all 5 names of the field: // name, full name, lowercase, camelcase and json. // This function will dedup the strings when possible. // The resulting array contains `name` at index 0, `full_name` at index 1 and // the other 3 indices are specified in the result. FieldNamesResult AllocateFieldNames(const std::string& name, const std::string& scope, const std::string* opt_json_name); // Create an object that will be deleted when the pool is destroyed. // The object is value initialized, and its destructor will be called if // non-trivial. template Type* Create(); // Allocate a protocol message object. Some older versions of GCC have // trouble understanding explicit template instantiations in some cases, so // in those cases we have to pass a dummy pointer of the right type as the // parameter instead of specifying the type explicitly. template Type* AllocateMessage(Type* dummy = nullptr); // Allocate a FileDescriptorTables object. FileDescriptorTables* AllocateFileTables(); private: // All other memory allocated in the pool. Must be first as other objects can // point into these. TableArena arena_; SymbolsByNameSet symbols_by_name_; FilesByNameMap files_by_name_; ExtensionsGroupedByDescriptorMap extensions_; struct CheckPoint { explicit CheckPoint(const Tables* tables) : arena_before_checkpoint(tables->arena_.num_allocations()), pending_symbols_before_checkpoint( tables->symbols_after_checkpoint_.size()), pending_files_before_checkpoint( tables->files_after_checkpoint_.size()), pending_extensions_before_checkpoint( tables->extensions_after_checkpoint_.size()) {} int arena_before_checkpoint; int pending_symbols_before_checkpoint; int pending_files_before_checkpoint; int pending_extensions_before_checkpoint; }; std::vector checkpoints_; std::vector symbols_after_checkpoint_; std::vector files_after_checkpoint_; std::vector extensions_after_checkpoint_; // Allocate some bytes which will be reclaimed when the pool is // destroyed. void* AllocateBytes(int size); }; // Contains tables specific to a particular file. These tables are not // modified once the file has been constructed, so they need not be // protected by a mutex. This makes operations that depend only on the // contents of a single file -- e.g. Descriptor::FindFieldByName() -- // lock-free. // // For historical reasons, the definitions of the methods of // FileDescriptorTables and DescriptorPool::Tables are interleaved below. // These used to be a single class. class FileDescriptorTables { public: FileDescriptorTables(); ~FileDescriptorTables(); // Empty table, used with placeholder files. inline static const FileDescriptorTables& GetEmptyInstance(); // ----------------------------------------------------------------- // Finding items. // Returns a null Symbol (symbol.IsNull() is true) if not found. inline Symbol FindNestedSymbol(const void* parent, StringPiece name) const; // These return nullptr if not found. inline const FieldDescriptor* FindFieldByNumber(const Descriptor* parent, int number) const; inline const FieldDescriptor* FindFieldByLowercaseName( const void* parent, StringPiece lowercase_name) const; inline const FieldDescriptor* FindFieldByCamelcaseName( const void* parent, StringPiece camelcase_name) const; inline const EnumValueDescriptor* FindEnumValueByNumber( const EnumDescriptor* parent, int number) const; // This creates a new EnumValueDescriptor if not found, in a thread-safe way. inline const EnumValueDescriptor* FindEnumValueByNumberCreatingIfUnknown( const EnumDescriptor* parent, int number) const; // ----------------------------------------------------------------- // Adding items. // These add items to the corresponding tables. They return false if // the key already exists in the table. For AddAliasUnderParent(), the // string passed in must be one that was constructed using AllocateString(), // as it will be used as a key in the symbols_by_parent_ map without copying. bool AddAliasUnderParent(const void* parent, const std::string& name, Symbol symbol); bool AddFieldByNumber(FieldDescriptor* field); bool AddEnumValueByNumber(EnumValueDescriptor* value); // Adds the field to the lowercase_name and camelcase_name maps. Never // fails because we allow duplicates; the first field by the name wins. void AddFieldByStylizedNames(const FieldDescriptor* field); // Populates p->first->locations_by_path_ from p->second. // Unusual signature dictated by internal::call_once. static void BuildLocationsByPath( std::pair* p); // Returns the location denoted by the specified path through info, // or nullptr if not found. // The value of info must be that of the corresponding FileDescriptor. // (Conceptually a pure function, but stateful as an optimisation.) const SourceCodeInfo_Location* GetSourceLocation( const std::vector& path, const SourceCodeInfo* info) const; // Must be called after BuildFileImpl(), even if the build failed and // we are going to roll back to the last checkpoint. void FinalizeTables(); private: const void* FindParentForFieldsByMap(const FieldDescriptor* field) const; static void FieldsByLowercaseNamesLazyInitStatic( const FileDescriptorTables* tables); void FieldsByLowercaseNamesLazyInitInternal() const; static void FieldsByCamelcaseNamesLazyInitStatic( const FileDescriptorTables* tables); void FieldsByCamelcaseNamesLazyInitInternal() const; SymbolsByParentSet symbols_by_parent_; mutable FieldsByNameMap fields_by_lowercase_name_; std::unique_ptr fields_by_lowercase_name_tmp_; mutable internal::once_flag fields_by_lowercase_name_once_; mutable FieldsByNameMap fields_by_camelcase_name_; std::unique_ptr fields_by_camelcase_name_tmp_; mutable internal::once_flag fields_by_camelcase_name_once_; FieldsByNumberSet fields_by_number_; // Not including extensions. EnumValuesByNumberSet enum_values_by_number_; mutable EnumValuesByNumberSet unknown_enum_values_by_number_ PROTOBUF_GUARDED_BY(unknown_enum_values_mu_); // Populated on first request to save space, hence constness games. mutable internal::once_flag locations_by_path_once_; mutable LocationsByPathMap locations_by_path_; // Mutex to protect the unknown-enum-value map due to dynamic // EnumValueDescriptor creation on unknown values. mutable internal::WrappedMutex unknown_enum_values_mu_; }; DescriptorPool::Tables::Tables() { well_known_types_.insert({ {"google.protobuf.DoubleValue", Descriptor::WELLKNOWNTYPE_DOUBLEVALUE}, {"google.protobuf.FloatValue", Descriptor::WELLKNOWNTYPE_FLOATVALUE}, {"google.protobuf.Int64Value", Descriptor::WELLKNOWNTYPE_INT64VALUE}, {"google.protobuf.UInt64Value", Descriptor::WELLKNOWNTYPE_UINT64VALUE}, {"google.protobuf.Int32Value", Descriptor::WELLKNOWNTYPE_INT32VALUE}, {"google.protobuf.UInt32Value", Descriptor::WELLKNOWNTYPE_UINT32VALUE}, {"google.protobuf.StringValue", Descriptor::WELLKNOWNTYPE_STRINGVALUE}, {"google.protobuf.BytesValue", Descriptor::WELLKNOWNTYPE_BYTESVALUE}, {"google.protobuf.BoolValue", Descriptor::WELLKNOWNTYPE_BOOLVALUE}, {"google.protobuf.Any", Descriptor::WELLKNOWNTYPE_ANY}, {"google.protobuf.FieldMask", Descriptor::WELLKNOWNTYPE_FIELDMASK}, {"google.protobuf.Duration", Descriptor::WELLKNOWNTYPE_DURATION}, {"google.protobuf.Timestamp", Descriptor::WELLKNOWNTYPE_TIMESTAMP}, {"google.protobuf.Value", Descriptor::WELLKNOWNTYPE_VALUE}, {"google.protobuf.ListValue", Descriptor::WELLKNOWNTYPE_LISTVALUE}, {"google.protobuf.Struct", Descriptor::WELLKNOWNTYPE_STRUCT}, }); } DescriptorPool::Tables::~Tables() { GOOGLE_DCHECK(checkpoints_.empty()); } FileDescriptorTables::FileDescriptorTables() : fields_by_lowercase_name_tmp_(new FieldsByNameMap()), fields_by_camelcase_name_tmp_(new FieldsByNameMap()) {} FileDescriptorTables::~FileDescriptorTables() {} inline const FileDescriptorTables& FileDescriptorTables::GetEmptyInstance() { static auto file_descriptor_tables = internal::OnShutdownDelete(new FileDescriptorTables()); return *file_descriptor_tables; } void DescriptorPool::Tables::AddCheckpoint() { checkpoints_.push_back(CheckPoint(this)); } void DescriptorPool::Tables::ClearLastCheckpoint() { GOOGLE_DCHECK(!checkpoints_.empty()); checkpoints_.pop_back(); if (checkpoints_.empty()) { // All checkpoints have been cleared: we can now commit all of the pending // data. symbols_after_checkpoint_.clear(); files_after_checkpoint_.clear(); extensions_after_checkpoint_.clear(); arena_.ClearRollbackData(); } } void DescriptorPool::Tables::RollbackToLastCheckpoint() { GOOGLE_DCHECK(!checkpoints_.empty()); const CheckPoint& checkpoint = checkpoints_.back(); for (size_t i = checkpoint.pending_symbols_before_checkpoint; i < symbols_after_checkpoint_.size(); i++) { Symbol::QueryKey name; name.name = symbols_after_checkpoint_[i]; symbols_by_name_.erase(Symbol(&name)); } for (size_t i = checkpoint.pending_files_before_checkpoint; i < files_after_checkpoint_.size(); i++) { files_by_name_.erase(files_after_checkpoint_[i]); } for (size_t i = checkpoint.pending_extensions_before_checkpoint; i < extensions_after_checkpoint_.size(); i++) { extensions_.erase(extensions_after_checkpoint_[i]); } symbols_after_checkpoint_.resize( checkpoint.pending_symbols_before_checkpoint); files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint); extensions_after_checkpoint_.resize( checkpoint.pending_extensions_before_checkpoint); arena_.RollbackTo(checkpoint.arena_before_checkpoint); checkpoints_.pop_back(); } // ------------------------------------------------------------------- inline Symbol DescriptorPool::Tables::FindSymbol(StringPiece key) const { Symbol::QueryKey name; name.name = key; auto it = symbols_by_name_.find(Symbol(&name)); return it == symbols_by_name_.end() ? kNullSymbol : *it; } inline Symbol FileDescriptorTables::FindNestedSymbol( const void* parent, StringPiece name) const { Symbol::QueryKey query; query.name = name; query.parent = parent; auto it = symbols_by_parent_.find(Symbol(&query)); return it == symbols_by_parent_.end() ? kNullSymbol : *it; } Symbol DescriptorPool::Tables::FindByNameHelper(const DescriptorPool* pool, StringPiece name) { if (pool->mutex_ != nullptr) { // Fast path: the Symbol is already cached. This is just a hash lookup. ReaderMutexLock lock(pool->mutex_); if (known_bad_symbols_.empty() && known_bad_files_.empty()) { Symbol result = FindSymbol(name); if (!result.IsNull()) return result; } } MutexLockMaybe lock(pool->mutex_); if (pool->fallback_database_ != nullptr) { known_bad_symbols_.clear(); known_bad_files_.clear(); } Symbol result = FindSymbol(name); if (result.IsNull() && pool->underlay_ != nullptr) { // Symbol not found; check the underlay. result = pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name); } if (result.IsNull()) { // Symbol still not found, so check fallback database. if (pool->TryFindSymbolInFallbackDatabase(name)) { result = FindSymbol(name); } } return result; } inline const FileDescriptor* DescriptorPool::Tables::FindFile( StringPiece key) const { return FindPtrOrNull(files_by_name_, key); } inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber( const Descriptor* parent, int number) const { // If `number` is within the sequential range, just index into the parent // without doing a table lookup. if (parent != nullptr && // 1 <= number && number <= parent->sequential_field_limit_) { return parent->field(number - 1); } Symbol::QueryKey query; query.parent = parent; query.field_number = number; auto it = fields_by_number_.find(Symbol(&query)); return it == fields_by_number_.end() ? nullptr : it->field_descriptor(); } const void* FileDescriptorTables::FindParentForFieldsByMap( const FieldDescriptor* field) const { if (field->is_extension()) { if (field->extension_scope() == nullptr) { return field->file(); } else { return field->extension_scope(); } } else { return field->containing_type(); } } void FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic( const FileDescriptorTables* tables) { tables->FieldsByLowercaseNamesLazyInitInternal(); } void FileDescriptorTables::FieldsByLowercaseNamesLazyInitInternal() const { for (Symbol symbol : symbols_by_parent_) { const FieldDescriptor* field = symbol.field_descriptor(); if (!field) continue; PointerStringPair lowercase_key(FindParentForFieldsByMap(field), field->lowercase_name().c_str()); InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field); } } inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName( const void* parent, StringPiece lowercase_name) const { internal::call_once( fields_by_lowercase_name_once_, &FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic, this); return FindPtrOrNull(fields_by_lowercase_name_, PointerStringPair(parent, lowercase_name)); } void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic( const FileDescriptorTables* tables) { tables->FieldsByCamelcaseNamesLazyInitInternal(); } void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitInternal() const { for (Symbol symbol : symbols_by_parent_) { const FieldDescriptor* field = symbol.field_descriptor(); if (!field) continue; PointerStringPair camelcase_key(FindParentForFieldsByMap(field), field->camelcase_name().c_str()); InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field); } } inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName( const void* parent, StringPiece camelcase_name) const { internal::call_once( fields_by_camelcase_name_once_, FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic, this); return FindPtrOrNull(fields_by_camelcase_name_, PointerStringPair(parent, camelcase_name)); } inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber( const EnumDescriptor* parent, int number) const { // If `number` is within the sequential range, just index into the parent // without doing a table lookup. const int base = parent->value(0)->number(); if (base <= number && number <= static_cast(base) + parent->sequential_value_limit_) { return parent->value(number - base); } Symbol::QueryKey query; query.parent = parent; query.field_number = number; auto it = enum_values_by_number_.find(Symbol(&query)); return it == enum_values_by_number_.end() ? nullptr : it->enum_value_descriptor(); } inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumberCreatingIfUnknown( const EnumDescriptor* parent, int number) const { // First try, with map of compiled-in values. { const auto* value = FindEnumValueByNumber(parent, number); if (value != nullptr) { return value; } } Symbol::QueryKey query; query.parent = parent; query.field_number = number; // Second try, with reader lock held on unknown enum values: common case. { ReaderMutexLock l(&unknown_enum_values_mu_); auto it = unknown_enum_values_by_number_.find(Symbol(&query)); if (it != unknown_enum_values_by_number_.end() && it->enum_value_descriptor() != nullptr) { return it->enum_value_descriptor(); } } // If not found, try again with writer lock held, and create new descriptor if // necessary. { WriterMutexLock l(&unknown_enum_values_mu_); auto it = unknown_enum_values_by_number_.find(Symbol(&query)); if (it != unknown_enum_values_by_number_.end() && it->enum_value_descriptor() != nullptr) { return it->enum_value_descriptor(); } // Create an EnumValueDescriptor dynamically. We don't insert it into the // EnumDescriptor (it's not a part of the enum as originally defined), but // we do insert it into the table so that we can return the same pointer // later. std::string enum_value_name = StringPrintf("UNKNOWN_ENUM_VALUE_%s_%d", parent->name().c_str(), number); auto* pool = DescriptorPool::generated_pool(); auto* tables = const_cast(pool->tables_.get()); EnumValueDescriptor* result; { // Must lock the pool because we will do allocations in the shared arena. MutexLockMaybe l2(pool->mutex_); result = tables->Allocate(); result->all_names_ = tables->AllocateStringArray( enum_value_name, StrCat(parent->full_name(), ".", enum_value_name)); } result->number_ = number; result->type_ = parent; result->options_ = &EnumValueOptions::default_instance(); unknown_enum_values_by_number_.insert(Symbol::EnumValue(result, 0)); return result; } } inline const FieldDescriptor* DescriptorPool::Tables::FindExtension( const Descriptor* extendee, int number) const { return FindPtrOrNull(extensions_, std::make_pair(extendee, number)); } inline void DescriptorPool::Tables::FindAllExtensions( const Descriptor* extendee, std::vector* out) const { ExtensionsGroupedByDescriptorMap::const_iterator it = extensions_.lower_bound(std::make_pair(extendee, 0)); for (; it != extensions_.end() && it->first.first == extendee; ++it) { out->push_back(it->second); } } // ------------------------------------------------------------------- bool DescriptorPool::Tables::AddSymbol(const std::string& full_name, Symbol symbol) { GOOGLE_DCHECK_EQ(full_name, symbol.full_name()); if (symbols_by_name_.insert(symbol).second) { symbols_after_checkpoint_.push_back(full_name.c_str()); return true; } else { return false; } } bool FileDescriptorTables::AddAliasUnderParent(const void* parent, const std::string& name, Symbol symbol) { GOOGLE_DCHECK_EQ(name, symbol.parent_name_key().second); GOOGLE_DCHECK_EQ(parent, symbol.parent_name_key().first); return symbols_by_parent_.insert(symbol).second; } bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) { if (InsertIfNotPresent(&files_by_name_, file->name(), file)) { files_after_checkpoint_.push_back(file->name().c_str()); return true; } else { return false; } } void FileDescriptorTables::FinalizeTables() { // Clean up the temporary maps used by AddFieldByStylizedNames(). fields_by_lowercase_name_tmp_ = nullptr; fields_by_camelcase_name_tmp_ = nullptr; } void FileDescriptorTables::AddFieldByStylizedNames( const FieldDescriptor* field) { const void* parent = FindParentForFieldsByMap(field); // We want fields_by_{lower,camel}case_name_ to be lazily built, but // cross-link order determines which entry will be present in the case of a // conflict. So we use the temporary maps that get destroyed after // BuildFileImpl() to detect the conflicts, and only store the conflicts in // the map that will persist. We will then lazily populate the rest of the // entries from fields_by_number_. PointerStringPair lowercase_key(parent, field->lowercase_name().c_str()); if (!InsertIfNotPresent(fields_by_lowercase_name_tmp_.get(), lowercase_key, field)) { InsertIfNotPresent( &fields_by_lowercase_name_, lowercase_key, FindPtrOrNull(*fields_by_lowercase_name_tmp_, lowercase_key)); } PointerStringPair camelcase_key(parent, field->camelcase_name().c_str()); if (!InsertIfNotPresent(fields_by_camelcase_name_tmp_.get(), camelcase_key, field)) { InsertIfNotPresent( &fields_by_camelcase_name_, camelcase_key, FindPtrOrNull(*fields_by_camelcase_name_tmp_, camelcase_key)); } } bool FileDescriptorTables::AddFieldByNumber(FieldDescriptor* field) { // Skip fields that are at the start of the sequence. if (field->containing_type() != nullptr && field->number() >= 1 && field->number() <= field->containing_type()->sequential_field_limit_) { if (field->is_extension()) { // Conflicts with the field that already exists in the sequential range. return false; } // Only return true if the field at that index matches. Otherwise it // conflicts with the existing field in the sequential range. return field->containing_type()->field(field->number() - 1) == field; } return fields_by_number_.insert(Symbol(field)).second; } bool FileDescriptorTables::AddEnumValueByNumber(EnumValueDescriptor* value) { // Skip values that are at the start of the sequence. const int base = value->type()->value(0)->number(); if (base <= value->number() && value->number() <= static_cast(base) + value->type()->sequential_value_limit_) return true; return enum_values_by_number_.insert(Symbol::EnumValue(value, 0)).second; } bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) { DescriptorIntPair key(field->containing_type(), field->number()); if (InsertIfNotPresent(&extensions_, key, field)) { extensions_after_checkpoint_.push_back(key); return true; } else { return false; } } // ------------------------------------------------------------------- template Type* DescriptorPool::Tables::Allocate() { return reinterpret_cast(AllocateBytes(sizeof(Type))); } template Type* DescriptorPool::Tables::AllocateArray(int count) { return reinterpret_cast(AllocateBytes(sizeof(Type) * count)); } const std::string* DescriptorPool::Tables::AllocateString( StringPiece value) { return arena_.Create(value); } const char* DescriptorPool::Tables::Strdup(StringPiece value) { char* p = AllocateArray(static_cast(value.size() + 1)); memcpy(p, value.data(), value.size()); p[value.size()] = 0; return p; } template const std::string* DescriptorPool::Tables::AllocateStringArray(In&&... values) { auto& array = *arena_.Create>(); array = {{std::string(std::forward(values))...}}; return array.data(); } DescriptorPool::Tables::FieldNamesResult DescriptorPool::Tables::AllocateFieldNames(const std::string& name, const std::string& scope, const std::string* opt_json_name) { std::string lowercase_name = name; LowerString(&lowercase_name); std::string camelcase_name = ToCamelCase(name, /* lower_first = */ true); std::string json_name; if (opt_json_name != nullptr) { json_name = *opt_json_name; } else { json_name = ToJsonName(name); } const bool lower_eq_name = lowercase_name == name; const bool camel_eq_name = camelcase_name == name; const bool json_eq_name = json_name == name; const bool json_eq_camel = json_name == camelcase_name; const int total_count = 2 + (lower_eq_name ? 0 : 1) + (camel_eq_name ? 0 : 1) + (json_eq_name || json_eq_camel ? 0 : 1); FieldNamesResult result{nullptr, 0, 0, 0}; // We use std::array to allow handling of the destruction of the strings. switch (total_count) { case 2: result.array = arena_.Create>()->data(); break; case 3: result.array = arena_.Create>()->data(); break; case 4: result.array = arena_.Create>()->data(); break; case 5: result.array = arena_.Create>()->data(); break; } result.array[0] = name; if (scope.empty()) { result.array[1] = name; } else { result.array[1] = StrCat(scope, ".", name); } int index = 2; if (lower_eq_name) { result.lowercase_index = 0; } else { result.lowercase_index = index; result.array[index++] = std::move(lowercase_name); } if (camel_eq_name) { result.camelcase_index = 0; } else { result.camelcase_index = index; result.array[index++] = std::move(camelcase_name); } if (json_eq_name) { result.json_index = 0; } else if (json_eq_camel) { result.json_index = result.camelcase_index; } else { result.json_index = index; result.array[index] = std::move(json_name); } return result; } template Type* DescriptorPool::Tables::Create() { return arena_.Create(); } template Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) { return arena_.Create(); } FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() { return arena_.Create(); } void* DescriptorPool::Tables::AllocateBytes(int size) { if (size == 0) return nullptr; return arena_.AllocateMemory(size); } void FileDescriptorTables::BuildLocationsByPath( std::pair* p) { for (int i = 0, len = p->second->location_size(); i < len; ++i) { const SourceCodeInfo_Location* loc = &p->second->location().Get(i); p->first->locations_by_path_[Join(loc->path(), ",")] = loc; } } const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation( const std::vector& path, const SourceCodeInfo* info) const { std::pair p( std::make_pair(this, info)); internal::call_once(locations_by_path_once_, FileDescriptorTables::BuildLocationsByPath, &p); return FindPtrOrNull(locations_by_path_, Join(path, ",")); } // =================================================================== // DescriptorPool DescriptorPool::ErrorCollector::~ErrorCollector() {} DescriptorPool::DescriptorPool() : mutex_(nullptr), fallback_database_(nullptr), default_error_collector_(nullptr), underlay_(nullptr), tables_(new Tables), enforce_dependencies_(true), lazily_build_dependencies_(false), allow_unknown_(false), enforce_weak_(false), disallow_enforce_utf8_(false) {} DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database, ErrorCollector* error_collector) : mutex_(new internal::WrappedMutex), fallback_database_(fallback_database), default_error_collector_(error_collector), underlay_(nullptr), tables_(new Tables), enforce_dependencies_(true), lazily_build_dependencies_(false), allow_unknown_(false), enforce_weak_(false), disallow_enforce_utf8_(false) {} DescriptorPool::DescriptorPool(const DescriptorPool* underlay) : mutex_(nullptr), fallback_database_(nullptr), default_error_collector_(nullptr), underlay_(underlay), tables_(new Tables), enforce_dependencies_(true), lazily_build_dependencies_(false), allow_unknown_(false), enforce_weak_(false), disallow_enforce_utf8_(false) {} DescriptorPool::~DescriptorPool() { if (mutex_ != nullptr) delete mutex_; } // DescriptorPool::BuildFile() defined later. // DescriptorPool::BuildFileCollectingErrors() defined later. void DescriptorPool::InternalDontEnforceDependencies() { enforce_dependencies_ = false; } void DescriptorPool::AddUnusedImportTrackFile(ConstStringParam file_name, bool is_error) { unused_import_track_files_[std::string(file_name)] = is_error; } void DescriptorPool::ClearUnusedImportTrackFiles() { unused_import_track_files_.clear(); } bool DescriptorPool::InternalIsFileLoaded(ConstStringParam filename) const { MutexLockMaybe lock(mutex_); return tables_->FindFile(filename) != nullptr; } // generated_pool ==================================================== namespace { EncodedDescriptorDatabase* GeneratedDatabase() { static auto generated_database = internal::OnShutdownDelete(new EncodedDescriptorDatabase()); return generated_database; } DescriptorPool* NewGeneratedPool() { auto generated_pool = new DescriptorPool(GeneratedDatabase()); generated_pool->InternalSetLazilyBuildDependencies(); return generated_pool; } } // anonymous namespace DescriptorDatabase* DescriptorPool::internal_generated_database() { return GeneratedDatabase(); } DescriptorPool* DescriptorPool::internal_generated_pool() { static DescriptorPool* generated_pool = internal::OnShutdownDelete(NewGeneratedPool()); return generated_pool; } const DescriptorPool* DescriptorPool::generated_pool() { const DescriptorPool* pool = internal_generated_pool(); // Ensure that descriptor.proto has been registered in the generated pool. DescriptorProto::descriptor(); return pool; } void DescriptorPool::InternalAddGeneratedFile( const void* encoded_file_descriptor, int size) { // So, this function is called in the process of initializing the // descriptors for generated proto classes. Each generated .pb.cc file // has an internal procedure called AddDescriptors() which is called at // process startup, and that function calls this one in order to register // the raw bytes of the FileDescriptorProto representing the file. // // We do not actually construct the descriptor objects right away. We just // hang on to the bytes until they are actually needed. We actually construct // the descriptor the first time one of the following things happens: // * Someone calls a method like descriptor(), GetDescriptor(), or // GetReflection() on the generated types, which requires returning the // descriptor or an object based on it. // * Someone looks up the descriptor in DescriptorPool::generated_pool(). // // Once one of these happens, the DescriptorPool actually parses the // FileDescriptorProto and generates a FileDescriptor (and all its children) // based on it. // // Note that FileDescriptorProto is itself a generated protocol message. // Therefore, when we parse one, we have to be very careful to avoid using // any descriptor-based operations, since this might cause infinite recursion // or deadlock. GOOGLE_CHECK(GeneratedDatabase()->Add(encoded_file_descriptor, size)); } // Find*By* methods ================================================== // TODO(kenton): There's a lot of repeated code here, but I'm not sure if // there's any good way to factor it out. Think about this some time when // there's nothing more important to do (read: never). const FileDescriptor* DescriptorPool::FindFileByName( ConstStringParam name) const { MutexLockMaybe lock(mutex_); if (fallback_database_ != nullptr) { tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); } const FileDescriptor* result = tables_->FindFile(name); if (result != nullptr) return result; if (underlay_ != nullptr) { result = underlay_->FindFileByName(name); if (result != nullptr) return result; } if (TryFindFileInFallbackDatabase(name)) { result = tables_->FindFile(name); if (result != nullptr) return result; } return nullptr; } const FileDescriptor* DescriptorPool::FindFileContainingSymbol( ConstStringParam symbol_name) const { MutexLockMaybe lock(mutex_); if (fallback_database_ != nullptr) { tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); } Symbol result = tables_->FindSymbol(symbol_name); if (!result.IsNull()) return result.GetFile(); if (underlay_ != nullptr) { const FileDescriptor* file_result = underlay_->FindFileContainingSymbol(symbol_name); if (file_result != nullptr) return file_result; } if (TryFindSymbolInFallbackDatabase(symbol_name)) { result = tables_->FindSymbol(symbol_name); if (!result.IsNull()) return result.GetFile(); } return nullptr; } const Descriptor* DescriptorPool::FindMessageTypeByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).descriptor(); } const FieldDescriptor* DescriptorPool::FindFieldByName( ConstStringParam name) const { if (const FieldDescriptor* field = tables_->FindByNameHelper(this, name).field_descriptor()) { if (!field->is_extension()) { return field; } } return nullptr; } const FieldDescriptor* DescriptorPool::FindExtensionByName( ConstStringParam name) const { if (const FieldDescriptor* field = tables_->FindByNameHelper(this, name).field_descriptor()) { if (field->is_extension()) { return field; } } return nullptr; } const OneofDescriptor* DescriptorPool::FindOneofByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).oneof_descriptor(); } const EnumDescriptor* DescriptorPool::FindEnumTypeByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).enum_descriptor(); } const EnumValueDescriptor* DescriptorPool::FindEnumValueByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).enum_value_descriptor(); } const ServiceDescriptor* DescriptorPool::FindServiceByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).service_descriptor(); } const MethodDescriptor* DescriptorPool::FindMethodByName( ConstStringParam name) const { return tables_->FindByNameHelper(this, name).method_descriptor(); } const FieldDescriptor* DescriptorPool::FindExtensionByNumber( const Descriptor* extendee, int number) const { if (extendee->extension_range_count() == 0) return nullptr; // A faster path to reduce lock contention in finding extensions, assuming // most extensions will be cache hit. if (mutex_ != nullptr) { ReaderMutexLock lock(mutex_); const FieldDescriptor* result = tables_->FindExtension(extendee, number); if (result != nullptr) { return result; } } MutexLockMaybe lock(mutex_); if (fallback_database_ != nullptr) { tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); } const FieldDescriptor* result = tables_->FindExtension(extendee, number); if (result != nullptr) { return result; } if (underlay_ != nullptr) { result = underlay_->FindExtensionByNumber(extendee, number); if (result != nullptr) return result; } if (TryFindExtensionInFallbackDatabase(extendee, number)) { result = tables_->FindExtension(extendee, number); if (result != nullptr) { return result; } } return nullptr; } const FieldDescriptor* DescriptorPool::InternalFindExtensionByNumberNoLock( const Descriptor* extendee, int number) const { if (extendee->extension_range_count() == 0) return nullptr; const FieldDescriptor* result = tables_->FindExtension(extendee, number); if (result != nullptr) { return result; } if (underlay_ != nullptr) { result = underlay_->InternalFindExtensionByNumberNoLock(extendee, number); if (result != nullptr) return result; } return nullptr; } const FieldDescriptor* DescriptorPool::FindExtensionByPrintableName( const Descriptor* extendee, ConstStringParam printable_name) const { if (extendee->extension_range_count() == 0) return nullptr; const FieldDescriptor* result = FindExtensionByName(printable_name); if (result != nullptr && result->containing_type() == extendee) { return result; } if (extendee->options().message_set_wire_format()) { // MessageSet extensions may be identified by type name. const Descriptor* type = FindMessageTypeByName(printable_name); if (type != nullptr) { // Look for a matching extension in the foreign type's scope. const int type_extension_count = type->extension_count(); for (int i = 0; i < type_extension_count; i++) { const FieldDescriptor* extension = type->extension(i); if (extension->containing_type() == extendee && extension->type() == FieldDescriptor::TYPE_MESSAGE && extension->is_optional() && extension->message_type() == type) { // Found it. return extension; } } } } return nullptr; } void DescriptorPool::FindAllExtensions( const Descriptor* extendee, std::vector* out) const { MutexLockMaybe lock(mutex_); if (fallback_database_ != nullptr) { tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); } // Initialize tables_->extensions_ from the fallback database first // (but do this only once per descriptor). if (fallback_database_ != nullptr && tables_->extensions_loaded_from_db_.count(extendee) == 0) { std::vector numbers; if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(), &numbers)) { for (int number : numbers) { if (tables_->FindExtension(extendee, number) == nullptr) { TryFindExtensionInFallbackDatabase(extendee, number); } } tables_->extensions_loaded_from_db_.insert(extendee); } } tables_->FindAllExtensions(extendee, out); if (underlay_ != nullptr) { underlay_->FindAllExtensions(extendee, out); } } // ------------------------------------------------------------------- const FieldDescriptor* Descriptor::FindFieldByNumber(int key) const { const FieldDescriptor* result = file()->tables_->FindFieldByNumber(this, key); if (result == nullptr || result->is_extension()) { return nullptr; } else { return result; } } const FieldDescriptor* Descriptor::FindFieldByLowercaseName( ConstStringParam key) const { const FieldDescriptor* result = file()->tables_->FindFieldByLowercaseName(this, key); if (result == nullptr || result->is_extension()) { return nullptr; } else { return result; } } const FieldDescriptor* Descriptor::FindFieldByCamelcaseName( ConstStringParam key) const { const FieldDescriptor* result = file()->tables_->FindFieldByCamelcaseName(this, key); if (result == nullptr || result->is_extension()) { return nullptr; } else { return result; } } const FieldDescriptor* Descriptor::FindFieldByName(ConstStringParam key) const { const FieldDescriptor* field = file()->tables_->FindNestedSymbol(this, key).field_descriptor(); return field != nullptr && !field->is_extension() ? field : nullptr; } const OneofDescriptor* Descriptor::FindOneofByName(ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).oneof_descriptor(); } const FieldDescriptor* Descriptor::FindExtensionByName( ConstStringParam key) const { const FieldDescriptor* field = file()->tables_->FindNestedSymbol(this, key).field_descriptor(); return field != nullptr && field->is_extension() ? field : nullptr; } const FieldDescriptor* Descriptor::FindExtensionByLowercaseName( ConstStringParam key) const { const FieldDescriptor* result = file()->tables_->FindFieldByLowercaseName(this, key); if (result == nullptr || !result->is_extension()) { return nullptr; } else { return result; } } const FieldDescriptor* Descriptor::FindExtensionByCamelcaseName( ConstStringParam key) const { const FieldDescriptor* result = file()->tables_->FindFieldByCamelcaseName(this, key); if (result == nullptr || !result->is_extension()) { return nullptr; } else { return result; } } const Descriptor* Descriptor::FindNestedTypeByName(ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).descriptor(); } const EnumDescriptor* Descriptor::FindEnumTypeByName( ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).enum_descriptor(); } const EnumValueDescriptor* Descriptor::FindEnumValueByName( ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).enum_value_descriptor(); } const FieldDescriptor* Descriptor::map_key() const { if (!options().map_entry()) return nullptr; GOOGLE_DCHECK_EQ(field_count(), 2); return field(0); } const FieldDescriptor* Descriptor::map_value() const { if (!options().map_entry()) return nullptr; GOOGLE_DCHECK_EQ(field_count(), 2); return field(1); } const EnumValueDescriptor* EnumDescriptor::FindValueByName( ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).enum_value_descriptor(); } const EnumValueDescriptor* EnumDescriptor::FindValueByNumber(int key) const { return file()->tables_->FindEnumValueByNumber(this, key); } const EnumValueDescriptor* EnumDescriptor::FindValueByNumberCreatingIfUnknown( int key) const { return file()->tables_->FindEnumValueByNumberCreatingIfUnknown(this, key); } const MethodDescriptor* ServiceDescriptor::FindMethodByName( ConstStringParam key) const { return file()->tables_->FindNestedSymbol(this, key).method_descriptor(); } const Descriptor* FileDescriptor::FindMessageTypeByName( ConstStringParam key) const { return tables_->FindNestedSymbol(this, key).descriptor(); } const EnumDescriptor* FileDescriptor::FindEnumTypeByName( ConstStringParam key) const { return tables_->FindNestedSymbol(this, key).enum_descriptor(); } const EnumValueDescriptor* FileDescriptor::FindEnumValueByName( ConstStringParam key) const { return tables_->FindNestedSymbol(this, key).enum_value_descriptor(); } const ServiceDescriptor* FileDescriptor::FindServiceByName( ConstStringParam key) const { return tables_->FindNestedSymbol(this, key).service_descriptor(); } const FieldDescriptor* FileDescriptor::FindExtensionByName( ConstStringParam key) const { const FieldDescriptor* field = tables_->FindNestedSymbol(this, key).field_descriptor(); return field != nullptr && field->is_extension() ? field : nullptr; } const FieldDescriptor* FileDescriptor::FindExtensionByLowercaseName( ConstStringParam key) const { const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key); if (result == nullptr || !result->is_extension()) { return nullptr; } else { return result; } } const FieldDescriptor* FileDescriptor::FindExtensionByCamelcaseName( ConstStringParam key) const { const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key); if (result == nullptr || !result->is_extension()) { return nullptr; } else { return result; } } void Descriptor::ExtensionRange::CopyTo( DescriptorProto_ExtensionRange* proto) const { proto->set_start(this->start); proto->set_end(this->end); if (options_ != &ExtensionRangeOptions::default_instance()) { *proto->mutable_options() = *options_; } } const Descriptor::ExtensionRange* Descriptor::FindExtensionRangeContainingNumber(int number) const { // Linear search should be fine because we don't expect a message to have // more than a couple extension ranges. for (int i = 0; i < extension_range_count(); i++) { if (number >= extension_range(i)->start && number < extension_range(i)->end) { return extension_range(i); } } return nullptr; } const Descriptor::ReservedRange* Descriptor::FindReservedRangeContainingNumber( int number) const { // TODO(chrisn): Consider a non-linear search. for (int i = 0; i < reserved_range_count(); i++) { if (number >= reserved_range(i)->start && number < reserved_range(i)->end) { return reserved_range(i); } } return nullptr; } const EnumDescriptor::ReservedRange* EnumDescriptor::FindReservedRangeContainingNumber(int number) const { // TODO(chrisn): Consider a non-linear search. for (int i = 0; i < reserved_range_count(); i++) { if (number >= reserved_range(i)->start && number <= reserved_range(i)->end) { return reserved_range(i); } } return nullptr; } // ------------------------------------------------------------------- bool DescriptorPool::TryFindFileInFallbackDatabase( StringPiece name) const { if (fallback_database_ == nullptr) return false; auto name_string = std::string(name); if (tables_->known_bad_files_.count(name_string) > 0) return false; FileDescriptorProto file_proto; if (!fallback_database_->FindFileByName(name_string, &file_proto) || BuildFileFromDatabase(file_proto) == nullptr) { tables_->known_bad_files_.insert(std::move(name_string)); return false; } return true; } bool DescriptorPool::IsSubSymbolOfBuiltType(StringPiece name) const { auto prefix = std::string(name); for (;;) { std::string::size_type dot_pos = prefix.find_last_of('.'); if (dot_pos == std::string::npos) { break; } prefix = prefix.substr(0, dot_pos); Symbol symbol = tables_->FindSymbol(prefix); // If the symbol type is anything other than PACKAGE, then its complete // definition is already known. if (!symbol.IsNull() && symbol.type() != Symbol::PACKAGE) { return true; } } if (underlay_ != nullptr) { // Check to see if any prefix of this symbol exists in the underlay. return underlay_->IsSubSymbolOfBuiltType(name); } return false; } bool DescriptorPool::TryFindSymbolInFallbackDatabase( StringPiece name) const { if (fallback_database_ == nullptr) return false; auto name_string = std::string(name); if (tables_->known_bad_symbols_.count(name_string) > 0) return false; FileDescriptorProto file_proto; if ( // We skip looking in the fallback database if the name is a sub-symbol // of any descriptor that already exists in the descriptor pool (except // for package descriptors). This is valid because all symbols except // for packages are defined in a single file, so if the symbol exists // then we should already have its definition. // // The other reason to do this is to support "overriding" type // definitions by merging two databases that define the same type. (Yes, // people do this.) The main difficulty with making this work is that // FindFileContainingSymbol() is allowed to return both false positives // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and // false negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase). // When two such databases are merged, looking up a non-existent // sub-symbol of a type that already exists in the descriptor pool can // result in an attempt to load multiple definitions of the same type. // The check below avoids this. IsSubSymbolOfBuiltType(name) // Look up file containing this symbol in fallback database. || !fallback_database_->FindFileContainingSymbol(name_string, &file_proto) // Check if we've already built this file. If so, it apparently doesn't // contain the symbol we're looking for. Some DescriptorDatabases // return false positives. || tables_->FindFile(file_proto.name()) != nullptr // Build the file. || BuildFileFromDatabase(file_proto) == nullptr) { tables_->known_bad_symbols_.insert(std::move(name_string)); return false; } return true; } bool DescriptorPool::TryFindExtensionInFallbackDatabase( const Descriptor* containing_type, int field_number) const { if (fallback_database_ == nullptr) return false; FileDescriptorProto file_proto; if (!fallback_database_->FindFileContainingExtension( containing_type->full_name(), field_number, &file_proto)) { return false; } if (tables_->FindFile(file_proto.name()) != nullptr) { // We've already loaded this file, and it apparently doesn't contain the // extension we're looking for. Some DescriptorDatabases return false // positives. return false; } if (BuildFileFromDatabase(file_proto) == nullptr) { return false; } return true; } // =================================================================== bool FieldDescriptor::is_map_message_type() const { return type_descriptor_.message_type->options().map_entry(); } std::string FieldDescriptor::DefaultValueAsString( bool quote_string_type) const { GOOGLE_CHECK(has_default_value()) << "No default value"; switch (cpp_type()) { case CPPTYPE_INT32: return StrCat(default_value_int32_t()); case CPPTYPE_INT64: return StrCat(default_value_int64_t()); case CPPTYPE_UINT32: return StrCat(default_value_uint32_t()); case CPPTYPE_UINT64: return StrCat(default_value_uint64_t()); case CPPTYPE_FLOAT: return SimpleFtoa(default_value_float()); case CPPTYPE_DOUBLE: return SimpleDtoa(default_value_double()); case CPPTYPE_BOOL: return default_value_bool() ? "true" : "false"; case CPPTYPE_STRING: if (quote_string_type) { return "\"" + CEscape(default_value_string()) + "\""; } else { if (type() == TYPE_BYTES) { return CEscape(default_value_string()); } else { return default_value_string(); } } case CPPTYPE_ENUM: return default_value_enum()->name(); case CPPTYPE_MESSAGE: GOOGLE_LOG(DFATAL) << "Messages can't have default values!"; break; } GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string"; return ""; } // CopyTo methods ==================================================== void FileDescriptor::CopyTo(FileDescriptorProto* proto) const { proto->set_name(name()); if (!package().empty()) proto->set_package(package()); // TODO(liujisi): Also populate when syntax="proto2". if (syntax() == SYNTAX_PROTO3) proto->set_syntax(SyntaxName(syntax())); for (int i = 0; i < dependency_count(); i++) { proto->add_dependency(dependency(i)->name()); } for (int i = 0; i < public_dependency_count(); i++) { proto->add_public_dependency(public_dependencies_[i]); } for (int i = 0; i < weak_dependency_count(); i++) { proto->add_weak_dependency(weak_dependencies_[i]); } for (int i = 0; i < message_type_count(); i++) { message_type(i)->CopyTo(proto->add_message_type()); } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->CopyTo(proto->add_enum_type()); } for (int i = 0; i < service_count(); i++) { service(i)->CopyTo(proto->add_service()); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyTo(proto->add_extension()); } if (&options() != &FileOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void FileDescriptor::CopyJsonNameTo(FileDescriptorProto* proto) const { if (message_type_count() != proto->message_type_size() || extension_count() != proto->extension_size()) { GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size."; return; } for (int i = 0; i < message_type_count(); i++) { message_type(i)->CopyJsonNameTo(proto->mutable_message_type(i)); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyJsonNameTo(proto->mutable_extension(i)); } } void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const { if (source_code_info_ && source_code_info_ != &SourceCodeInfo::default_instance()) { proto->mutable_source_code_info()->CopyFrom(*source_code_info_); } } void Descriptor::CopyTo(DescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < field_count(); i++) { field(i)->CopyTo(proto->add_field()); } for (int i = 0; i < oneof_decl_count(); i++) { oneof_decl(i)->CopyTo(proto->add_oneof_decl()); } for (int i = 0; i < nested_type_count(); i++) { nested_type(i)->CopyTo(proto->add_nested_type()); } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->CopyTo(proto->add_enum_type()); } for (int i = 0; i < extension_range_count(); i++) { extension_range(i)->CopyTo(proto->add_extension_range()); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyTo(proto->add_extension()); } for (int i = 0; i < reserved_range_count(); i++) { DescriptorProto::ReservedRange* range = proto->add_reserved_range(); range->set_start(reserved_range(i)->start); range->set_end(reserved_range(i)->end); } for (int i = 0; i < reserved_name_count(); i++) { proto->add_reserved_name(reserved_name(i)); } if (&options() != &MessageOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void Descriptor::CopyJsonNameTo(DescriptorProto* proto) const { if (field_count() != proto->field_size() || nested_type_count() != proto->nested_type_size() || extension_count() != proto->extension_size()) { GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size."; return; } for (int i = 0; i < field_count(); i++) { field(i)->CopyJsonNameTo(proto->mutable_field(i)); } for (int i = 0; i < nested_type_count(); i++) { nested_type(i)->CopyJsonNameTo(proto->mutable_nested_type(i)); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyJsonNameTo(proto->mutable_extension(i)); } } void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const { proto->set_name(name()); proto->set_number(number()); if (has_json_name_) { proto->set_json_name(json_name()); } if (proto3_optional_) { proto->set_proto3_optional(true); } // Some compilers do not allow static_cast directly between two enum types, // so we must cast to int first. proto->set_label(static_cast( implicit_cast(label()))); proto->set_type(static_cast( implicit_cast(type()))); if (is_extension()) { if (!containing_type()->is_unqualified_placeholder_) { proto->set_extendee("."); } proto->mutable_extendee()->append(containing_type()->full_name()); } if (cpp_type() == CPPTYPE_MESSAGE) { if (message_type()->is_placeholder_) { // We don't actually know if the type is a message type. It could be // an enum. proto->clear_type(); } if (!message_type()->is_unqualified_placeholder_) { proto->set_type_name("."); } proto->mutable_type_name()->append(message_type()->full_name()); } else if (cpp_type() == CPPTYPE_ENUM) { if (!enum_type()->is_unqualified_placeholder_) { proto->set_type_name("."); } proto->mutable_type_name()->append(enum_type()->full_name()); } if (has_default_value()) { proto->set_default_value(DefaultValueAsString(false)); } if (containing_oneof() != nullptr && !is_extension()) { proto->set_oneof_index(containing_oneof()->index()); } if (&options() != &FieldOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void FieldDescriptor::CopyJsonNameTo(FieldDescriptorProto* proto) const { proto->set_json_name(json_name()); } void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const { proto->set_name(name()); if (&options() != &OneofOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < value_count(); i++) { value(i)->CopyTo(proto->add_value()); } for (int i = 0; i < reserved_range_count(); i++) { EnumDescriptorProto::EnumReservedRange* range = proto->add_reserved_range(); range->set_start(reserved_range(i)->start); range->set_end(reserved_range(i)->end); } for (int i = 0; i < reserved_name_count(); i++) { proto->add_reserved_name(reserved_name(i)); } if (&options() != &EnumOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const { proto->set_name(name()); proto->set_number(number()); if (&options() != &EnumValueOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < method_count(); i++) { method(i)->CopyTo(proto->add_method()); } if (&options() != &ServiceOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const { proto->set_name(name()); if (!input_type()->is_unqualified_placeholder_) { proto->set_input_type("."); } proto->mutable_input_type()->append(input_type()->full_name()); if (!output_type()->is_unqualified_placeholder_) { proto->set_output_type("."); } proto->mutable_output_type()->append(output_type()->full_name()); if (&options() != &MethodOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } if (client_streaming_) { proto->set_client_streaming(true); } if (server_streaming_) { proto->set_server_streaming(true); } } // DebugString methods =============================================== namespace { bool RetrieveOptionsAssumingRightPool( int depth, const Message& options, std::vector* option_entries) { option_entries->clear(); const Reflection* reflection = options.GetReflection(); std::vector fields; reflection->ListFields(options, &fields); for (const FieldDescriptor* field : fields) { int count = 1; bool repeated = false; if (field->is_repeated()) { count = reflection->FieldSize(options, field); repeated = true; } for (int j = 0; j < count; j++) { std::string fieldval; if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { std::string tmp; TextFormat::Printer printer; printer.SetExpandAny(true); printer.SetInitialIndentLevel(depth + 1); printer.PrintFieldValueToString(options, field, repeated ? j : -1, &tmp); fieldval.append("{\n"); fieldval.append(tmp); fieldval.append(depth * 2, ' '); fieldval.append("}"); } else { TextFormat::PrintFieldValueToString(options, field, repeated ? j : -1, &fieldval); } std::string name; if (field->is_extension()) { name = "(." + field->full_name() + ")"; } else { name = field->name(); } option_entries->push_back(name + " = " + fieldval); } } return !option_entries->empty(); } // Used by each of the option formatters. bool RetrieveOptions(int depth, const Message& options, const DescriptorPool* pool, std::vector* option_entries) { // When printing custom options for a descriptor, we must use an options // message built on top of the same DescriptorPool where the descriptor // is coming from. This is to ensure we are interpreting custom options // against the right pool. if (options.GetDescriptor()->file()->pool() == pool) { return RetrieveOptionsAssumingRightPool(depth, options, option_entries); } else { const Descriptor* option_descriptor = pool->FindMessageTypeByName(options.GetDescriptor()->full_name()); if (option_descriptor == nullptr) { // descriptor.proto is not in the pool. This means no custom options are // used so we are safe to proceed with the compiled options message type. return RetrieveOptionsAssumingRightPool(depth, options, option_entries); } DynamicMessageFactory factory; std::unique_ptr dynamic_options( factory.GetPrototype(option_descriptor)->New()); std::string serialized = options.SerializeAsString(); io::CodedInputStream input( reinterpret_cast(serialized.c_str()), serialized.size()); input.SetExtensionRegistry(pool, &factory); if (dynamic_options->ParseFromCodedStream(&input)) { return RetrieveOptionsAssumingRightPool(depth, *dynamic_options, option_entries); } else { GOOGLE_LOG(ERROR) << "Found invalid proto option data for: " << options.GetDescriptor()->full_name(); return RetrieveOptionsAssumingRightPool(depth, options, option_entries); } } } // Formats options that all appear together in brackets. Does not include // brackets. bool FormatBracketedOptions(int depth, const Message& options, const DescriptorPool* pool, std::string* output) { std::vector all_options; if (RetrieveOptions(depth, options, pool, &all_options)) { output->append(Join(all_options, ", ")); } return !all_options.empty(); } // Formats options one per line bool FormatLineOptions(int depth, const Message& options, const DescriptorPool* pool, std::string* output) { std::string prefix(depth * 2, ' '); std::vector all_options; if (RetrieveOptions(depth, options, pool, &all_options)) { for (const std::string& option : all_options) { strings::SubstituteAndAppend(output, "$0option $1;\n", prefix, option); } } return !all_options.empty(); } class SourceLocationCommentPrinter { public: template SourceLocationCommentPrinter(const DescType* desc, const std::string& prefix, const DebugStringOptions& options) : options_(options), prefix_(prefix) { // Perform the SourceLocation lookup only if we're including user comments, // because the lookup is fairly expensive. have_source_loc_ = options.include_comments && desc->GetSourceLocation(&source_loc_); } SourceLocationCommentPrinter(const FileDescriptor* file, const std::vector& path, const std::string& prefix, const DebugStringOptions& options) : options_(options), prefix_(prefix) { // Perform the SourceLocation lookup only if we're including user comments, // because the lookup is fairly expensive. have_source_loc_ = options.include_comments && file->GetSourceLocation(path, &source_loc_); } void AddPreComment(std::string* output) { if (have_source_loc_) { // Detached leading comments. for (const std::string& leading_detached_comment : source_loc_.leading_detached_comments) { *output += FormatComment(leading_detached_comment); *output += "\n"; } // Attached leading comments. if (!source_loc_.leading_comments.empty()) { *output += FormatComment(source_loc_.leading_comments); } } } void AddPostComment(std::string* output) { if (have_source_loc_ && source_loc_.trailing_comments.size() > 0) { *output += FormatComment(source_loc_.trailing_comments); } } // Format comment such that each line becomes a full-line C++-style comment in // the DebugString() output. std::string FormatComment(const std::string& comment_text) { std::string stripped_comment = comment_text; StripWhitespace(&stripped_comment); std::vector lines = Split(stripped_comment, "\n"); std::string output; for (const std::string& line : lines) { strings::SubstituteAndAppend(&output, "$0// $1\n", prefix_, line); } return output; } private: bool have_source_loc_; SourceLocation source_loc_; DebugStringOptions options_; std::string prefix_; }; } // anonymous namespace std::string FileDescriptor::DebugString() const { DebugStringOptions options; // default options return DebugStringWithOptions(options); } std::string FileDescriptor::DebugStringWithOptions( const DebugStringOptions& debug_string_options) const { std::string contents; { std::vector path; path.push_back(FileDescriptorProto::kSyntaxFieldNumber); SourceLocationCommentPrinter syntax_comment(this, path, "", debug_string_options); syntax_comment.AddPreComment(&contents); strings::SubstituteAndAppend(&contents, "syntax = \"$0\";\n\n", SyntaxName(syntax())); syntax_comment.AddPostComment(&contents); } SourceLocationCommentPrinter comment_printer(this, "", debug_string_options); comment_printer.AddPreComment(&contents); std::set public_dependencies; std::set weak_dependencies; public_dependencies.insert(public_dependencies_, public_dependencies_ + public_dependency_count_); weak_dependencies.insert(weak_dependencies_, weak_dependencies_ + weak_dependency_count_); for (int i = 0; i < dependency_count(); i++) { if (public_dependencies.count(i) > 0) { strings::SubstituteAndAppend(&contents, "import public \"$0\";\n", dependency(i)->name()); } else if (weak_dependencies.count(i) > 0) { strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n", dependency(i)->name()); } else { strings::SubstituteAndAppend(&contents, "import \"$0\";\n", dependency(i)->name()); } } if (!package().empty()) { std::vector path; path.push_back(FileDescriptorProto::kPackageFieldNumber); SourceLocationCommentPrinter package_comment(this, path, "", debug_string_options); package_comment.AddPreComment(&contents); strings::SubstituteAndAppend(&contents, "package $0;\n\n", package()); package_comment.AddPostComment(&contents); } if (FormatLineOptions(0, options(), pool(), &contents)) { contents.append("\n"); // add some space if we had options } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->DebugString(0, &contents, debug_string_options); contents.append("\n"); } // Find all the 'group' type extensions; we will not output their nested // definitions (those will be done with their group field descriptor). std::set groups; for (int i = 0; i < extension_count(); i++) { if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(extension(i)->message_type()); } } for (int i = 0; i < message_type_count(); i++) { if (groups.count(message_type(i)) == 0) { message_type(i)->DebugString(0, &contents, debug_string_options, /* include_opening_clause */ true); contents.append("\n"); } } for (int i = 0; i < service_count(); i++) { service(i)->DebugString(&contents, debug_string_options); contents.append("\n"); } const Descriptor* containing_type = nullptr; for (int i = 0; i < extension_count(); i++) { if (extension(i)->containing_type() != containing_type) { if (i > 0) contents.append("}\n\n"); containing_type = extension(i)->containing_type(); strings::SubstituteAndAppend(&contents, "extend .$0 {\n", containing_type->full_name()); } extension(i)->DebugString(1, &contents, debug_string_options); } if (extension_count() > 0) contents.append("}\n\n"); comment_printer.AddPostComment(&contents); return contents; } std::string Descriptor::DebugString() const { DebugStringOptions options; // default options return DebugStringWithOptions(options); } std::string Descriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(0, &contents, options, /* include_opening_clause */ true); return contents; } void Descriptor::DebugString(int depth, std::string* contents, const DebugStringOptions& debug_string_options, bool include_opening_clause) const { if (options().map_entry()) { // Do not generate debug string for auto-generated map-entry type. return; } std::string prefix(depth * 2, ' '); ++depth; SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); if (include_opening_clause) { strings::SubstituteAndAppend(contents, "$0message $1", prefix, name()); } contents->append(" {\n"); FormatLineOptions(depth, options(), file()->pool(), contents); // Find all the 'group' types for fields and extensions; we will not output // their nested definitions (those will be done with their group field // descriptor). std::set groups; for (int i = 0; i < field_count(); i++) { if (field(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(field(i)->message_type()); } } for (int i = 0; i < extension_count(); i++) { if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(extension(i)->message_type()); } } for (int i = 0; i < nested_type_count(); i++) { if (groups.count(nested_type(i)) == 0) { nested_type(i)->DebugString(depth, contents, debug_string_options, /* include_opening_clause */ true); } } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->DebugString(depth, contents, debug_string_options); } for (int i = 0; i < field_count(); i++) { if (field(i)->real_containing_oneof() == nullptr) { field(i)->DebugString(depth, contents, debug_string_options); } else if (field(i)->containing_oneof()->field(0) == field(i)) { // This is the first field in this oneof, so print the whole oneof. field(i)->containing_oneof()->DebugString(depth, contents, debug_string_options); } } for (int i = 0; i < extension_range_count(); i++) { strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n", prefix, extension_range(i)->start, extension_range(i)->end - 1); } // Group extensions by what they extend, so they can be printed out together. const Descriptor* containing_type = nullptr; for (int i = 0; i < extension_count(); i++) { if (extension(i)->containing_type() != containing_type) { if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix); containing_type = extension(i)->containing_type(); strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n", prefix, containing_type->full_name()); } extension(i)->DebugString(depth + 1, contents, debug_string_options); } if (extension_count() > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix); if (reserved_range_count() > 0) { strings::SubstituteAndAppend(contents, "$0 reserved ", prefix); for (int i = 0; i < reserved_range_count(); i++) { const Descriptor::ReservedRange* range = reserved_range(i); if (range->end == range->start + 1) { strings::SubstituteAndAppend(contents, "$0, ", range->start); } else if (range->end > FieldDescriptor::kMaxNumber) { strings::SubstituteAndAppend(contents, "$0 to max, ", range->start); } else { strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start, range->end - 1); } } contents->replace(contents->size() - 2, 2, ";\n"); } if (reserved_name_count() > 0) { strings::SubstituteAndAppend(contents, "$0 reserved ", prefix); for (int i = 0; i < reserved_name_count(); i++) { strings::SubstituteAndAppend(contents, "\"$0\", ", CEscape(reserved_name(i))); } contents->replace(contents->size() - 2, 2, ";\n"); } strings::SubstituteAndAppend(contents, "$0}\n", prefix); comment_printer.AddPostComment(contents); } std::string FieldDescriptor::DebugString() const { DebugStringOptions options; // default options return DebugStringWithOptions(options); } std::string FieldDescriptor::DebugStringWithOptions( const DebugStringOptions& debug_string_options) const { std::string contents; int depth = 0; if (is_extension()) { strings::SubstituteAndAppend(&contents, "extend .$0 {\n", containing_type()->full_name()); depth = 1; } DebugString(depth, &contents, debug_string_options); if (is_extension()) { contents.append("}\n"); } return contents; } // The field type string used in FieldDescriptor::DebugString() std::string FieldDescriptor::FieldTypeNameDebugString() const { switch (type()) { case TYPE_MESSAGE: return "." + message_type()->full_name(); case TYPE_ENUM: return "." + enum_type()->full_name(); default: return kTypeToName[type()]; } } void FieldDescriptor::DebugString( int depth, std::string* contents, const DebugStringOptions& debug_string_options) const { std::string prefix(depth * 2, ' '); std::string field_type; // Special case map fields. if (is_map()) { strings::SubstituteAndAppend( &field_type, "map<$0, $1>", message_type()->field(0)->FieldTypeNameDebugString(), message_type()->field(1)->FieldTypeNameDebugString()); } else { field_type = FieldTypeNameDebugString(); } std::string label = StrCat(kLabelToName[this->label()], " "); // Label is omitted for maps, oneof, and plain proto3 fields. if (is_map() || real_containing_oneof() || (is_optional() && !has_optional_keyword())) { label.clear(); } SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend( contents, "$0$1$2 $3 = $4", prefix, label, field_type, type() == TYPE_GROUP ? message_type()->name() : name(), number()); bool bracketed = false; if (has_default_value()) { bracketed = true; strings::SubstituteAndAppend(contents, " [default = $0", DefaultValueAsString(true)); } if (has_json_name_) { if (!bracketed) { bracketed = true; contents->append(" ["); } else { contents->append(", "); } contents->append("json_name = \""); contents->append(CEscape(json_name())); contents->append("\""); } std::string formatted_options; if (FormatBracketedOptions(depth, options(), file()->pool(), &formatted_options)) { contents->append(bracketed ? ", " : " ["); bracketed = true; contents->append(formatted_options); } if (bracketed) { contents->append("]"); } if (type() == TYPE_GROUP) { if (debug_string_options.elide_group_body) { contents->append(" { ... };\n"); } else { message_type()->DebugString(depth, contents, debug_string_options, /* include_opening_clause */ false); } } else { contents->append(";\n"); } comment_printer.AddPostComment(contents); } std::string OneofDescriptor::DebugString() const { DebugStringOptions options; // default values return DebugStringWithOptions(options); } std::string OneofDescriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(0, &contents, options); return contents; } void OneofDescriptor::DebugString( int depth, std::string* contents, const DebugStringOptions& debug_string_options) const { std::string prefix(depth * 2, ' '); ++depth; SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend(contents, "$0oneof $1 {", prefix, name()); FormatLineOptions(depth, options(), containing_type()->file()->pool(), contents); if (debug_string_options.elide_oneof_body) { contents->append(" ... }\n"); } else { contents->append("\n"); for (int i = 0; i < field_count(); i++) { field(i)->DebugString(depth, contents, debug_string_options); } strings::SubstituteAndAppend(contents, "$0}\n", prefix); } comment_printer.AddPostComment(contents); } std::string EnumDescriptor::DebugString() const { DebugStringOptions options; // default values return DebugStringWithOptions(options); } std::string EnumDescriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(0, &contents, options); return contents; } void EnumDescriptor::DebugString( int depth, std::string* contents, const DebugStringOptions& debug_string_options) const { std::string prefix(depth * 2, ' '); ++depth; SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend(contents, "$0enum $1 {\n", prefix, name()); FormatLineOptions(depth, options(), file()->pool(), contents); for (int i = 0; i < value_count(); i++) { value(i)->DebugString(depth, contents, debug_string_options); } if (reserved_range_count() > 0) { strings::SubstituteAndAppend(contents, "$0 reserved ", prefix); for (int i = 0; i < reserved_range_count(); i++) { const EnumDescriptor::ReservedRange* range = reserved_range(i); if (range->end == range->start) { strings::SubstituteAndAppend(contents, "$0, ", range->start); } else if (range->end == INT_MAX) { strings::SubstituteAndAppend(contents, "$0 to max, ", range->start); } else { strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start, range->end); } } contents->replace(contents->size() - 2, 2, ";\n"); } if (reserved_name_count() > 0) { strings::SubstituteAndAppend(contents, "$0 reserved ", prefix); for (int i = 0; i < reserved_name_count(); i++) { strings::SubstituteAndAppend(contents, "\"$0\", ", CEscape(reserved_name(i))); } contents->replace(contents->size() - 2, 2, ";\n"); } strings::SubstituteAndAppend(contents, "$0}\n", prefix); comment_printer.AddPostComment(contents); } std::string EnumValueDescriptor::DebugString() const { DebugStringOptions options; // default values return DebugStringWithOptions(options); } std::string EnumValueDescriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(0, &contents, options); return contents; } void EnumValueDescriptor::DebugString( int depth, std::string* contents, const DebugStringOptions& debug_string_options) const { std::string prefix(depth * 2, ' '); SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend(contents, "$0$1 = $2", prefix, name(), number()); std::string formatted_options; if (FormatBracketedOptions(depth, options(), type()->file()->pool(), &formatted_options)) { strings::SubstituteAndAppend(contents, " [$0]", formatted_options); } contents->append(";\n"); comment_printer.AddPostComment(contents); } std::string ServiceDescriptor::DebugString() const { DebugStringOptions options; // default values return DebugStringWithOptions(options); } std::string ServiceDescriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(&contents, options); return contents; } void ServiceDescriptor::DebugString( std::string* contents, const DebugStringOptions& debug_string_options) const { SourceLocationCommentPrinter comment_printer(this, /* prefix */ "", debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend(contents, "service $0 {\n", name()); FormatLineOptions(1, options(), file()->pool(), contents); for (int i = 0; i < method_count(); i++) { method(i)->DebugString(1, contents, debug_string_options); } contents->append("}\n"); comment_printer.AddPostComment(contents); } std::string MethodDescriptor::DebugString() const { DebugStringOptions options; // default values return DebugStringWithOptions(options); } std::string MethodDescriptor::DebugStringWithOptions( const DebugStringOptions& options) const { std::string contents; DebugString(0, &contents, options); return contents; } void MethodDescriptor::DebugString( int depth, std::string* contents, const DebugStringOptions& debug_string_options) const { std::string prefix(depth * 2, ' '); ++depth; SourceLocationCommentPrinter comment_printer(this, prefix, debug_string_options); comment_printer.AddPreComment(contents); strings::SubstituteAndAppend( contents, "$0rpc $1($4.$2) returns ($5.$3)", prefix, name(), input_type()->full_name(), output_type()->full_name(), client_streaming() ? "stream " : "", server_streaming() ? "stream " : ""); std::string formatted_options; if (FormatLineOptions(depth, options(), service()->file()->pool(), &formatted_options)) { strings::SubstituteAndAppend(contents, " {\n$0$1}\n", formatted_options, prefix); } else { contents->append(";\n"); } comment_printer.AddPostComment(contents); } // Location methods =============================================== bool FileDescriptor::GetSourceLocation(const std::vector& path, SourceLocation* out_location) const { GOOGLE_CHECK(out_location != nullptr); if (source_code_info_) { if (const SourceCodeInfo_Location* loc = tables_->GetSourceLocation(path, source_code_info_)) { const RepeatedField& span = loc->span(); if (span.size() == 3 || span.size() == 4) { out_location->start_line = span.Get(0); out_location->start_column = span.Get(1); out_location->end_line = span.Get(span.size() == 3 ? 0 : 2); out_location->end_column = span.Get(span.size() - 1); out_location->leading_comments = loc->leading_comments(); out_location->trailing_comments = loc->trailing_comments(); out_location->leading_detached_comments.assign( loc->leading_detached_comments().begin(), loc->leading_detached_comments().end()); return true; } } } return false; } bool FileDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; // empty path for root FileDescriptor return GetSourceLocation(path, out_location); } bool FieldDescriptor::is_packed() const { if (!is_packable()) return false; if (file_->syntax() == FileDescriptor::SYNTAX_PROTO2) { return (options_ != nullptr) && options_->packed(); } else { return options_ == nullptr || !options_->has_packed() || options_->packed(); } } bool Descriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return file()->GetSourceLocation(path, out_location); } bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return file()->GetSourceLocation(path, out_location); } bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return containing_type()->file()->GetSourceLocation(path, out_location); } bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return file()->GetSourceLocation(path, out_location); } bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return service()->file()->GetSourceLocation(path, out_location); } bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return file()->GetSourceLocation(path, out_location); } bool EnumValueDescriptor::GetSourceLocation( SourceLocation* out_location) const { std::vector path; GetLocationPath(&path); return type()->file()->GetSourceLocation(path, out_location); } void Descriptor::GetLocationPath(std::vector* output) const { if (containing_type()) { containing_type()->GetLocationPath(output); output->push_back(DescriptorProto::kNestedTypeFieldNumber); output->push_back(index()); } else { output->push_back(FileDescriptorProto::kMessageTypeFieldNumber); output->push_back(index()); } } void FieldDescriptor::GetLocationPath(std::vector* output) const { if (is_extension()) { if (extension_scope() == nullptr) { output->push_back(FileDescriptorProto::kExtensionFieldNumber); output->push_back(index()); } else { extension_scope()->GetLocationPath(output); output->push_back(DescriptorProto::kExtensionFieldNumber); output->push_back(index()); } } else { containing_type()->GetLocationPath(output); output->push_back(DescriptorProto::kFieldFieldNumber); output->push_back(index()); } } void OneofDescriptor::GetLocationPath(std::vector* output) const { containing_type()->GetLocationPath(output); output->push_back(DescriptorProto::kOneofDeclFieldNumber); output->push_back(index()); } void EnumDescriptor::GetLocationPath(std::vector* output) const { if (containing_type()) { containing_type()->GetLocationPath(output); output->push_back(DescriptorProto::kEnumTypeFieldNumber); output->push_back(index()); } else { output->push_back(FileDescriptorProto::kEnumTypeFieldNumber); output->push_back(index()); } } void EnumValueDescriptor::GetLocationPath(std::vector* output) const { type()->GetLocationPath(output); output->push_back(EnumDescriptorProto::kValueFieldNumber); output->push_back(index()); } void ServiceDescriptor::GetLocationPath(std::vector* output) const { output->push_back(FileDescriptorProto::kServiceFieldNumber); output->push_back(index()); } void MethodDescriptor::GetLocationPath(std::vector* output) const { service()->GetLocationPath(output); output->push_back(ServiceDescriptorProto::kMethodFieldNumber); output->push_back(index()); } // =================================================================== namespace { // Represents an options message to interpret. Extension names in the option // name are resolved relative to name_scope. element_name and orig_opt are // used only for error reporting (since the parser records locations against // pointers in the original options, not the mutable copy). The Message must be // one of the Options messages in descriptor.proto. struct OptionsToInterpret { OptionsToInterpret(const std::string& ns, const std::string& el, const std::vector& path, const Message* orig_opt, Message* opt) : name_scope(ns), element_name(el), element_path(path), original_options(orig_opt), options(opt) {} std::string name_scope; std::string element_name; std::vector element_path; const Message* original_options; Message* options; }; } // namespace class DescriptorBuilder { public: DescriptorBuilder(const DescriptorPool* pool, DescriptorPool::Tables* tables, DescriptorPool::ErrorCollector* error_collector); ~DescriptorBuilder(); const FileDescriptor* BuildFile(const FileDescriptorProto& proto); private: friend class OptionInterpreter; // Non-recursive part of BuildFile functionality. FileDescriptor* BuildFileImpl(const FileDescriptorProto& proto); const DescriptorPool* pool_; DescriptorPool::Tables* tables_; // for convenience DescriptorPool::ErrorCollector* error_collector_; // As we build descriptors we store copies of the options messages in // them. We put pointers to those copies in this vector, as we build, so we // can later (after cross-linking) interpret those options. std::vector options_to_interpret_; bool had_errors_; std::string filename_; FileDescriptor* file_; FileDescriptorTables* file_tables_; std::set dependencies_; // unused_dependency_ is used to record the unused imported files. // Note: public import is not considered. std::set unused_dependency_; // If LookupSymbol() finds a symbol that is in a file which is not a declared // dependency of this file, it will fail, but will set // possible_undeclared_dependency_ to point at that file. This is only used // by AddNotDefinedError() to report a more useful error message. // possible_undeclared_dependency_name_ is the name of the symbol that was // actually found in possible_undeclared_dependency_, which may be a parent // of the symbol actually looked for. const FileDescriptor* possible_undeclared_dependency_; std::string possible_undeclared_dependency_name_; // If LookupSymbol() could resolve a symbol which is not defined, // record the resolved name. This is only used by AddNotDefinedError() // to report a more useful error message. std::string undefine_resolved_name_; void AddError(const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& error); void AddError(const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const char* error); void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here); void AddTwiceListedError(const FileDescriptorProto& proto, int index); void AddImportError(const FileDescriptorProto& proto, int index); // Adds an error indicating that undefined_symbol was not defined. Must // only be called after LookupSymbol() fails. void AddNotDefinedError( const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& undefined_symbol); void AddWarning(const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& error); // Silly helper which determines if the given file is in the given package. // I.e., either file->package() == package_name or file->package() is a // nested package within package_name. bool IsInPackage(const FileDescriptor* file, const std::string& package_name); // Helper function which finds all public dependencies of the given file, and // stores the them in the dependencies_ set in the builder. void RecordPublicDependencies(const FileDescriptor* file); // Like tables_->FindSymbol(), but additionally: // - Search the pool's underlay if not found in tables_. // - Insure that the resulting Symbol is from one of the file's declared // dependencies. Symbol FindSymbol(const std::string& name, bool build_it = true); // Like FindSymbol() but does not require that the symbol is in one of the // file's declared dependencies. Symbol FindSymbolNotEnforcingDeps(const std::string& name, bool build_it = true); // This implements the body of FindSymbolNotEnforcingDeps(). Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool, const std::string& name, bool build_it = true); // Like FindSymbol(), but looks up the name relative to some other symbol // name. This first searches siblings of relative_to, then siblings of its // parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes // the following calls, returning the first non-null result: // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"), // FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called // on the DescriptorPool, this will generate a placeholder type if // the name is not found (unless the name itself is malformed). The // placeholder_type parameter indicates what kind of placeholder should be // constructed in this case. The resolve_mode parameter determines whether // any symbol is returned, or only symbols that are types. Note, however, // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode, // if it believes that's all it could refer to. The caller should always // check that it receives the type of symbol it was expecting. enum ResolveMode { LOOKUP_ALL, LOOKUP_TYPES }; Symbol LookupSymbol(const std::string& name, const std::string& relative_to, DescriptorPool::PlaceholderType placeholder_type = DescriptorPool::PLACEHOLDER_MESSAGE, ResolveMode resolve_mode = LOOKUP_ALL, bool build_it = true); // Like LookupSymbol() but will not return a placeholder even if // AllowUnknownDependencies() has been used. Symbol LookupSymbolNoPlaceholder(const std::string& name, const std::string& relative_to, ResolveMode resolve_mode = LOOKUP_ALL, bool build_it = true); // Calls tables_->AddSymbol() and records an error if it fails. Returns // true if successful or false if failed, though most callers can ignore // the return value since an error has already been recorded. bool AddSymbol(const std::string& full_name, const void* parent, const std::string& name, const Message& proto, Symbol symbol); // Like AddSymbol(), but succeeds if the symbol is already defined as long // as the existing definition is also a package (because it's OK to define // the same package in two different files). Also adds all parents of the // package to the symbol table (e.g. AddPackage("foo.bar", ...) will add // "foo.bar" and "foo" to the table). void AddPackage(const std::string& name, const Message& proto, FileDescriptor* file); // Checks that the symbol name contains only alphanumeric characters and // underscores. Records an error otherwise. void ValidateSymbolName(const std::string& name, const std::string& full_name, const Message& proto); // Used by BUILD_ARRAY macro (below) to avoid having to have the type // specified as a macro parameter. template inline void AllocateArray(int size, Type** output) { *output = tables_->AllocateArray(size); } // Allocates a copy of orig_options in tables_ and stores it in the // descriptor. Remembers its uninterpreted options, to be interpreted // later. DescriptorT must be one of the Descriptor messages from // descriptor.proto. template void AllocateOptions(const typename DescriptorT::OptionsType& orig_options, DescriptorT* descriptor, int options_field_tag, const std::string& option_name); // Specialization for FileOptions. void AllocateOptions(const FileOptions& orig_options, FileDescriptor* descriptor); // Implementation for AllocateOptions(). Don't call this directly. template void AllocateOptionsImpl( const std::string& name_scope, const std::string& element_name, const typename DescriptorT::OptionsType& orig_options, DescriptorT* descriptor, const std::vector& options_path, const std::string& option_name); // Allocates an array of two strings, the first one is a copy of `proto_name`, // and the second one is the full name. // Full proto name is "scope.proto_name" if scope is non-empty and // "proto_name" otherwise. const std::string* AllocateNameStrings(const std::string& scope, const std::string& proto_name); // These methods all have the same signature for the sake of the BUILD_ARRAY // macro, below. void BuildMessage(const DescriptorProto& proto, const Descriptor* parent, Descriptor* result); void BuildFieldOrExtension(const FieldDescriptorProto& proto, Descriptor* parent, FieldDescriptor* result, bool is_extension); void BuildField(const FieldDescriptorProto& proto, Descriptor* parent, FieldDescriptor* result) { BuildFieldOrExtension(proto, parent, result, false); } void BuildExtension(const FieldDescriptorProto& proto, Descriptor* parent, FieldDescriptor* result) { BuildFieldOrExtension(proto, parent, result, true); } void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto, const Descriptor* parent, Descriptor::ExtensionRange* result); void BuildReservedRange(const DescriptorProto::ReservedRange& proto, const Descriptor* parent, Descriptor::ReservedRange* result); void BuildReservedRange(const EnumDescriptorProto::EnumReservedRange& proto, const EnumDescriptor* parent, EnumDescriptor::ReservedRange* result); void BuildOneof(const OneofDescriptorProto& proto, Descriptor* parent, OneofDescriptor* result); void CheckEnumValueUniqueness(const EnumDescriptorProto& proto, const EnumDescriptor* result); void BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent, EnumDescriptor* result); void BuildEnumValue(const EnumValueDescriptorProto& proto, const EnumDescriptor* parent, EnumValueDescriptor* result); void BuildService(const ServiceDescriptorProto& proto, const void* dummy, ServiceDescriptor* result); void BuildMethod(const MethodDescriptorProto& proto, const ServiceDescriptor* parent, MethodDescriptor* result); void LogUnusedDependency(const FileDescriptorProto& proto, const FileDescriptor* result); // Must be run only after building. // // NOTE: Options will not be available during cross-linking, as they // have not yet been interpreted. Defer any handling of options to the // Validate*Options methods. void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto); void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto); void CrossLinkField(FieldDescriptor* field, const FieldDescriptorProto& proto); void CrossLinkExtensionRange(Descriptor::ExtensionRange* range, const DescriptorProto::ExtensionRange& proto); void CrossLinkEnum(EnumDescriptor* enum_type, const EnumDescriptorProto& proto); void CrossLinkEnumValue(EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto); void CrossLinkService(ServiceDescriptor* service, const ServiceDescriptorProto& proto); void CrossLinkMethod(MethodDescriptor* method, const MethodDescriptorProto& proto); // Must be run only after cross-linking. void InterpretOptions(); // A helper class for interpreting options. class OptionInterpreter { public: // Creates an interpreter that operates in the context of the pool of the // specified builder, which must not be nullptr. We don't take ownership of // the builder. explicit OptionInterpreter(DescriptorBuilder* builder); ~OptionInterpreter(); // Interprets the uninterpreted options in the specified Options message. // On error, calls AddError() on the underlying builder and returns false. // Otherwise returns true. bool InterpretOptions(OptionsToInterpret* options_to_interpret); // Updates the given source code info by re-writing uninterpreted option // locations to refer to the corresponding interpreted option. void UpdateSourceCodeInfo(SourceCodeInfo* info); class AggregateOptionFinder; private: // Interprets uninterpreted_option_ on the specified message, which // must be the mutable copy of the original options message to which // uninterpreted_option_ belongs. The given src_path is the source // location path to the uninterpreted option, and options_path is the // source location path to the options message. The location paths are // recorded and then used in UpdateSourceCodeInfo. bool InterpretSingleOption(Message* options, const std::vector& src_path, const std::vector& options_path); // Adds the uninterpreted_option to the given options message verbatim. // Used when AllowUnknownDependencies() is in effect and we can't find // the option's definition. void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option, Message* options); // A recursive helper function that drills into the intermediate fields // in unknown_fields to check if field innermost_field is set on the // innermost message. Returns false and sets an error if so. bool ExamineIfOptionIsSet( std::vector::const_iterator intermediate_fields_iter, std::vector::const_iterator intermediate_fields_end, const FieldDescriptor* innermost_field, const std::string& debug_msg_name, const UnknownFieldSet& unknown_fields); // Validates the value for the option field of the currently interpreted // option and then sets it on the unknown_field. bool SetOptionValue(const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields); // Parses an aggregate value for a CPPTYPE_MESSAGE option and // saves it into *unknown_fields. bool SetAggregateOption(const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields); // Convenience functions to set an int field the right way, depending on // its wire type (a single int CppType can represent multiple wire types). void SetInt32(int number, int32_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields); void SetInt64(int number, int64_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields); void SetUInt32(int number, uint32_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields); void SetUInt64(int number, uint64_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields); // A helper function that adds an error at the specified location of the // option we're currently interpreting, and returns false. bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& msg) { builder_->AddError(options_to_interpret_->element_name, *uninterpreted_option_, location, msg); return false; } // A helper function that adds an error at the location of the option name // and returns false. bool AddNameError(const std::string& msg) { #ifdef PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_ return true; #else // PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_ return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg); #endif // PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_ } // A helper function that adds an error at the location of the option name // and returns false. bool AddValueError(const std::string& msg) { return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg); } // We interpret against this builder's pool. Is never nullptr. We don't own // this pointer. DescriptorBuilder* builder_; // The options we're currently interpreting, or nullptr if we're not in a // call to InterpretOptions. const OptionsToInterpret* options_to_interpret_; // The option we're currently interpreting within options_to_interpret_, or // nullptr if we're not in a call to InterpretOptions(). This points to a // submessage of the original option, not the mutable copy. Therefore we // can use it to find locations recorded by the parser. const UninterpretedOption* uninterpreted_option_; // This maps the element path of uninterpreted options to the element path // of the resulting interpreted option. This is used to modify a file's // source code info to account for option interpretation. std::map, std::vector> interpreted_paths_; // This maps the path to a repeated option field to the known number of // elements the field contains. This is used to track the compute the // index portion of the element path when interpreting a single option. std::map, int> repeated_option_counts_; // Factory used to create the dynamic messages we need to parse // any aggregate option values we encounter. DynamicMessageFactory dynamic_factory_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter); }; // Work-around for broken compilers: According to the C++ standard, // OptionInterpreter should have access to the private members of any class // which has declared DescriptorBuilder as a friend. Unfortunately some old // versions of GCC and other compilers do not implement this correctly. So, // we have to have these intermediate methods to provide access. We also // redundantly declare OptionInterpreter a friend just to make things extra // clear for these bad compilers. friend class OptionInterpreter; friend class OptionInterpreter::AggregateOptionFinder; static inline bool get_allow_unknown(const DescriptorPool* pool) { return pool->allow_unknown_; } static inline bool get_enforce_weak(const DescriptorPool* pool) { return pool->enforce_weak_; } static inline bool get_is_placeholder(const Descriptor* descriptor) { return descriptor != nullptr && descriptor->is_placeholder_; } static inline void assert_mutex_held(const DescriptorPool* pool) { if (pool->mutex_ != nullptr) { pool->mutex_->AssertHeld(); } } // Must be run only after options have been interpreted. // // NOTE: Validation code must only reference the options in the mutable // descriptors, which are the ones that have been interpreted. The const // proto references are passed in only so they can be provided to calls to // AddError(). Do not look at their options, which have not been interpreted. void ValidateFileOptions(FileDescriptor* file, const FileDescriptorProto& proto); void ValidateMessageOptions(Descriptor* message, const DescriptorProto& proto); void ValidateFieldOptions(FieldDescriptor* field, const FieldDescriptorProto& proto); void ValidateEnumOptions(EnumDescriptor* enm, const EnumDescriptorProto& proto); void ValidateEnumValueOptions(EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto); void ValidateExtensionRangeOptions( const std::string& full_name, Descriptor::ExtensionRange* extension_range, const DescriptorProto_ExtensionRange& proto); void ValidateServiceOptions(ServiceDescriptor* service, const ServiceDescriptorProto& proto); void ValidateMethodOptions(MethodDescriptor* method, const MethodDescriptorProto& proto); void ValidateProto3(FileDescriptor* file, const FileDescriptorProto& proto); void ValidateProto3Message(Descriptor* message, const DescriptorProto& proto); void ValidateProto3Field(FieldDescriptor* field, const FieldDescriptorProto& proto); void ValidateProto3Enum(EnumDescriptor* enm, const EnumDescriptorProto& proto); // Returns true if the map entry message is compatible with the // auto-generated entry message from map fields syntax. bool ValidateMapEntry(FieldDescriptor* field, const FieldDescriptorProto& proto); // Recursively detects naming conflicts with map entry types for a // better error message. void DetectMapConflicts(const Descriptor* message, const DescriptorProto& proto); void ValidateJSType(FieldDescriptor* field, const FieldDescriptorProto& proto); }; const FileDescriptor* DescriptorPool::BuildFile( const FileDescriptorProto& proto) { GOOGLE_CHECK(fallback_database_ == nullptr) << "Cannot call BuildFile on a DescriptorPool that uses a " "DescriptorDatabase. You must instead find a way to get your file " "into the underlying database."; GOOGLE_CHECK(mutex_ == nullptr); // Implied by the above GOOGLE_CHECK. tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); return DescriptorBuilder(this, tables_.get(), nullptr).BuildFile(proto); } const FileDescriptor* DescriptorPool::BuildFileCollectingErrors( const FileDescriptorProto& proto, ErrorCollector* error_collector) { GOOGLE_CHECK(fallback_database_ == nullptr) << "Cannot call BuildFile on a DescriptorPool that uses a " "DescriptorDatabase. You must instead find a way to get your file " "into the underlying database."; GOOGLE_CHECK(mutex_ == nullptr); // Implied by the above GOOGLE_CHECK. tables_->known_bad_symbols_.clear(); tables_->known_bad_files_.clear(); return DescriptorBuilder(this, tables_.get(), error_collector) .BuildFile(proto); } const FileDescriptor* DescriptorPool::BuildFileFromDatabase( const FileDescriptorProto& proto) const { mutex_->AssertHeld(); if (tables_->known_bad_files_.count(proto.name()) > 0) { return nullptr; } const FileDescriptor* result = DescriptorBuilder(this, tables_.get(), default_error_collector_) .BuildFile(proto); if (result == nullptr) { tables_->known_bad_files_.insert(proto.name()); } return result; } DescriptorBuilder::DescriptorBuilder( const DescriptorPool* pool, DescriptorPool::Tables* tables, DescriptorPool::ErrorCollector* error_collector) : pool_(pool), tables_(tables), error_collector_(error_collector), had_errors_(false), possible_undeclared_dependency_(nullptr), undefine_resolved_name_("") {} DescriptorBuilder::~DescriptorBuilder() {} void DescriptorBuilder::AddError( const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& error) { if (error_collector_ == nullptr) { if (!had_errors_) { GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_ << "\":"; } GOOGLE_LOG(ERROR) << " " << element_name << ": " << error; } else { error_collector_->AddError(filename_, element_name, &descriptor, location, error); } had_errors_ = true; } void DescriptorBuilder::AddError( const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const char* error) { AddError(element_name, descriptor, location, std::string(error)); } void DescriptorBuilder::AddNotDefinedError( const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& undefined_symbol) { if (possible_undeclared_dependency_ == nullptr && undefine_resolved_name_.empty()) { AddError(element_name, descriptor, location, "\"" + undefined_symbol + "\" is not defined."); } else { if (possible_undeclared_dependency_ != nullptr) { AddError(element_name, descriptor, location, "\"" + possible_undeclared_dependency_name_ + "\" seems to be defined in \"" + possible_undeclared_dependency_->name() + "\", which is not " "imported by \"" + filename_ + "\". To use it here, please " "add the necessary import."); } if (!undefine_resolved_name_.empty()) { AddError(element_name, descriptor, location, "\"" + undefined_symbol + "\" is resolved to \"" + undefine_resolved_name_ + "\", which is not defined. " "The innermost scope is searched first in name resolution. " "Consider using a leading '.'(i.e., \"." + undefined_symbol + "\") to start from the outermost scope."); } } } void DescriptorBuilder::AddWarning( const std::string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const std::string& error) { if (error_collector_ == nullptr) { GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error; } else { error_collector_->AddWarning(filename_, element_name, &descriptor, location, error); } } bool DescriptorBuilder::IsInPackage(const FileDescriptor* file, const std::string& package_name) { return HasPrefixString(file->package(), package_name) && (file->package().size() == package_name.size() || file->package()[package_name.size()] == '.'); } void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) { if (file == nullptr || !dependencies_.insert(file).second) return; for (int i = 0; file != nullptr && i < file->public_dependency_count(); i++) { RecordPublicDependencies(file->public_dependency(i)); } } Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper( const DescriptorPool* pool, const std::string& name, bool build_it) { // If we are looking at an underlay, we must lock its mutex_, since we are // accessing the underlay's tables_ directly. MutexLockMaybe lock((pool == pool_) ? nullptr : pool->mutex_); Symbol result = pool->tables_->FindSymbol(name); if (result.IsNull() && pool->underlay_ != nullptr) { // Symbol not found; check the underlay. result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name); } if (result.IsNull()) { // With lazily_build_dependencies_, a symbol lookup at cross link time is // not guaranteed to be successful. In most cases, build_it will be false, // which intentionally prevents us from building an import until it's // actually needed. In some cases, like registering an extension, we want // to build the file containing the symbol, and build_it will be set. // Also, build_it will be true when !lazily_build_dependencies_, to provide // better error reporting of missing dependencies. if (build_it && pool->TryFindSymbolInFallbackDatabase(name)) { result = pool->tables_->FindSymbol(name); } } return result; } Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const std::string& name, bool build_it) { Symbol result = FindSymbolNotEnforcingDepsHelper(pool_, name, build_it); // Only find symbols which were defined in this file or one of its // dependencies. const FileDescriptor* file = result.GetFile(); if (file == file_ || dependencies_.count(file) > 0) { unused_dependency_.erase(file); } return result; } Symbol DescriptorBuilder::FindSymbol(const std::string& name, bool build_it) { Symbol result = FindSymbolNotEnforcingDeps(name, build_it); if (result.IsNull()) return result; if (!pool_->enforce_dependencies_) { // Hack for CompilerUpgrader, and also used for lazily_build_dependencies_ return result; } // Only find symbols which were defined in this file or one of its // dependencies. const FileDescriptor* file = result.GetFile(); if (file == file_ || dependencies_.count(file) > 0) { return result; } if (result.type() == Symbol::PACKAGE) { // Arg, this is overcomplicated. The symbol is a package name. It could // be that the package was defined in multiple files. result.GetFile() // returns the first file we saw that used this package. We've determined // that that file is not a direct dependency of the file we are currently // building, but it could be that some other file which *is* a direct // dependency also defines the same package. We can't really rule out this // symbol unless none of the dependencies define it. if (IsInPackage(file_, name)) return result; for (std::set::const_iterator it = dependencies_.begin(); it != dependencies_.end(); ++it) { // Note: A dependency may be nullptr if it was not found or had errors. if (*it != nullptr && IsInPackage(*it, name)) return result; } } possible_undeclared_dependency_ = file; possible_undeclared_dependency_name_ = name; return kNullSymbol; } Symbol DescriptorBuilder::LookupSymbolNoPlaceholder( const std::string& name, const std::string& relative_to, ResolveMode resolve_mode, bool build_it) { possible_undeclared_dependency_ = nullptr; undefine_resolved_name_.clear(); if (!name.empty() && name[0] == '.') { // Fully-qualified name. return FindSymbol(name.substr(1), build_it); } // If name is something like "Foo.Bar.baz", and symbols named "Foo" are // defined in multiple parent scopes, we only want to find "Bar.baz" in the // innermost one. E.g., the following should produce an error: // message Bar { message Baz {} } // message Foo { // message Bar { // } // optional Bar.Baz baz = 1; // } // So, we look for just "Foo" first, then look for "Bar.baz" within it if // found. std::string::size_type name_dot_pos = name.find_first_of('.'); std::string first_part_of_name; if (name_dot_pos == std::string::npos) { first_part_of_name = name; } else { first_part_of_name = name.substr(0, name_dot_pos); } std::string scope_to_try(relative_to); while (true) { // Chop off the last component of the scope. std::string::size_type dot_pos = scope_to_try.find_last_of('.'); if (dot_pos == std::string::npos) { return FindSymbol(name, build_it); } else { scope_to_try.erase(dot_pos); } // Append ".first_part_of_name" and try to find. std::string::size_type old_size = scope_to_try.size(); scope_to_try.append(1, '.'); scope_to_try.append(first_part_of_name); Symbol result = FindSymbol(scope_to_try, build_it); if (!result.IsNull()) { if (first_part_of_name.size() < name.size()) { // name is a compound symbol, of which we only found the first part. // Now try to look up the rest of it. if (result.IsAggregate()) { scope_to_try.append(name, first_part_of_name.size(), name.size() - first_part_of_name.size()); result = FindSymbol(scope_to_try, build_it); if (result.IsNull()) { undefine_resolved_name_ = scope_to_try; } return result; } else { // We found a symbol but it's not an aggregate. Continue the loop. } } else { if (resolve_mode == LOOKUP_TYPES && !result.IsType()) { // We found a symbol but it's not a type. Continue the loop. } else { return result; } } } // Not found. Remove the name so we can try again. scope_to_try.erase(old_size); } } Symbol DescriptorBuilder::LookupSymbol( const std::string& name, const std::string& relative_to, DescriptorPool::PlaceholderType placeholder_type, ResolveMode resolve_mode, bool build_it) { Symbol result = LookupSymbolNoPlaceholder(name, relative_to, resolve_mode, build_it); if (result.IsNull() && pool_->allow_unknown_) { // Not found, but AllowUnknownDependencies() is enabled. Return a // placeholder instead. result = pool_->NewPlaceholderWithMutexHeld(name, placeholder_type); } return result; } static bool ValidateQualifiedName(StringPiece name) { bool last_was_period = false; for (char character : name) { // I don't trust isalnum() due to locales. :( if (('a' <= character && character <= 'z') || ('A' <= character && character <= 'Z') || ('0' <= character && character <= '9') || (character == '_')) { last_was_period = false; } else if (character == '.') { if (last_was_period) return false; last_was_period = true; } else { return false; } } return !name.empty() && !last_was_period; } Symbol DescriptorPool::NewPlaceholder(StringPiece name, PlaceholderType placeholder_type) const { MutexLockMaybe lock(mutex_); return NewPlaceholderWithMutexHeld(name, placeholder_type); } Symbol DescriptorPool::NewPlaceholderWithMutexHeld( StringPiece name, PlaceholderType placeholder_type) const { if (mutex_) { mutex_->AssertHeld(); } // Compute names. StringPiece placeholder_full_name; StringPiece placeholder_name; const std::string* placeholder_package; if (!ValidateQualifiedName(name)) return kNullSymbol; if (name[0] == '.') { // Fully-qualified. placeholder_full_name = name.substr(1); } else { placeholder_full_name = name; } std::string::size_type dotpos = placeholder_full_name.find_last_of('.'); if (dotpos != std::string::npos) { placeholder_package = tables_->AllocateString(placeholder_full_name.substr(0, dotpos)); placeholder_name = placeholder_full_name.substr(dotpos + 1); } else { placeholder_package = &internal::GetEmptyString(); placeholder_name = placeholder_full_name; } // Create the placeholders. FileDescriptor* placeholder_file = NewPlaceholderFileWithMutexHeld( StrCat(placeholder_full_name, ".placeholder.proto")); placeholder_file->package_ = placeholder_package; if (placeholder_type == PLACEHOLDER_ENUM) { placeholder_file->enum_type_count_ = 1; placeholder_file->enum_types_ = tables_->AllocateArray(1); EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0]; memset(static_cast(placeholder_enum), 0, sizeof(*placeholder_enum)); placeholder_enum->all_names_ = tables_->AllocateStringArray(placeholder_name, placeholder_full_name); placeholder_enum->file_ = placeholder_file; placeholder_enum->options_ = &EnumOptions::default_instance(); placeholder_enum->is_placeholder_ = true; placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.'); // Enums must have at least one value. placeholder_enum->value_count_ = 1; placeholder_enum->values_ = tables_->AllocateArray(1); // Disable fast-path lookup for this enum. placeholder_enum->sequential_value_limit_ = -1; EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0]; memset(static_cast(placeholder_value), 0, sizeof(*placeholder_value)); // Note that enum value names are siblings of their type, not children. placeholder_value->all_names_ = tables_->AllocateStringArray( "PLACEHOLDER_VALUE", placeholder_package->empty() ? "PLACEHOLDER_VALUE" : *placeholder_package + ".PLACEHOLDER_VALUE"); placeholder_value->number_ = 0; placeholder_value->type_ = placeholder_enum; placeholder_value->options_ = &EnumValueOptions::default_instance(); return Symbol(placeholder_enum); } else { placeholder_file->message_type_count_ = 1; placeholder_file->message_types_ = tables_->AllocateArray(1); Descriptor* placeholder_message = &placeholder_file->message_types_[0]; memset(static_cast(placeholder_message), 0, sizeof(*placeholder_message)); placeholder_message->all_names_ = tables_->AllocateStringArray(placeholder_name, placeholder_full_name); placeholder_message->file_ = placeholder_file; placeholder_message->options_ = &MessageOptions::default_instance(); placeholder_message->is_placeholder_ = true; placeholder_message->is_unqualified_placeholder_ = (name[0] != '.'); if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) { placeholder_message->extension_range_count_ = 1; placeholder_message->extension_ranges_ = tables_->AllocateArray(1); placeholder_message->extension_ranges_->start = 1; // kMaxNumber + 1 because ExtensionRange::end is exclusive. placeholder_message->extension_ranges_->end = FieldDescriptor::kMaxNumber + 1; placeholder_message->extension_ranges_->options_ = nullptr; } return Symbol(placeholder_message); } } FileDescriptor* DescriptorPool::NewPlaceholderFile( StringPiece name) const { MutexLockMaybe lock(mutex_); return NewPlaceholderFileWithMutexHeld(name); } FileDescriptor* DescriptorPool::NewPlaceholderFileWithMutexHeld( StringPiece name) const { if (mutex_) { mutex_->AssertHeld(); } FileDescriptor* placeholder = tables_->Allocate(); memset(static_cast(placeholder), 0, sizeof(*placeholder)); placeholder->name_ = tables_->AllocateString(name); placeholder->package_ = &internal::GetEmptyString(); placeholder->pool_ = this; placeholder->options_ = &FileOptions::default_instance(); placeholder->tables_ = &FileDescriptorTables::GetEmptyInstance(); placeholder->source_code_info_ = &SourceCodeInfo::default_instance(); placeholder->is_placeholder_ = true; placeholder->syntax_ = FileDescriptor::SYNTAX_UNKNOWN; placeholder->finished_building_ = true; // All other fields are zero or nullptr. return placeholder; } bool DescriptorBuilder::AddSymbol(const std::string& full_name, const void* parent, const std::string& name, const Message& proto, Symbol symbol) { // If the caller passed nullptr for the parent, the symbol is at file scope. // Use its file as the parent instead. if (parent == nullptr) parent = file_; if (full_name.find('\0') != std::string::npos) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name + "\" contains null character."); return false; } if (tables_->AddSymbol(full_name, symbol)) { if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) { // This is only possible if there was already an error adding something of // the same name. if (!had_errors_) { GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in " "symbols_by_name_, but was defined in " "symbols_by_parent_; this shouldn't be possible."; } return false; } return true; } else { const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile(); if (other_file == file_) { std::string::size_type dot_pos = full_name.find_last_of('.'); if (dot_pos == std::string::npos) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name + "\" is already defined."); } else { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name.substr(dot_pos + 1) + "\" is already defined in \"" + full_name.substr(0, dot_pos) + "\"."); } } else { // Symbol seems to have been defined in a different file. AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name + "\" is already defined in file \"" + (other_file == nullptr ? "null" : other_file->name()) + "\"."); } return false; } } void DescriptorBuilder::AddPackage(const std::string& name, const Message& proto, FileDescriptor* file) { if (name.find('\0') != std::string::npos) { AddError(name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + name + "\" contains null character."); return; } Symbol existing_symbol = tables_->FindSymbol(name); // It's OK to redefine a package. if (existing_symbol.IsNull()) { auto* package = tables_->AllocateArray(1); // If the name is the package name, then it is already in the arena. // If not, copy it there. It came from the call to AddPackage below. package->name = &name == &file->package() ? &name : tables_->AllocateString(name); package->file = file; tables_->AddSymbol(*package->name, Symbol(package)); // Also add parent package, if any. std::string::size_type dot_pos = name.find_last_of('.'); if (dot_pos == std::string::npos) { // No parents. ValidateSymbolName(name, name, proto); } else { // Has parent. AddPackage(name.substr(0, dot_pos), proto, file); ValidateSymbolName(name.substr(dot_pos + 1), name, proto); } } else if (existing_symbol.type() != Symbol::PACKAGE) { // Symbol seems to have been defined in a different file. AddError(name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + name + "\" is already defined (as something other than " "a package) in file \"" + existing_symbol.GetFile()->name() + "\"."); } } void DescriptorBuilder::ValidateSymbolName(const std::string& name, const std::string& full_name, const Message& proto) { if (name.empty()) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "Missing name."); } else { for (char character : name) { // I don't trust isalnum() due to locales. :( if ((character < 'a' || 'z' < character) && (character < 'A' || 'Z' < character) && (character < '0' || '9' < character) && (character != '_')) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + name + "\" is not a valid identifier."); } } } } // ------------------------------------------------------------------- // This generic implementation is good for all descriptors except // FileDescriptor. template void DescriptorBuilder::AllocateOptions( const typename DescriptorT::OptionsType& orig_options, DescriptorT* descriptor, int options_field_tag, const std::string& option_name) { std::vector options_path; descriptor->GetLocationPath(&options_path); options_path.push_back(options_field_tag); AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(), orig_options, descriptor, options_path, option_name); } // We specialize for FileDescriptor. void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options, FileDescriptor* descriptor) { std::vector options_path; options_path.push_back(FileDescriptorProto::kOptionsFieldNumber); // We add the dummy token so that LookupSymbol does the right thing. AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(), orig_options, descriptor, options_path, "google.protobuf.FileOptions"); } template void DescriptorBuilder::AllocateOptionsImpl( const std::string& name_scope, const std::string& element_name, const typename DescriptorT::OptionsType& orig_options, DescriptorT* descriptor, const std::vector& options_path, const std::string& option_name) { // We need to use a dummy pointer to work around a bug in older versions of // GCC. Otherwise, the following two lines could be replaced with: // typename DescriptorT::OptionsType* options = // tables_->AllocateMessage(); typename DescriptorT::OptionsType* const dummy = nullptr; typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy); if (!orig_options.IsInitialized()) { AddError(name_scope + "." + element_name, orig_options, DescriptorPool::ErrorCollector::OPTION_NAME, "Uninterpreted option is missing name or value."); return; } // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the // reflection based method, which requires the Descriptor. However, we are in // the middle of building the descriptors, thus the deadlock. options->ParseFromString(orig_options.SerializeAsString()); descriptor->options_ = options; // Don't add to options_to_interpret_ unless there were uninterpreted // options. This not only avoids unnecessary work, but prevents a // bootstrapping problem when building descriptors for descriptor.proto. // descriptor.proto does not contain any uninterpreted options, but // attempting to interpret options anyway will cause // OptionsType::GetDescriptor() to be called which may then deadlock since // we're still trying to build it. if (options->uninterpreted_option_size() > 0) { options_to_interpret_.push_back(OptionsToInterpret( name_scope, element_name, options_path, &orig_options, options)); } // If the custom option is in unknown fields, no need to interpret it. // Remove the dependency file from unused_dependency. const UnknownFieldSet& unknown_fields = orig_options.unknown_fields(); if (!unknown_fields.empty()) { // Can not use options->GetDescriptor() which may case deadlock. Symbol msg_symbol = tables_->FindSymbol(option_name); if (msg_symbol.type() == Symbol::MESSAGE) { for (int i = 0; i < unknown_fields.field_count(); ++i) { assert_mutex_held(pool_); const FieldDescriptor* field = pool_->InternalFindExtensionByNumberNoLock( msg_symbol.descriptor(), unknown_fields.field(i).number()); if (field) { unused_dependency_.erase(field->file()); } } } } } // A common pattern: We want to convert a repeated field in the descriptor // to an array of values, calling some method to build each value. #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \ OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \ AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \ for (int i = 0; i < INPUT.NAME##_size(); i++) { \ METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \ } void DescriptorBuilder::AddRecursiveImportError( const FileDescriptorProto& proto, int from_here) { std::string error_message("File recursively imports itself: "); for (size_t i = from_here; i < tables_->pending_files_.size(); i++) { error_message.append(tables_->pending_files_[i]); error_message.append(" -> "); } error_message.append(proto.name()); if (static_cast(from_here) < tables_->pending_files_.size() - 1) { AddError(tables_->pending_files_[from_here + 1], proto, DescriptorPool::ErrorCollector::IMPORT, error_message); } else { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::IMPORT, error_message); } } void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto, int index) { AddError(proto.dependency(index), proto, DescriptorPool::ErrorCollector::IMPORT, "Import \"" + proto.dependency(index) + "\" was listed twice."); } void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto, int index) { std::string message; if (pool_->fallback_database_ == nullptr) { message = "Import \"" + proto.dependency(index) + "\" has not been loaded."; } else { message = "Import \"" + proto.dependency(index) + "\" was not found or had errors."; } AddError(proto.dependency(index), proto, DescriptorPool::ErrorCollector::IMPORT, message); } static bool ExistingFileMatchesProto(const FileDescriptor* existing_file, const FileDescriptorProto& proto) { FileDescriptorProto existing_proto; existing_file->CopyTo(&existing_proto); // TODO(liujisi): Remove it when CopyTo supports copying syntax params when // syntax="proto2". if (existing_file->syntax() == FileDescriptor::SYNTAX_PROTO2 && proto.has_syntax()) { existing_proto.set_syntax( existing_file->SyntaxName(existing_file->syntax())); } return existing_proto.SerializeAsString() == proto.SerializeAsString(); } const FileDescriptor* DescriptorBuilder::BuildFile( const FileDescriptorProto& proto) { filename_ = proto.name(); // Check if the file already exists and is identical to the one being built. // Note: This only works if the input is canonical -- that is, it // fully-qualifies all type names, has no UninterpretedOptions, etc. // This is fine, because this idempotency "feature" really only exists to // accommodate one hack in the proto1->proto2 migration layer. const FileDescriptor* existing_file = tables_->FindFile(filename_); if (existing_file != nullptr) { // File already in pool. Compare the existing one to the input. if (ExistingFileMatchesProto(existing_file, proto)) { // They're identical. Return the existing descriptor. return existing_file; } // Not a match. The error will be detected and handled later. } // Check to see if this file is already on the pending files list. // TODO(kenton): Allow recursive imports? It may not work with some // (most?) programming languages. E.g., in C++, a forward declaration // of a type is not sufficient to allow it to be used even in a // generated header file due to inlining. This could perhaps be // worked around using tricks involving inserting #include statements // mid-file, but that's pretty ugly, and I'm pretty sure there are // some languages out there that do not allow recursive dependencies // at all. for (size_t i = 0; i < tables_->pending_files_.size(); i++) { if (tables_->pending_files_[i] == proto.name()) { AddRecursiveImportError(proto, i); return nullptr; } } // If we have a fallback_database_, and we aren't doing lazy import building, // attempt to load all dependencies now, before checkpointing tables_. This // avoids confusion with recursive checkpoints. if (!pool_->lazily_build_dependencies_) { if (pool_->fallback_database_ != nullptr) { tables_->pending_files_.push_back(proto.name()); for (int i = 0; i < proto.dependency_size(); i++) { if (tables_->FindFile(proto.dependency(i)) == nullptr && (pool_->underlay_ == nullptr || pool_->underlay_->FindFileByName(proto.dependency(i)) == nullptr)) { // We don't care what this returns since we'll find out below anyway. pool_->TryFindFileInFallbackDatabase(proto.dependency(i)); } } tables_->pending_files_.pop_back(); } } // Checkpoint the tables so that we can roll back if something goes wrong. tables_->AddCheckpoint(); FileDescriptor* result = BuildFileImpl(proto); file_tables_->FinalizeTables(); if (result) { tables_->ClearLastCheckpoint(); result->finished_building_ = true; } else { tables_->RollbackToLastCheckpoint(); } return result; } FileDescriptor* DescriptorBuilder::BuildFileImpl( const FileDescriptorProto& proto) { FileDescriptor* result = tables_->Allocate(); file_ = result; result->is_placeholder_ = false; result->finished_building_ = false; SourceCodeInfo* info = nullptr; if (proto.has_source_code_info()) { info = tables_->AllocateMessage(); info->CopyFrom(proto.source_code_info()); result->source_code_info_ = info; } else { result->source_code_info_ = &SourceCodeInfo::default_instance(); } file_tables_ = tables_->AllocateFileTables(); file_->tables_ = file_tables_; if (!proto.has_name()) { AddError("", proto, DescriptorPool::ErrorCollector::OTHER, "Missing field: FileDescriptorProto.name."); } // TODO(liujisi): Report error when the syntax is empty after all the protos // have added the syntax statement. if (proto.syntax().empty() || proto.syntax() == "proto2") { file_->syntax_ = FileDescriptor::SYNTAX_PROTO2; } else if (proto.syntax() == "proto3") { file_->syntax_ = FileDescriptor::SYNTAX_PROTO3; } else { file_->syntax_ = FileDescriptor::SYNTAX_UNKNOWN; AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "Unrecognized syntax: " + proto.syntax()); } result->name_ = tables_->AllocateString(proto.name()); if (proto.has_package()) { result->package_ = tables_->AllocateString(proto.package()); } else { // We cannot rely on proto.package() returning a valid string if // proto.has_package() is false, because we might be running at static // initialization time, in which case default values have not yet been // initialized. result->package_ = tables_->AllocateString(""); } result->pool_ = pool_; if (result->name().find('\0') != std::string::npos) { AddError(result->name(), proto, DescriptorPool::ErrorCollector::NAME, "\"" + result->name() + "\" contains null character."); return nullptr; } // Add to tables. if (!tables_->AddFile(result)) { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "A file with this name is already in the pool."); // Bail out early so that if this is actually the exact same file, we // don't end up reporting that every single symbol is already defined. return nullptr; } if (!result->package().empty()) { AddPackage(result->package(), proto, result); } // Make sure all dependencies are loaded. std::set seen_dependencies; result->dependency_count_ = proto.dependency_size(); result->dependencies_ = tables_->AllocateArray(proto.dependency_size()); result->dependencies_once_ = nullptr; unused_dependency_.clear(); std::set weak_deps; for (int i = 0; i < proto.weak_dependency_size(); ++i) { weak_deps.insert(proto.weak_dependency(i)); } for (int i = 0; i < proto.dependency_size(); i++) { if (!seen_dependencies.insert(proto.dependency(i)).second) { AddTwiceListedError(proto, i); } const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i)); if (dependency == nullptr && pool_->underlay_ != nullptr) { dependency = pool_->underlay_->FindFileByName(proto.dependency(i)); } if (dependency == result) { // Recursive import. dependency/result is not fully initialized, and it's // dangerous to try to do anything with it. The recursive import error // will be detected and reported in DescriptorBuilder::BuildFile(). return nullptr; } if (dependency == nullptr) { if (!pool_->lazily_build_dependencies_) { if (pool_->allow_unknown_ || (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) { dependency = pool_->NewPlaceholderFileWithMutexHeld(proto.dependency(i)); } else { AddImportError(proto, i); } } } else { // Add to unused_dependency_ to track unused imported files. // Note: do not track unused imported files for public import. if (pool_->enforce_dependencies_ && (pool_->unused_import_track_files_.find(proto.name()) != pool_->unused_import_track_files_.end()) && (dependency->public_dependency_count() == 0)) { unused_dependency_.insert(dependency); } } result->dependencies_[i] = dependency; if (pool_->lazily_build_dependencies_ && !dependency) { if (result->dependencies_once_ == nullptr) { result->dependencies_once_ = tables_->Create(); result->dependencies_once_->dependencies_names = tables_->AllocateArray(proto.dependency_size()); if (proto.dependency_size() > 0) { std::fill_n(result->dependencies_once_->dependencies_names, proto.dependency_size(), nullptr); } } result->dependencies_once_->dependencies_names[i] = tables_->Strdup(proto.dependency(i)); } } // Check public dependencies. int public_dependency_count = 0; result->public_dependencies_ = tables_->AllocateArray(proto.public_dependency_size()); for (int i = 0; i < proto.public_dependency_size(); i++) { // Only put valid public dependency indexes. int index = proto.public_dependency(i); if (index >= 0 && index < proto.dependency_size()) { result->public_dependencies_[public_dependency_count++] = index; // Do not track unused imported files for public import. // Calling dependency(i) builds that file when doing lazy imports, // need to avoid doing this. Unused dependency detection isn't done // when building lazily, anyways. if (!pool_->lazily_build_dependencies_) { unused_dependency_.erase(result->dependency(index)); } } else { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "Invalid public dependency index."); } } result->public_dependency_count_ = public_dependency_count; // Build dependency set dependencies_.clear(); // We don't/can't do proper dependency error checking when // lazily_build_dependencies_, and calling dependency(i) will force // a dependency to be built, which we don't want. if (!pool_->lazily_build_dependencies_) { for (int i = 0; i < result->dependency_count(); i++) { RecordPublicDependencies(result->dependency(i)); } } // Check weak dependencies. int weak_dependency_count = 0; result->weak_dependencies_ = tables_->AllocateArray(proto.weak_dependency_size()); for (int i = 0; i < proto.weak_dependency_size(); i++) { int index = proto.weak_dependency(i); if (index >= 0 && index < proto.dependency_size()) { result->weak_dependencies_[weak_dependency_count++] = index; } else { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "Invalid weak dependency index."); } } result->weak_dependency_count_ = weak_dependency_count; // Convert children. BUILD_ARRAY(proto, result, message_type, BuildMessage, nullptr); BUILD_ARRAY(proto, result, enum_type, BuildEnum, nullptr); BUILD_ARRAY(proto, result, service, BuildService, nullptr); BUILD_ARRAY(proto, result, extension, BuildExtension, nullptr); // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result); } // Note that the following steps must occur in exactly the specified order. // Cross-link. CrossLinkFile(result, proto); // Interpret any remaining uninterpreted options gathered into // options_to_interpret_ during descriptor building. Cross-linking has made // extension options known, so all interpretations should now succeed. if (!had_errors_) { OptionInterpreter option_interpreter(this); for (std::vector::iterator iter = options_to_interpret_.begin(); iter != options_to_interpret_.end(); ++iter) { option_interpreter.InterpretOptions(&(*iter)); } options_to_interpret_.clear(); if (info != nullptr) { option_interpreter.UpdateSourceCodeInfo(info); } } // Validate options. See comments at InternalSetLazilyBuildDependencies about // error checking and lazy import building. if (!had_errors_ && !pool_->lazily_build_dependencies_) { ValidateFileOptions(result, proto); } // Additional naming conflict check for map entry types. Only need to check // this if there are already errors. if (had_errors_) { for (int i = 0; i < proto.message_type_size(); ++i) { DetectMapConflicts(result->message_type(i), proto.message_type(i)); } } // Again, see comments at InternalSetLazilyBuildDependencies about error // checking. Also, don't log unused dependencies if there were previous // errors, since the results might be inaccurate. if (!had_errors_ && !unused_dependency_.empty() && !pool_->lazily_build_dependencies_) { LogUnusedDependency(proto, result); } if (had_errors_) { return nullptr; } else { return result; } } const std::string* DescriptorBuilder::AllocateNameStrings( const std::string& scope, const std::string& proto_name) { if (scope.empty()) { return tables_->AllocateStringArray(proto_name, proto_name); } else { return tables_->AllocateStringArray(proto_name, StrCat(scope, ".", proto_name)); } } void DescriptorBuilder::BuildMessage(const DescriptorProto& proto, const Descriptor* parent, Descriptor* result) { const std::string& scope = (parent == nullptr) ? file_->package() : parent->full_name(); result->all_names_ = AllocateNameStrings(scope, proto.name()); ValidateSymbolName(proto.name(), result->full_name(), proto); result->file_ = file_; result->containing_type_ = parent; result->is_placeholder_ = false; result->is_unqualified_placeholder_ = false; result->well_known_type_ = Descriptor::WELLKNOWNTYPE_UNSPECIFIED; auto it = pool_->tables_->well_known_types_.find(result->full_name()); if (it != pool_->tables_->well_known_types_.end()) { result->well_known_type_ = it->second; } // Calculate the continuous sequence of fields. // These can be fast-path'd during lookup and don't need to be added to the // tables. // We use uint16_t to save space for sequential_field_limit_, so stop before // overflowing it. Worst case, we are not taking full advantage on huge // messages, but it is unlikely. result->sequential_field_limit_ = 0; for (int i = 0; i < std::numeric_limits::max() && i < proto.field_size() && proto.field(i).number() == i + 1; ++i) { result->sequential_field_limit_ = i + 1; } // Build oneofs first so that fields and extension ranges can refer to them. BUILD_ARRAY(proto, result, oneof_decl, BuildOneof, result); BUILD_ARRAY(proto, result, field, BuildField, result); BUILD_ARRAY(proto, result, nested_type, BuildMessage, result); BUILD_ARRAY(proto, result, enum_type, BuildEnum, result); BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result); BUILD_ARRAY(proto, result, extension, BuildExtension, result); BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result); // Copy reserved names. int reserved_name_count = proto.reserved_name_size(); result->reserved_name_count_ = reserved_name_count; result->reserved_names_ = tables_->AllocateArray(reserved_name_count); for (int i = 0; i < reserved_name_count; ++i) { result->reserved_names_[i] = tables_->AllocateString(proto.reserved_name(i)); } // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, DescriptorProto::kOptionsFieldNumber, "google.protobuf.MessageOptions"); } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); for (int i = 0; i < proto.reserved_range_size(); i++) { const DescriptorProto_ReservedRange& range1 = proto.reserved_range(i); for (int j = i + 1; j < proto.reserved_range_size(); j++) { const DescriptorProto_ReservedRange& range2 = proto.reserved_range(j); if (range1.end() > range2.start() && range2.end() > range1.start()) { AddError(result->full_name(), proto.reserved_range(i), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Reserved range $0 to $1 overlaps with " "already-defined range $2 to $3.", range2.start(), range2.end() - 1, range1.start(), range1.end() - 1)); } } } HASH_SET reserved_name_set; for (int i = 0; i < proto.reserved_name_size(); i++) { const std::string& name = proto.reserved_name(i); if (reserved_name_set.find(name) == reserved_name_set.end()) { reserved_name_set.insert(name); } else { AddError(name, proto, DescriptorPool::ErrorCollector::NAME, strings::Substitute("Field name \"$0\" is reserved multiple times.", name)); } } for (int i = 0; i < result->field_count(); i++) { const FieldDescriptor* field = result->field(i); for (int j = 0; j < result->extension_range_count(); j++) { const Descriptor::ExtensionRange* range = result->extension_range(j); if (range->start <= field->number() && field->number() < range->end) { AddError( field->full_name(), proto.extension_range(j), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute( "Extension range $0 to $1 includes field \"$2\" ($3).", range->start, range->end - 1, field->name(), field->number())); } } for (int j = 0; j < result->reserved_range_count(); j++) { const Descriptor::ReservedRange* range = result->reserved_range(j); if (range->start <= field->number() && field->number() < range->end) { AddError(field->full_name(), proto.reserved_range(j), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Field \"$0\" uses reserved number $1.", field->name(), field->number())); } } if (reserved_name_set.find(field->name()) != reserved_name_set.end()) { AddError( field->full_name(), proto.field(i), DescriptorPool::ErrorCollector::NAME, strings::Substitute("Field name \"$0\" is reserved.", field->name())); } } // Check that extension ranges don't overlap and don't include // reserved field numbers or names. for (int i = 0; i < result->extension_range_count(); i++) { const Descriptor::ExtensionRange* range1 = result->extension_range(i); for (int j = 0; j < result->reserved_range_count(); j++) { const Descriptor::ReservedRange* range2 = result->reserved_range(j); if (range1->end > range2->start && range2->end > range1->start) { AddError(result->full_name(), proto.extension_range(i), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension range $0 to $1 overlaps with " "reserved range $2 to $3.", range1->start, range1->end - 1, range2->start, range2->end - 1)); } } for (int j = i + 1; j < result->extension_range_count(); j++) { const Descriptor::ExtensionRange* range2 = result->extension_range(j); if (range1->end > range2->start && range2->end > range1->start) { AddError(result->full_name(), proto.extension_range(i), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension range $0 to $1 overlaps with " "already-defined range $2 to $3.", range2->start, range2->end - 1, range1->start, range1->end - 1)); } } } } void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto, Descriptor* parent, FieldDescriptor* result, bool is_extension) { const std::string& scope = (parent == nullptr) ? file_->package() : parent->full_name(); // We allocate all names in a single array, and dedup them. // We remember the indices for the potentially deduped values. auto all_names = tables_->AllocateFieldNames( proto.name(), scope, proto.has_json_name() ? &proto.json_name() : nullptr); result->all_names_ = all_names.array; result->lowercase_name_index_ = all_names.lowercase_index; result->camelcase_name_index_ = all_names.camelcase_index; result->json_name_index_ = all_names.json_index; ValidateSymbolName(proto.name(), result->full_name(), proto); result->file_ = file_; result->number_ = proto.number(); result->is_extension_ = is_extension; result->is_oneof_ = false; result->proto3_optional_ = proto.proto3_optional(); if (proto.proto3_optional() && file_->syntax() != FileDescriptor::SYNTAX_PROTO3) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "The [proto3_optional=true] option may only be set on proto3" "fields, not " + result->full_name()); } result->has_json_name_ = proto.has_json_name(); // Some compilers do not allow static_cast directly between two enum types, // so we must cast to int first. result->type_ = static_cast( implicit_cast(proto.type())); result->label_ = static_cast( implicit_cast(proto.label())); if (result->label_ == FieldDescriptor::LABEL_REQUIRED) { // An extension cannot have a required field (b/13365836). if (result->is_extension_) { AddError(result->full_name(), proto, // Error location `TYPE`: we would really like to indicate // `LABEL`, but the `ErrorLocation` enum has no entry for this, // and we don't necessarily know about all implementations of the // `ErrorCollector` interface to extend them to handle the new // error location type properly. DescriptorPool::ErrorCollector::TYPE, "The extension " + result->full_name() + " cannot be required."); } } // Some of these may be filled in when cross-linking. result->containing_type_ = nullptr; result->type_once_ = nullptr; result->default_value_enum_ = nullptr; result->has_default_value_ = proto.has_default_value(); if (proto.has_default_value() && result->is_repeated()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Repeated fields can't have default values."); } if (proto.has_type()) { if (proto.has_default_value()) { char* end_pos = nullptr; switch (result->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: result->default_value_int32_t_ = strtol(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_INT64: result->default_value_int64_t_ = strto64(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_UINT32: result->default_value_uint32_t_ = strtoul(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_UINT64: result->default_value_uint64_t_ = strtou64(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_FLOAT: if (proto.default_value() == "inf") { result->default_value_float_ = std::numeric_limits::infinity(); } else if (proto.default_value() == "-inf") { result->default_value_float_ = -std::numeric_limits::infinity(); } else if (proto.default_value() == "nan") { result->default_value_float_ = std::numeric_limits::quiet_NaN(); } else { result->default_value_float_ = io::SafeDoubleToFloat( io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos)); } break; case FieldDescriptor::CPPTYPE_DOUBLE: if (proto.default_value() == "inf") { result->default_value_double_ = std::numeric_limits::infinity(); } else if (proto.default_value() == "-inf") { result->default_value_double_ = -std::numeric_limits::infinity(); } else if (proto.default_value() == "nan") { result->default_value_double_ = std::numeric_limits::quiet_NaN(); } else { result->default_value_double_ = io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos); } break; case FieldDescriptor::CPPTYPE_BOOL: if (proto.default_value() == "true") { result->default_value_bool_ = true; } else if (proto.default_value() == "false") { result->default_value_bool_ = false; } else { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Boolean default must be true or false."); } break; case FieldDescriptor::CPPTYPE_ENUM: // This will be filled in when cross-linking. result->default_value_enum_ = nullptr; break; case FieldDescriptor::CPPTYPE_STRING: if (result->type() == FieldDescriptor::TYPE_BYTES) { result->default_value_string_ = tables_->AllocateString( UnescapeCEscapeString(proto.default_value())); } else { result->default_value_string_ = tables_->AllocateString(proto.default_value()); } break; case FieldDescriptor::CPPTYPE_MESSAGE: AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Messages can't have default values."); result->has_default_value_ = false; result->default_generated_instance_ = nullptr; break; } if (end_pos != nullptr) { // end_pos is only set non-null by the parsers for numeric types, // above. This checks that the default was non-empty and had no extra // junk after the end of the number. if (proto.default_value().empty() || *end_pos != '\0') { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Couldn't parse default value \"" + proto.default_value() + "\"."); } } } else { // No explicit default value switch (result->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: result->default_value_int32_t_ = 0; break; case FieldDescriptor::CPPTYPE_INT64: result->default_value_int64_t_ = 0; break; case FieldDescriptor::CPPTYPE_UINT32: result->default_value_uint32_t_ = 0; break; case FieldDescriptor::CPPTYPE_UINT64: result->default_value_uint64_t_ = 0; break; case FieldDescriptor::CPPTYPE_FLOAT: result->default_value_float_ = 0.0f; break; case FieldDescriptor::CPPTYPE_DOUBLE: result->default_value_double_ = 0.0; break; case FieldDescriptor::CPPTYPE_BOOL: result->default_value_bool_ = false; break; case FieldDescriptor::CPPTYPE_ENUM: // This will be filled in when cross-linking. result->default_value_enum_ = nullptr; break; case FieldDescriptor::CPPTYPE_STRING: result->default_value_string_ = &internal::GetEmptyString(); break; case FieldDescriptor::CPPTYPE_MESSAGE: result->default_generated_instance_ = nullptr; break; } } } if (result->number() <= 0) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Field numbers must be positive integers."); } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) { // Only validate that the number is within the valid field range if it is // not an extension. Since extension numbers are validated with the // extendee's valid set of extension numbers, and those are in turn // validated against the max allowed number, the check is unnecessary for // extension fields. // This avoids cross-linking issues that arise when attempting to check if // the extendee is a message_set_wire_format message, which has a higher max // on extension numbers. AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Field numbers cannot be greater than $0.", FieldDescriptor::kMaxNumber)); } else if (result->number() >= FieldDescriptor::kFirstReservedNumber && result->number() <= FieldDescriptor::kLastReservedNumber) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute( "Field numbers $0 through $1 are reserved for the protocol " "buffer library implementation.", FieldDescriptor::kFirstReservedNumber, FieldDescriptor::kLastReservedNumber)); } if (is_extension) { if (!proto.has_extendee()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "FieldDescriptorProto.extendee not set for extension field."); } result->scope_.extension_scope = parent; if (proto.has_oneof_index()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "FieldDescriptorProto.oneof_index should not be set for " "extensions."); } } else { if (proto.has_extendee()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "FieldDescriptorProto.extendee set for non-extension field."); } result->containing_type_ = parent; if (proto.has_oneof_index()) { if (proto.oneof_index() < 0 || proto.oneof_index() >= parent->oneof_decl_count()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, strings::Substitute("FieldDescriptorProto.oneof_index $0 is " "out of range for type \"$1\".", proto.oneof_index(), parent->name())); } else { result->is_oneof_ = true; result->scope_.containing_oneof = parent->oneof_decl(proto.oneof_index()); } } } // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, FieldDescriptorProto::kOptionsFieldNumber, "google.protobuf.FieldOptions"); } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } void DescriptorBuilder::BuildExtensionRange( const DescriptorProto::ExtensionRange& proto, const Descriptor* parent, Descriptor::ExtensionRange* result) { result->start = proto.start(); result->end = proto.end(); if (result->start <= 0) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Extension numbers must be positive integers."); } // Checking of the upper bound of the extension range is deferred until after // options interpreting. This allows messages with message_set_wire_format to // have extensions beyond FieldDescriptor::kMaxNumber, since the extension // numbers are actually used as int32s in the message_set_wire_format. if (result->start >= result->end) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Extension range end number must be greater than start number."); } result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { std::vector options_path; parent->GetLocationPath(&options_path); options_path.push_back(DescriptorProto::kExtensionRangeFieldNumber); // find index of this extension range in order to compute path int index; for (index = 0; parent->extension_ranges_ + index != result; index++) { } options_path.push_back(index); options_path.push_back(DescriptorProto_ExtensionRange::kOptionsFieldNumber); AllocateOptionsImpl(parent->full_name(), parent->full_name(), proto.options(), result, options_path, "google.protobuf.ExtensionRangeOptions"); } } void DescriptorBuilder::BuildReservedRange( const DescriptorProto::ReservedRange& proto, const Descriptor* parent, Descriptor::ReservedRange* result) { result->start = proto.start(); result->end = proto.end(); if (result->start <= 0) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Reserved numbers must be positive integers."); } } void DescriptorBuilder::BuildReservedRange( const EnumDescriptorProto::EnumReservedRange& proto, const EnumDescriptor* parent, EnumDescriptor::ReservedRange* result) { result->start = proto.start(); result->end = proto.end(); if (result->start > result->end) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Reserved range end number must be greater than start number."); } } void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto, Descriptor* parent, OneofDescriptor* result) { result->all_names_ = AllocateNameStrings(parent->full_name(), proto.name()); ValidateSymbolName(proto.name(), result->full_name(), proto); result->containing_type_ = parent; // We need to fill these in later. result->field_count_ = 0; result->fields_ = nullptr; result->options_ = nullptr; // Copy options. if (proto.has_options()) { AllocateOptions(proto.options(), result, OneofDescriptorProto::kOptionsFieldNumber, "google.protobuf.OneofOptions"); } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } void DescriptorBuilder::CheckEnumValueUniqueness( const EnumDescriptorProto& proto, const EnumDescriptor* result) { // Check that enum labels are still unique when we remove the enum prefix from // values that have it. // // This will fail for something like: // // enum MyEnum { // MY_ENUM_FOO = 0; // FOO = 1; // } // // By enforcing this reasonable constraint, we allow code generators to strip // the prefix and/or PascalCase it without creating conflicts. This can lead // to much nicer language-specific enums like: // // enum NameType { // FirstName = 1, // LastName = 2, // } // // Instead of: // // enum NameType { // NAME_TYPE_FIRST_NAME = 1, // NAME_TYPE_LAST_NAME = 2, // } PrefixRemover remover(result->name()); std::map values; for (int i = 0; i < result->value_count(); i++) { const EnumValueDescriptor* value = result->value(i); std::string stripped = EnumValueToPascalCase(remover.MaybeRemove(value->name())); std::pair::iterator, bool> insert_result = values.insert(std::make_pair(stripped, value)); bool inserted = insert_result.second; // We don't throw the error if the two conflicting symbols are identical, or // if they map to the same number. In the former case, the normal symbol // duplication error will fire so we don't need to (and its error message // will make more sense). We allow the latter case so users can create // aliases which add or remove the prefix (code generators that do prefix // stripping should de-dup the labels in this case). if (!inserted && insert_result.first->second->name() != value->name() && insert_result.first->second->number() != value->number()) { std::string error_message = "Enum name " + value->name() + " has the same name as " + values[stripped]->name() + " if you ignore case and strip out the enum name prefix (if any). " "This is error-prone and can lead to undefined behavior. " "Please avoid doing this. If you are using allow_alias, please " "assign the same numeric value to both enums."; // There are proto2 enums out there with conflicting names, so to preserve // compatibility we issue only a warning for proto2. if (result->file()->syntax() == FileDescriptor::SYNTAX_PROTO2) { AddWarning(value->full_name(), proto.value(i), DescriptorPool::ErrorCollector::NAME, error_message); } else { AddError(value->full_name(), proto.value(i), DescriptorPool::ErrorCollector::NAME, error_message); } } } } void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent, EnumDescriptor* result) { const std::string& scope = (parent == nullptr) ? file_->package() : parent->full_name(); result->all_names_ = AllocateNameStrings(scope, proto.name()); ValidateSymbolName(proto.name(), result->full_name(), proto); result->file_ = file_; result->containing_type_ = parent; result->is_placeholder_ = false; result->is_unqualified_placeholder_ = false; if (proto.value_size() == 0) { // We cannot allow enums with no values because this would mean there // would be no valid default value for fields of this type. AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Enums must contain at least one value."); } // Calculate the continuous sequence of the labels. // These can be fast-path'd during lookup and don't need to be added to the // tables. // We use uint16_t to save space for sequential_value_limit_, so stop before // overflowing it. Worst case, we are not taking full advantage on huge // enums, but it is unlikely. for (int i = 0; i < std::numeric_limits::max() && i < proto.value_size() && // We do the math in int64_t to avoid overflows. proto.value(i).number() == static_cast(i) + proto.value(0).number(); ++i) { result->sequential_value_limit_ = i; } BUILD_ARRAY(proto, result, value, BuildEnumValue, result); BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result); // Copy reserved names. int reserved_name_count = proto.reserved_name_size(); result->reserved_name_count_ = reserved_name_count; result->reserved_names_ = tables_->AllocateArray(reserved_name_count); for (int i = 0; i < reserved_name_count; ++i) { result->reserved_names_[i] = tables_->AllocateString(proto.reserved_name(i)); } CheckEnumValueUniqueness(proto, result); // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, EnumDescriptorProto::kOptionsFieldNumber, "google.protobuf.EnumOptions"); } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); for (int i = 0; i < proto.reserved_range_size(); i++) { const EnumDescriptorProto_EnumReservedRange& range1 = proto.reserved_range(i); for (int j = i + 1; j < proto.reserved_range_size(); j++) { const EnumDescriptorProto_EnumReservedRange& range2 = proto.reserved_range(j); if (range1.end() >= range2.start() && range2.end() >= range1.start()) { AddError(result->full_name(), proto.reserved_range(i), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Reserved range $0 to $1 overlaps with " "already-defined range $2 to $3.", range2.start(), range2.end(), range1.start(), range1.end())); } } } HASH_SET reserved_name_set; for (int i = 0; i < proto.reserved_name_size(); i++) { const std::string& name = proto.reserved_name(i); if (reserved_name_set.find(name) == reserved_name_set.end()) { reserved_name_set.insert(name); } else { AddError(name, proto, DescriptorPool::ErrorCollector::NAME, strings::Substitute("Enum value \"$0\" is reserved multiple times.", name)); } } for (int i = 0; i < result->value_count(); i++) { const EnumValueDescriptor* value = result->value(i); for (int j = 0; j < result->reserved_range_count(); j++) { const EnumDescriptor::ReservedRange* range = result->reserved_range(j); if (range->start <= value->number() && value->number() <= range->end) { AddError(value->full_name(), proto.reserved_range(j), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Enum value \"$0\" uses reserved number $1.", value->name(), value->number())); } } if (reserved_name_set.find(value->name()) != reserved_name_set.end()) { AddError( value->full_name(), proto.value(i), DescriptorPool::ErrorCollector::NAME, strings::Substitute("Enum value \"$0\" is reserved.", value->name())); } } } void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto, const EnumDescriptor* parent, EnumValueDescriptor* result) { // Note: full_name for enum values is a sibling to the parent's name, not a // child of it. std::string full_name; size_t scope_len = parent->full_name().size() - parent->name().size(); full_name.reserve(scope_len + proto.name().size()); full_name.append(parent->full_name().data(), scope_len); full_name.append(proto.name()); result->all_names_ = tables_->AllocateStringArray(proto.name(), std::move(full_name)); result->number_ = proto.number(); result->type_ = parent; ValidateSymbolName(proto.name(), result->full_name(), proto); // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, EnumValueDescriptorProto::kOptionsFieldNumber, "google.protobuf.EnumValueOptions"); } // Again, enum values are weird because we makes them appear as siblings // of the enum type instead of children of it. So, we use // parent->containing_type() as the value's parent. bool added_to_outer_scope = AddSymbol(result->full_name(), parent->containing_type(), result->name(), proto, Symbol::EnumValue(result, 0)); // However, we also want to be able to search for values within a single // enum type, so we add it as a child of the enum type itself, too. // Note: This could fail, but if it does, the error has already been // reported by the above AddSymbol() call, so we ignore the return code. bool added_to_inner_scope = file_tables_->AddAliasUnderParent( parent, result->name(), Symbol::EnumValue(result, 1)); if (added_to_inner_scope && !added_to_outer_scope) { // This value did not conflict with any values defined in the same enum, // but it did conflict with some other symbol defined in the enum type's // scope. Let's print an additional error to explain this. std::string outer_scope; if (parent->containing_type() == nullptr) { outer_scope = file_->package(); } else { outer_scope = parent->containing_type()->full_name(); } if (outer_scope.empty()) { outer_scope = "the global scope"; } else { outer_scope = "\"" + outer_scope + "\""; } AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Note that enum values use C++ scoping rules, meaning that " "enum values are siblings of their type, not children of it. " "Therefore, \"" + result->name() + "\" must be unique within " + outer_scope + ", not just within \"" + parent->name() + "\"."); } // An enum is allowed to define two numbers that refer to the same value. // FindValueByNumber() should return the first such value, so we simply // ignore AddEnumValueByNumber()'s return code. file_tables_->AddEnumValueByNumber(result); } void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto, const void* /* dummy */, ServiceDescriptor* result) { result->all_names_ = AllocateNameStrings(file_->package(), proto.name()); result->file_ = file_; ValidateSymbolName(proto.name(), result->full_name(), proto); BUILD_ARRAY(proto, result, method, BuildMethod, result); // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, ServiceDescriptorProto::kOptionsFieldNumber, "google.protobuf.ServiceOptions"); } AddSymbol(result->full_name(), nullptr, result->name(), proto, Symbol(result)); } void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto, const ServiceDescriptor* parent, MethodDescriptor* result) { result->service_ = parent; result->all_names_ = AllocateNameStrings(parent->full_name(), proto.name()); ValidateSymbolName(proto.name(), result->full_name(), proto); // These will be filled in when cross-linking. result->input_type_.Init(); result->output_type_.Init(); // Copy options. result->options_ = nullptr; // Set to default_instance later if necessary. if (proto.has_options()) { AllocateOptions(proto.options(), result, MethodDescriptorProto::kOptionsFieldNumber, "google.protobuf.MethodOptions"); } result->client_streaming_ = proto.client_streaming(); result->server_streaming_ = proto.server_streaming(); AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } #undef BUILD_ARRAY // ------------------------------------------------------------------- void DescriptorBuilder::CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto) { if (file->options_ == nullptr) { file->options_ = &FileOptions::default_instance(); } for (int i = 0; i < file->message_type_count(); i++) { CrossLinkMessage(&file->message_types_[i], proto.message_type(i)); } for (int i = 0; i < file->extension_count(); i++) { CrossLinkField(&file->extensions_[i], proto.extension(i)); } for (int i = 0; i < file->enum_type_count(); i++) { CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i)); } for (int i = 0; i < file->service_count(); i++) { CrossLinkService(&file->services_[i], proto.service(i)); } } void DescriptorBuilder::CrossLinkMessage(Descriptor* message, const DescriptorProto& proto) { if (message->options_ == nullptr) { message->options_ = &MessageOptions::default_instance(); } for (int i = 0; i < message->nested_type_count(); i++) { CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i)); } for (int i = 0; i < message->enum_type_count(); i++) { CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i)); } for (int i = 0; i < message->field_count(); i++) { CrossLinkField(&message->fields_[i], proto.field(i)); } for (int i = 0; i < message->extension_count(); i++) { CrossLinkField(&message->extensions_[i], proto.extension(i)); } for (int i = 0; i < message->extension_range_count(); i++) { CrossLinkExtensionRange(&message->extension_ranges_[i], proto.extension_range(i)); } // Set up field array for each oneof. // First count the number of fields per oneof. for (int i = 0; i < message->field_count(); i++) { const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof(); if (oneof_decl != nullptr) { // Make sure fields belonging to the same oneof are defined consecutively. // This enables optimizations in codegens and reflection libraries to // skip fields in the oneof group, as only one of the field can be set. // Note that field_count() returns how many fields in this oneof we have // seen so far. field_count() > 0 guarantees that i > 0, so field(i-1) is // safe. if (oneof_decl->field_count() > 0 && message->field(i - 1)->containing_oneof() != oneof_decl) { AddError(message->full_name() + "." + message->field(i - 1)->name(), proto.field(i - 1), DescriptorPool::ErrorCollector::TYPE, strings::Substitute( "Fields in the same oneof must be defined consecutively. " "\"$0\" cannot be defined before the completion of the " "\"$1\" oneof definition.", message->field(i - 1)->name(), oneof_decl->name())); } // Must go through oneof_decls_ array to get a non-const version of the // OneofDescriptor. auto& out_oneof_decl = message->oneof_decls_[oneof_decl->index()]; if (out_oneof_decl.field_count_ == 0) { out_oneof_decl.fields_ = message->field(i); } if (!had_errors_) { // Verify that they are contiguous. // This is assumed by OneofDescriptor::field(i). // But only if there are no errors. GOOGLE_CHECK_EQ(out_oneof_decl.fields_ + out_oneof_decl.field_count_, message->field(i)); } ++out_oneof_decl.field_count_; } } // Then verify the sizes. for (int i = 0; i < message->oneof_decl_count(); i++) { OneofDescriptor* oneof_decl = &message->oneof_decls_[i]; if (oneof_decl->field_count() == 0) { AddError(message->full_name() + "." + oneof_decl->name(), proto.oneof_decl(i), DescriptorPool::ErrorCollector::NAME, "Oneof must have at least one field."); } if (oneof_decl->options_ == nullptr) { oneof_decl->options_ = &OneofOptions::default_instance(); } } for (int i = 0; i < message->field_count(); i++) { const FieldDescriptor* field = message->field(i); if (field->proto3_optional_) { if (!field->containing_oneof() || !field->containing_oneof()->is_synthetic()) { AddError(message->full_name(), proto.field(i), DescriptorPool::ErrorCollector::OTHER, "Fields with proto3_optional set must be " "a member of a one-field oneof"); } } } // Synthetic oneofs must be last. int first_synthetic = -1; for (int i = 0; i < message->oneof_decl_count(); i++) { const OneofDescriptor* oneof = message->oneof_decl(i); if (oneof->is_synthetic()) { if (first_synthetic == -1) { first_synthetic = i; } } else { if (first_synthetic != -1) { AddError(message->full_name(), proto.oneof_decl(i), DescriptorPool::ErrorCollector::OTHER, "Synthetic oneofs must be after all other oneofs"); } } } if (first_synthetic == -1) { message->real_oneof_decl_count_ = message->oneof_decl_count_; } else { message->real_oneof_decl_count_ = first_synthetic; } } void DescriptorBuilder::CrossLinkExtensionRange( Descriptor::ExtensionRange* range, const DescriptorProto::ExtensionRange& /*proto*/) { if (range->options_ == nullptr) { range->options_ = &ExtensionRangeOptions::default_instance(); } } void DescriptorBuilder::CrossLinkField(FieldDescriptor* field, const FieldDescriptorProto& proto) { if (field->options_ == nullptr) { field->options_ = &FieldOptions::default_instance(); } // Add the field to the lowercase-name and camelcase-name tables. file_tables_->AddFieldByStylizedNames(field); if (proto.has_extendee()) { Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(), DescriptorPool::PLACEHOLDER_EXTENDABLE_MESSAGE); if (extendee.IsNull()) { AddNotDefinedError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, proto.extendee()); return; } else if (extendee.type() != Symbol::MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "\"" + proto.extendee() + "\" is not a message type."); return; } field->containing_type_ = extendee.descriptor(); const Descriptor::ExtensionRange* extension_range = field->containing_type()->FindExtensionRangeContainingNumber( field->number()); if (extension_range == nullptr) { // Set of valid extension numbers for MessageSet is different (< 2^32) // from other extendees (< 2^29). If unknown deps are allowed, we may not // have that information, and wrongly deem the extension as invalid. auto skip_check = get_allow_unknown(pool_) && proto.extendee() == "google.protobuf.bridge.MessageSet"; if (!skip_check) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("\"$0\" does not declare $1 as an " "extension number.", field->containing_type()->full_name(), field->number())); } } } if (field->containing_oneof() != nullptr) { if (field->label() != FieldDescriptor::LABEL_OPTIONAL) { // Note that this error will never happen when parsing .proto files. // It can only happen if you manually construct a FileDescriptorProto // that is incorrect. AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Fields of oneofs must themselves have label LABEL_OPTIONAL."); } } if (proto.has_type_name()) { // Assume we are expecting a message type unless the proto contains some // evidence that it expects an enum type. This only makes a difference if // we end up creating a placeholder. bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) || proto.has_default_value(); // In case of weak fields we force building the dependency. We need to know // if the type exist or not. If it doesn't exist we substitute Empty which // should only be done if the type can't be found in the generated pool. // TODO(gerbens) Ideally we should query the database directly to check // if weak fields exist or not so that we don't need to force building // weak dependencies. However the name lookup rules for symbols are // somewhat complicated, so I defer it too another CL. bool is_weak = !pool_->enforce_weak_ && proto.options().weak(); bool is_lazy = pool_->lazily_build_dependencies_ && !is_weak; Symbol type = LookupSymbol(proto.type_name(), field->full_name(), expecting_enum ? DescriptorPool::PLACEHOLDER_ENUM : DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_TYPES, !is_lazy); if (type.IsNull()) { if (is_lazy) { // Save the symbol names for later for lookup, and allocate the once // object needed for the accessors. std::string name = proto.type_name(); field->type_once_ = tables_->Create(); field->type_descriptor_.lazy_type_name = tables_->Strdup(name); field->lazy_default_value_enum_name_ = proto.has_default_value() ? tables_->Strdup(proto.default_value()) : nullptr; // AddFieldByNumber and AddExtension are done later in this function, // and can/must be done if the field type was not found. The related // error checking is not necessary when in lazily_build_dependencies_ // mode, and can't be done without building the type's descriptor, // which we don't want to do. file_tables_->AddFieldByNumber(field); if (field->is_extension()) { tables_->AddExtension(field); } return; } else { // If the type is a weak type, we change the type to a google.protobuf.Empty // field. if (is_weak) { type = FindSymbol(kNonLinkedWeakMessageReplacementName); } if (type.IsNull()) { AddNotDefinedError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, proto.type_name()); return; } } } if (!proto.has_type()) { // Choose field type based on symbol. if (type.type() == Symbol::MESSAGE) { field->type_ = FieldDescriptor::TYPE_MESSAGE; } else if (type.type() == Symbol::ENUM) { field->type_ = FieldDescriptor::TYPE_ENUM; } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not a type."); return; } } if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { field->type_descriptor_.message_type = type.descriptor(); if (field->type_descriptor_.message_type == nullptr) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not a message type."); return; } if (field->has_default_value()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Messages can't have default values."); } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { field->type_descriptor_.enum_type = type.enum_descriptor(); if (field->type_descriptor_.enum_type == nullptr) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not an enum type."); return; } if (field->enum_type()->is_placeholder_) { // We can't look up default values for placeholder types. We'll have // to just drop them. field->has_default_value_ = false; } if (field->has_default_value()) { // Ensure that the default value is an identifier. Parser cannot always // verify this because it does not have complete type information. // N.B. that this check yields better error messages but is not // necessary for correctness (an enum symbol must be a valid identifier // anyway), only for better errors. if (!io::Tokenizer::IsIdentifier(proto.default_value())) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Default value for an enum field must be an identifier."); } else { // We can't just use field->enum_type()->FindValueByName() here // because that locks the pool's mutex, which we have already locked // at this point. const EnumValueDescriptor* default_value = LookupSymbolNoPlaceholder(proto.default_value(), field->enum_type()->full_name()) .enum_value_descriptor(); if (default_value != nullptr && default_value->type() == field->enum_type()) { field->default_value_enum_ = default_value; } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Enum type \"" + field->enum_type()->full_name() + "\" has no value named \"" + proto.default_value() + "\"."); } } } else if (field->enum_type()->value_count() > 0) { // All enums must have at least one value, or we would have reported // an error elsewhere. We use the first defined value as the default // if a default is not explicitly defined. field->default_value_enum_ = field->enum_type()->value(0); } } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Field with primitive type has type_name."); } } else { if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE || field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Field with message or enum type missing type_name."); } } // Add the field to the fields-by-number table. // Note: We have to do this *after* cross-linking because extensions do not // know their containing type until now. If we're in // lazily_build_dependencies_ mode, we're guaranteed there's no errors, so no // risk to calling containing_type() or other accessors that will build // dependencies. if (!file_tables_->AddFieldByNumber(field)) { const FieldDescriptor* conflicting_field = file_tables_->FindFieldByNumber( field->containing_type(), field->number()); std::string containing_type_name = field->containing_type() == nullptr ? "unknown" : field->containing_type()->full_name(); if (field->is_extension()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension number $0 has already been used " "in \"$1\" by extension \"$2\".", field->number(), containing_type_name, conflicting_field->full_name())); } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Field number $0 has already been used in " "\"$1\" by field \"$2\".", field->number(), containing_type_name, conflicting_field->name())); } } else { if (field->is_extension()) { if (!tables_->AddExtension(field)) { const FieldDescriptor* conflicting_field = tables_->FindExtension(field->containing_type(), field->number()); std::string containing_type_name = field->containing_type() == nullptr ? "unknown" : field->containing_type()->full_name(); std::string error_msg = strings::Substitute( "Extension number $0 has already been used in \"$1\" by extension " "\"$2\" defined in $3.", field->number(), containing_type_name, conflicting_field->full_name(), conflicting_field->file()->name()); // Conflicting extension numbers should be an error. However, before // turning this into an error we need to fix all existing broken // protos first. // TODO(xiaofeng): Change this to an error. AddWarning(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, error_msg); } } } } void DescriptorBuilder::CrossLinkEnum(EnumDescriptor* enum_type, const EnumDescriptorProto& proto) { if (enum_type->options_ == nullptr) { enum_type->options_ = &EnumOptions::default_instance(); } for (int i = 0; i < enum_type->value_count(); i++) { CrossLinkEnumValue(&enum_type->values_[i], proto.value(i)); } } void DescriptorBuilder::CrossLinkEnumValue( EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& /* proto */) { if (enum_value->options_ == nullptr) { enum_value->options_ = &EnumValueOptions::default_instance(); } } void DescriptorBuilder::CrossLinkService(ServiceDescriptor* service, const ServiceDescriptorProto& proto) { if (service->options_ == nullptr) { service->options_ = &ServiceOptions::default_instance(); } for (int i = 0; i < service->method_count(); i++) { CrossLinkMethod(&service->methods_[i], proto.method(i)); } } void DescriptorBuilder::CrossLinkMethod(MethodDescriptor* method, const MethodDescriptorProto& proto) { if (method->options_ == nullptr) { method->options_ = &MethodOptions::default_instance(); } Symbol input_type = LookupSymbol(proto.input_type(), method->full_name(), DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL, !pool_->lazily_build_dependencies_); if (input_type.IsNull()) { if (!pool_->lazily_build_dependencies_) { AddNotDefinedError(method->full_name(), proto, DescriptorPool::ErrorCollector::INPUT_TYPE, proto.input_type()); } else { method->input_type_.SetLazy(proto.input_type(), file_); } } else if (input_type.type() != Symbol::MESSAGE) { AddError(method->full_name(), proto, DescriptorPool::ErrorCollector::INPUT_TYPE, "\"" + proto.input_type() + "\" is not a message type."); } else { method->input_type_.Set(input_type.descriptor()); } Symbol output_type = LookupSymbol(proto.output_type(), method->full_name(), DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL, !pool_->lazily_build_dependencies_); if (output_type.IsNull()) { if (!pool_->lazily_build_dependencies_) { AddNotDefinedError(method->full_name(), proto, DescriptorPool::ErrorCollector::OUTPUT_TYPE, proto.output_type()); } else { method->output_type_.SetLazy(proto.output_type(), file_); } } else if (output_type.type() != Symbol::MESSAGE) { AddError(method->full_name(), proto, DescriptorPool::ErrorCollector::OUTPUT_TYPE, "\"" + proto.output_type() + "\" is not a message type."); } else { method->output_type_.Set(output_type.descriptor()); } } // ------------------------------------------------------------------- #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \ for (int i = 0; i < descriptor->array_name##_count(); ++i) { \ Validate##type##Options(descriptor->array_name##s_ + i, \ proto.array_name(i)); \ } // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to // avoid problems that exist at init time. static bool IsLite(const FileDescriptor* file) { // TODO(kenton): I don't even remember how many of these conditions are // actually possible. I'm just being super-safe. return file != nullptr && &file->options() != &FileOptions::default_instance() && file->options().optimize_for() == FileOptions::LITE_RUNTIME; } void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file, const FileDescriptorProto& proto) { VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message); VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum); VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service); VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field); // Lite files can only be imported by other Lite files. if (!IsLite(file)) { for (int i = 0; i < file->dependency_count(); i++) { if (IsLite(file->dependency(i))) { AddError( file->dependency(i)->name(), proto, DescriptorPool::ErrorCollector::IMPORT, "Files that do not use optimize_for = LITE_RUNTIME cannot import " "files which do use this option. This file is not lite, but it " "imports \"" + file->dependency(i)->name() + "\" which is."); break; } } } if (file->syntax() == FileDescriptor::SYNTAX_PROTO3) { ValidateProto3(file, proto); } } void DescriptorBuilder::ValidateProto3(FileDescriptor* file, const FileDescriptorProto& proto) { for (int i = 0; i < file->extension_count(); ++i) { ValidateProto3Field(file->extensions_ + i, proto.extension(i)); } for (int i = 0; i < file->message_type_count(); ++i) { ValidateProto3Message(file->message_types_ + i, proto.message_type(i)); } for (int i = 0; i < file->enum_type_count(); ++i) { ValidateProto3Enum(file->enum_types_ + i, proto.enum_type(i)); } } static std::string ToLowercaseWithoutUnderscores(const std::string& name) { std::string result; for (char character : name) { if (character != '_') { if (character >= 'A' && character <= 'Z') { result.push_back(character - 'A' + 'a'); } else { result.push_back(character); } } } return result; } void DescriptorBuilder::ValidateProto3Message(Descriptor* message, const DescriptorProto& proto) { for (int i = 0; i < message->nested_type_count(); ++i) { ValidateProto3Message(message->nested_types_ + i, proto.nested_type(i)); } for (int i = 0; i < message->enum_type_count(); ++i) { ValidateProto3Enum(message->enum_types_ + i, proto.enum_type(i)); } for (int i = 0; i < message->field_count(); ++i) { ValidateProto3Field(message->fields_ + i, proto.field(i)); } for (int i = 0; i < message->extension_count(); ++i) { ValidateProto3Field(message->extensions_ + i, proto.extension(i)); } if (message->extension_range_count() > 0) { AddError(message->full_name(), proto.extension_range(0), DescriptorPool::ErrorCollector::NUMBER, "Extension ranges are not allowed in proto3."); } if (message->options().message_set_wire_format()) { // Using MessageSet doesn't make sense since we disallow extensions. AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "MessageSet is not supported in proto3."); } // In proto3, we reject field names if they conflict in camelCase. // Note that we currently enforce a stricter rule: Field names must be // unique after being converted to lowercase with underscores removed. std::map name_to_field; for (int i = 0; i < message->field_count(); ++i) { std::string lowercase_name = ToLowercaseWithoutUnderscores(message->field(i)->name()); if (name_to_field.find(lowercase_name) != name_to_field.end()) { AddError(message->full_name(), proto.field(i), DescriptorPool::ErrorCollector::NAME, "The JSON camel-case name of field \"" + message->field(i)->name() + "\" conflicts with field \"" + name_to_field[lowercase_name]->name() + "\". This is not " + "allowed in proto3."); } else { name_to_field[lowercase_name] = message->field(i); } } } void DescriptorBuilder::ValidateProto3Field(FieldDescriptor* field, const FieldDescriptorProto& proto) { if (field->is_extension() && !AllowedExtendeeInProto3(field->containing_type()->full_name())) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "Extensions in proto3 are only allowed for defining options."); } if (field->is_required()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Required fields are not allowed in proto3."); } if (field->has_default_value()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Explicit default values are not allowed in proto3."); } if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM && field->enum_type() && field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_PROTO3 && field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_UNKNOWN) { // Proto3 messages can only use Proto3 enum types; otherwise we can't // guarantee that the default value is zero. AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Enum type \"" + field->enum_type()->full_name() + "\" is not a proto3 enum, but is used in \"" + field->containing_type()->full_name() + "\" which is a proto3 message type."); } if (field->type() == FieldDescriptor::TYPE_GROUP) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Groups are not supported in proto3 syntax."); } } void DescriptorBuilder::ValidateProto3Enum(EnumDescriptor* enm, const EnumDescriptorProto& proto) { if (enm->value_count() > 0 && enm->value(0)->number() != 0) { AddError(enm->full_name(), proto.value(0), DescriptorPool::ErrorCollector::NUMBER, "The first enum value must be zero in proto3."); } } void DescriptorBuilder::ValidateMessageOptions(Descriptor* message, const DescriptorProto& proto) { VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field); VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message); VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum); VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field); const int64_t max_extension_range = static_cast(message->options().message_set_wire_format() ? std::numeric_limits::max() : FieldDescriptor::kMaxNumber); for (int i = 0; i < message->extension_range_count(); ++i) { if (message->extension_range(i)->end > max_extension_range + 1) { AddError(message->full_name(), proto.extension_range(i), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension numbers cannot be greater than $0.", max_extension_range)); } ValidateExtensionRangeOptions(message->full_name(), message->extension_ranges_ + i, proto.extension_range(i)); } } void DescriptorBuilder::ValidateFieldOptions( FieldDescriptor* field, const FieldDescriptorProto& proto) { if (pool_->lazily_build_dependencies_ && (!field || !field->message_type())) { return; } // Only message type fields may be lazy. if (field->options().lazy()) { if (field->type() != FieldDescriptor::TYPE_MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "[lazy = true] can only be specified for submessage fields."); } } // Only repeated primitive fields may be packed. if (field->options().packed() && !field->is_packable()) { AddError( field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "[packed = true] can only be specified for repeated primitive fields."); } // Note: Default instance may not yet be initialized here, so we have to // avoid reading from it. if (field->containing_type_ != nullptr && &field->containing_type()->options() != &MessageOptions::default_instance() && field->containing_type()->options().message_set_wire_format()) { if (field->is_extension()) { if (!field->is_optional() || field->type() != FieldDescriptor::TYPE_MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Extensions of MessageSets must be optional messages."); } } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "MessageSets cannot have fields, only extensions."); } } // Lite extensions can only be of Lite types. if (IsLite(field->file()) && field->containing_type_ != nullptr && !IsLite(field->containing_type()->file())) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "Extensions to non-lite types can only be declared in non-lite " "files. Note that you cannot extend a non-lite type to contain " "a lite type, but the reverse is allowed."); } // Validate map types. if (field->is_map()) { if (!ValidateMapEntry(field, proto)) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "map_entry should not be set explicitly. Use map instead."); } } ValidateJSType(field, proto); // json_name option is not allowed on extension fields. Note that the // json_name field in FieldDescriptorProto is always populated by protoc // when it sends descriptor data to plugins (calculated from field name if // the option is not explicitly set) so we can't rely on its presence to // determine whether the json_name option is set on the field. Here we // compare it against the default calculated json_name value and consider // the option set if they are different. This won't catch the case when // an user explicitly sets json_name to the default value, but should be // good enough to catch common misuses. if (field->is_extension() && (field->has_json_name() && field->json_name() != ToJsonName(field->name()))) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::OPTION_NAME, "option json_name is not allowed on extension fields."); } } void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm, const EnumDescriptorProto& proto) { VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue); if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) { std::map used_values; for (int i = 0; i < enm->value_count(); ++i) { const EnumValueDescriptor* enum_value = enm->value(i); if (used_values.find(enum_value->number()) != used_values.end()) { std::string error = "\"" + enum_value->full_name() + "\" uses the same enum value as \"" + used_values[enum_value->number()] + "\". If this is intended, set " "'option allow_alias = true;' to the enum definition."; if (!enm->options().allow_alias()) { // Generate error if duplicated enum values are explicitly disallowed. AddError(enm->full_name(), proto.value(i), DescriptorPool::ErrorCollector::NUMBER, error); } } else { used_values[enum_value->number()] = enum_value->full_name(); } } } } void DescriptorBuilder::ValidateEnumValueOptions( EnumValueDescriptor* /* enum_value */, const EnumValueDescriptorProto& /* proto */) { // Nothing to do so far. } void DescriptorBuilder::ValidateExtensionRangeOptions( const std::string& full_name, Descriptor::ExtensionRange* extension_range, const DescriptorProto_ExtensionRange& proto) { (void)full_name; // Parameter is used by Google-internal code. (void)extension_range; // Parameter is used by Google-internal code. } void DescriptorBuilder::ValidateServiceOptions( ServiceDescriptor* service, const ServiceDescriptorProto& proto) { if (IsLite(service->file()) && (service->file()->options().cc_generic_services() || service->file()->options().java_generic_services())) { AddError(service->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Files with optimize_for = LITE_RUNTIME cannot define services " "unless you set both options cc_generic_services and " "java_generic_services to false."); } VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method); } void DescriptorBuilder::ValidateMethodOptions( MethodDescriptor* /* method */, const MethodDescriptorProto& /* proto */) { // Nothing to do so far. } bool DescriptorBuilder::ValidateMapEntry(FieldDescriptor* field, const FieldDescriptorProto& proto) { const Descriptor* message = field->message_type(); if ( // Must not contain extensions, extension range or nested message or // enums message->extension_count() != 0 || field->label() != FieldDescriptor::LABEL_REPEATED || message->extension_range_count() != 0 || message->nested_type_count() != 0 || message->enum_type_count() != 0 || // Must contain exactly two fields message->field_count() != 2 || // Field name and message name must match message->name() != ToCamelCase(field->name(), false) + "Entry" || // Entry message must be in the same containing type of the field. field->containing_type() != message->containing_type()) { return false; } const FieldDescriptor* key = message->map_key(); const FieldDescriptor* value = message->map_value(); if (key->label() != FieldDescriptor::LABEL_OPTIONAL || key->number() != 1 || key->name() != "key") { return false; } if (value->label() != FieldDescriptor::LABEL_OPTIONAL || value->number() != 2 || value->name() != "value") { return false; } // Check key types are legal. switch (key->type()) { case FieldDescriptor::TYPE_ENUM: AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Key in map fields cannot be enum types."); break; case FieldDescriptor::TYPE_FLOAT: case FieldDescriptor::TYPE_DOUBLE: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_BYTES: AddError( field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Key in map fields cannot be float/double, bytes or message types."); break; case FieldDescriptor::TYPE_BOOL: case FieldDescriptor::TYPE_INT32: case FieldDescriptor::TYPE_INT64: case FieldDescriptor::TYPE_SINT32: case FieldDescriptor::TYPE_SINT64: case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_UINT32: case FieldDescriptor::TYPE_UINT64: case FieldDescriptor::TYPE_FIXED32: case FieldDescriptor::TYPE_FIXED64: case FieldDescriptor::TYPE_SFIXED32: case FieldDescriptor::TYPE_SFIXED64: // Legal cases break; // Do not add a default, so that the compiler will complain when new types // are added. } if (value->type() == FieldDescriptor::TYPE_ENUM) { if (value->enum_type()->value(0)->number() != 0) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Enum value in map must define 0 as the first value."); } } return true; } void DescriptorBuilder::DetectMapConflicts(const Descriptor* message, const DescriptorProto& proto) { std::map seen_types; for (int i = 0; i < message->nested_type_count(); ++i) { const Descriptor* nested = message->nested_type(i); std::pair::iterator, bool> result = seen_types.insert(std::make_pair(nested->name(), nested)); if (!result.second) { if (result.first->second->options().map_entry() || nested->options().map_entry()) { AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Expanded map entry type " + nested->name() + " conflicts with an existing nested message type."); } } // Recursively test on the nested types. DetectMapConflicts(message->nested_type(i), proto.nested_type(i)); } // Check for conflicted field names. for (int i = 0; i < message->field_count(); ++i) { const FieldDescriptor* field = message->field(i); std::map::iterator iter = seen_types.find(field->name()); if (iter != seen_types.end() && iter->second->options().map_entry()) { AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Expanded map entry type " + iter->second->name() + " conflicts with an existing field."); } } // Check for conflicted enum names. for (int i = 0; i < message->enum_type_count(); ++i) { const EnumDescriptor* enum_desc = message->enum_type(i); std::map::iterator iter = seen_types.find(enum_desc->name()); if (iter != seen_types.end() && iter->second->options().map_entry()) { AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Expanded map entry type " + iter->second->name() + " conflicts with an existing enum type."); } } // Check for conflicted oneof names. for (int i = 0; i < message->oneof_decl_count(); ++i) { const OneofDescriptor* oneof_desc = message->oneof_decl(i); std::map::iterator iter = seen_types.find(oneof_desc->name()); if (iter != seen_types.end() && iter->second->options().map_entry()) { AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Expanded map entry type " + iter->second->name() + " conflicts with an existing oneof type."); } } } void DescriptorBuilder::ValidateJSType(FieldDescriptor* field, const FieldDescriptorProto& proto) { FieldOptions::JSType jstype = field->options().jstype(); // The default is always acceptable. if (jstype == FieldOptions::JS_NORMAL) { return; } switch (field->type()) { // Integral 64-bit types may be represented as JavaScript numbers or // strings. case FieldDescriptor::TYPE_UINT64: case FieldDescriptor::TYPE_INT64: case FieldDescriptor::TYPE_SINT64: case FieldDescriptor::TYPE_FIXED64: case FieldDescriptor::TYPE_SFIXED64: if (jstype == FieldOptions::JS_STRING || jstype == FieldOptions::JS_NUMBER) { return; } AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Illegal jstype for int64, uint64, sint64, fixed64 " "or sfixed64 field: " + FieldOptions_JSType_descriptor()->value(jstype)->name()); break; // No other types permit a jstype option. default: AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "jstype is only allowed on int64, uint64, sint64, fixed64 " "or sfixed64 fields."); break; } } #undef VALIDATE_OPTIONS_FROM_ARRAY // ------------------------------------------------------------------- DescriptorBuilder::OptionInterpreter::OptionInterpreter( DescriptorBuilder* builder) : builder_(builder) { GOOGLE_CHECK(builder_); } DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {} bool DescriptorBuilder::OptionInterpreter::InterpretOptions( OptionsToInterpret* options_to_interpret) { // Note that these may be in different pools, so we can't use the same // descriptor and reflection objects on both. Message* options = options_to_interpret->options; const Message* original_options = options_to_interpret->original_options; bool failed = false; options_to_interpret_ = options_to_interpret; // Find the uninterpreted_option field in the mutable copy of the options // and clear them, since we're about to interpret them. const FieldDescriptor* uninterpreted_options_field = options->GetDescriptor()->FindFieldByName("uninterpreted_option"); GOOGLE_CHECK(uninterpreted_options_field != nullptr) << "No field named \"uninterpreted_option\" in the Options proto."; options->GetReflection()->ClearField(options, uninterpreted_options_field); std::vector src_path = options_to_interpret->element_path; src_path.push_back(uninterpreted_options_field->number()); // Find the uninterpreted_option field in the original options. const FieldDescriptor* original_uninterpreted_options_field = original_options->GetDescriptor()->FindFieldByName( "uninterpreted_option"); GOOGLE_CHECK(original_uninterpreted_options_field != nullptr) << "No field named \"uninterpreted_option\" in the Options proto."; const int num_uninterpreted_options = original_options->GetReflection()->FieldSize( *original_options, original_uninterpreted_options_field); for (int i = 0; i < num_uninterpreted_options; ++i) { src_path.push_back(i); uninterpreted_option_ = down_cast( &original_options->GetReflection()->GetRepeatedMessage( *original_options, original_uninterpreted_options_field, i)); if (!InterpretSingleOption(options, src_path, options_to_interpret->element_path)) { // Error already added by InterpretSingleOption(). failed = true; break; } src_path.pop_back(); } // Reset these, so we don't have any dangling pointers. uninterpreted_option_ = nullptr; options_to_interpret_ = nullptr; if (!failed) { // InterpretSingleOption() added the interpreted options in the // UnknownFieldSet, in case the option isn't yet known to us. Now we // serialize the options message and deserialize it back. That way, any // option fields that we do happen to know about will get moved from the // UnknownFieldSet into the real fields, and thus be available right away. // If they are not known, that's OK too. They will get reparsed into the // UnknownFieldSet and wait there until the message is parsed by something // that does know about the options. // Keep the unparsed options around in case the reparsing fails. std::unique_ptr unparsed_options(options->New()); options->GetReflection()->Swap(unparsed_options.get(), options); std::string buf; if (!unparsed_options->AppendToString(&buf) || !options->ParseFromString(buf)) { builder_->AddError( options_to_interpret->element_name, *original_options, DescriptorPool::ErrorCollector::OTHER, "Some options could not be correctly parsed using the proto " "descriptors compiled into this binary.\n" "Unparsed options: " + unparsed_options->ShortDebugString() + "\n" "Parsing attempt: " + options->ShortDebugString()); // Restore the unparsed options. options->GetReflection()->Swap(unparsed_options.get(), options); } } return !failed; } bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption( Message* options, const std::vector& src_path, const std::vector& options_path) { // First do some basic validation. if (uninterpreted_option_->name_size() == 0) { // This should never happen unless the parser has gone seriously awry or // someone has manually created the uninterpreted option badly. return AddNameError("Option must have a name."); } if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") { return AddNameError( "Option must not use reserved name " "\"uninterpreted_option\"."); } const Descriptor* options_descriptor = nullptr; // Get the options message's descriptor from the builder's pool, so that we // get the version that knows about any extension options declared in the file // we're currently building. The descriptor should be there as long as the // file we're building imported descriptor.proto. // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not // DescriptorPool::FindMessageTypeByName() because we're already holding the // pool's mutex, and the latter method locks it again. We don't use // FindSymbol() because files that use custom options only need to depend on // the file that defines the option, not descriptor.proto itself. Symbol symbol = builder_->FindSymbolNotEnforcingDeps( options->GetDescriptor()->full_name()); options_descriptor = symbol.descriptor(); if (options_descriptor == nullptr) { // The options message's descriptor was not in the builder's pool, so use // the standard version from the generated pool. We're not holding the // generated pool's mutex, so we can search it the straightforward way. options_descriptor = options->GetDescriptor(); } GOOGLE_CHECK(options_descriptor); // We iterate over the name parts to drill into the submessages until we find // the leaf field for the option. As we drill down we remember the current // submessage's descriptor in |descriptor| and the next field in that // submessage in |field|. We also track the fields we're drilling down // through in |intermediate_fields|. As we go, we reconstruct the full option // name in |debug_msg_name|, for use in error messages. const Descriptor* descriptor = options_descriptor; const FieldDescriptor* field = nullptr; std::vector intermediate_fields; std::string debug_msg_name = ""; std::vector dest_path = options_path; for (int i = 0; i < uninterpreted_option_->name_size(); ++i) { builder_->undefine_resolved_name_.clear(); const std::string& name_part = uninterpreted_option_->name(i).name_part(); if (debug_msg_name.size() > 0) { debug_msg_name += "."; } if (uninterpreted_option_->name(i).is_extension()) { debug_msg_name += "(" + name_part + ")"; // Search for the extension's descriptor as an extension in the builder's // pool. Note that we use DescriptorBuilder::LookupSymbol(), not // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows // relative lookups, and 2) because we're already holding the pool's // mutex, and the latter method locks it again. symbol = builder_->LookupSymbol(name_part, options_to_interpret_->name_scope); field = symbol.field_descriptor(); // If we don't find the field then the field's descriptor was not in the // builder's pool, but there's no point in looking in the generated // pool. We require that you import the file that defines any extensions // you use, so they must be present in the builder's pool. } else { debug_msg_name += name_part; // Search for the field's descriptor as a regular field. field = descriptor->FindFieldByName(name_part); } if (field == nullptr) { if (get_allow_unknown(builder_->pool_)) { // We can't find the option, but AllowUnknownDependencies() is enabled, // so we will just leave it as uninterpreted. AddWithoutInterpreting(*uninterpreted_option_, options); return true; } else if (!(builder_->undefine_resolved_name_).empty()) { // Option is resolved to a name which is not defined. return AddNameError( "Option \"" + debug_msg_name + "\" is resolved to \"(" + builder_->undefine_resolved_name_ + ")\", which is not defined. The innermost scope is searched first " "in name resolution. Consider using a leading '.'(i.e., \"(." + debug_msg_name.substr(1) + "\") to start from the outermost scope."); } else { return AddNameError( "Option \"" + debug_msg_name + "\" unknown. Ensure that your proto" + " definition file imports the proto which defines the option."); } } else if (field->containing_type() != descriptor) { if (get_is_placeholder(field->containing_type())) { // The field is an extension of a placeholder type, so we can't // reliably verify whether it is a valid extension to use here (e.g. // we don't know if it is an extension of the correct *Options message, // or if it has a valid field number, etc.). Just leave it as // uninterpreted instead. AddWithoutInterpreting(*uninterpreted_option_, options); return true; } else { // This can only happen if, due to some insane misconfiguration of the // pools, we find the options message in one pool but the field in // another. This would probably imply a hefty bug somewhere. return AddNameError("Option field \"" + debug_msg_name + "\" is not a field or extension of message \"" + descriptor->name() + "\"."); } } else { // accumulate field numbers to form path to interpreted option dest_path.push_back(field->number()); if (i < uninterpreted_option_->name_size() - 1) { if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) { return AddNameError("Option \"" + debug_msg_name + "\" is an atomic type, not a message."); } else if (field->is_repeated()) { return AddNameError("Option field \"" + debug_msg_name + "\" is a repeated message. Repeated message " "options must be initialized using an " "aggregate value."); } else { // Drill down into the submessage. intermediate_fields.push_back(field); descriptor = field->message_type(); } } } } // We've found the leaf field. Now we use UnknownFieldSets to set its value // on the options message. We do so because the message may not yet know // about its extension fields, so we may not be able to set the fields // directly. But the UnknownFieldSets will serialize to the same wire-format // message, so reading that message back in once the extension fields are // known will populate them correctly. // First see if the option is already set. if (!field->is_repeated() && !ExamineIfOptionIsSet( intermediate_fields.begin(), intermediate_fields.end(), field, debug_msg_name, options->GetReflection()->GetUnknownFields(*options))) { return false; // ExamineIfOptionIsSet() already added the error. } // First set the value on the UnknownFieldSet corresponding to the // innermost message. std::unique_ptr unknown_fields(new UnknownFieldSet()); if (!SetOptionValue(field, unknown_fields.get())) { return false; // SetOptionValue() already added the error. } // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all // the intermediate messages. for (std::vector::reverse_iterator iter = intermediate_fields.rbegin(); iter != intermediate_fields.rend(); ++iter) { std::unique_ptr parent_unknown_fields( new UnknownFieldSet()); switch ((*iter)->type()) { case FieldDescriptor::TYPE_MESSAGE: { io::StringOutputStream outstr( parent_unknown_fields->AddLengthDelimited((*iter)->number())); io::CodedOutputStream out(&outstr); internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out); GOOGLE_CHECK(!out.HadError()) << "Unexpected failure while serializing option submessage " << debug_msg_name << "\"."; break; } case FieldDescriptor::TYPE_GROUP: { parent_unknown_fields->AddGroup((*iter)->number()) ->MergeFrom(*unknown_fields); break; } default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << (*iter)->type(); return false; } unknown_fields.reset(parent_unknown_fields.release()); } // Now merge the UnknownFieldSet corresponding to the top-level message into // the options message. options->GetReflection()->MutableUnknownFields(options)->MergeFrom( *unknown_fields); // record the element path of the interpreted option if (field->is_repeated()) { int index = repeated_option_counts_[dest_path]++; dest_path.push_back(index); } interpreted_paths_[src_path] = dest_path; return true; } void DescriptorBuilder::OptionInterpreter::UpdateSourceCodeInfo( SourceCodeInfo* info) { if (interpreted_paths_.empty()) { // nothing to do! return; } // We find locations that match keys in interpreted_paths_ and // 1) replace the path with the corresponding value in interpreted_paths_ // 2) remove any subsequent sub-locations (sub-location is one whose path // has the parent path as a prefix) // // To avoid quadratic behavior of removing interior rows as we go, // we keep a copy. But we don't actually copy anything until we've // found the first match (so if the source code info has no locations // that need to be changed, there is zero copy overhead). RepeatedPtrField* locs = info->mutable_location(); RepeatedPtrField new_locs; bool copying = false; std::vector pathv; bool matched = false; for (RepeatedPtrField::iterator loc = locs->begin(); loc != locs->end(); loc++) { if (matched) { // see if this location is in the range to remove bool loc_matches = true; if (loc->path_size() < static_cast(pathv.size())) { loc_matches = false; } else { for (size_t j = 0; j < pathv.size(); j++) { if (loc->path(j) != pathv[j]) { loc_matches = false; break; } } } if (loc_matches) { // don't copy this row since it is a sub-location that we're removing continue; } matched = false; } pathv.clear(); for (int j = 0; j < loc->path_size(); j++) { pathv.push_back(loc->path(j)); } std::map, std::vector>::iterator entry = interpreted_paths_.find(pathv); if (entry == interpreted_paths_.end()) { // not a match if (copying) { *new_locs.Add() = *loc; } continue; } matched = true; if (!copying) { // initialize the copy we are building copying = true; new_locs.Reserve(locs->size()); for (RepeatedPtrField::iterator it = locs->begin(); it != loc; it++) { *new_locs.Add() = *it; } } // add replacement and update its path SourceCodeInfo_Location* replacement = new_locs.Add(); *replacement = *loc; replacement->clear_path(); for (std::vector::iterator rit = entry->second.begin(); rit != entry->second.end(); rit++) { replacement->add_path(*rit); } } // if we made a changed copy, put it in place if (copying) { *locs = new_locs; } } void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting( const UninterpretedOption& uninterpreted_option, Message* options) { const FieldDescriptor* field = options->GetDescriptor()->FindFieldByName("uninterpreted_option"); GOOGLE_CHECK(field != nullptr); options->GetReflection() ->AddMessage(options, field) ->CopyFrom(uninterpreted_option); } bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet( std::vector::const_iterator intermediate_fields_iter, std::vector::const_iterator intermediate_fields_end, const FieldDescriptor* innermost_field, const std::string& debug_msg_name, const UnknownFieldSet& unknown_fields) { // We do linear searches of the UnknownFieldSet and its sub-groups. This // should be fine since it's unlikely that any one options structure will // contain more than a handful of options. if (intermediate_fields_iter == intermediate_fields_end) { // We're at the innermost submessage. for (int i = 0; i < unknown_fields.field_count(); i++) { if (unknown_fields.field(i).number() == innermost_field->number()) { return AddNameError("Option \"" + debug_msg_name + "\" was already set."); } } return true; } for (int i = 0; i < unknown_fields.field_count(); i++) { if (unknown_fields.field(i).number() == (*intermediate_fields_iter)->number()) { const UnknownField* unknown_field = &unknown_fields.field(i); FieldDescriptor::Type type = (*intermediate_fields_iter)->type(); // Recurse into the next submessage. switch (type) { case FieldDescriptor::TYPE_MESSAGE: if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) { UnknownFieldSet intermediate_unknown_fields; if (intermediate_unknown_fields.ParseFromString( unknown_field->length_delimited()) && !ExamineIfOptionIsSet(intermediate_fields_iter + 1, intermediate_fields_end, innermost_field, debug_msg_name, intermediate_unknown_fields)) { return false; // Error already added. } } break; case FieldDescriptor::TYPE_GROUP: if (unknown_field->type() == UnknownField::TYPE_GROUP) { if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1, intermediate_fields_end, innermost_field, debug_msg_name, unknown_field->group())) { return false; // Error already added. } } break; default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type; return false; } } } return true; } bool DescriptorBuilder::OptionInterpreter::SetOptionValue( const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) { // We switch on the CppType to validate. switch (option_field->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: if (uninterpreted_option_->has_positive_int_value()) { if (uninterpreted_option_->positive_int_value() > static_cast(std::numeric_limits::max())) { return AddValueError("Value out of range for int32 option \"" + option_field->full_name() + "\"."); } else { SetInt32(option_field->number(), uninterpreted_option_->positive_int_value(), option_field->type(), unknown_fields); } } else if (uninterpreted_option_->has_negative_int_value()) { if (uninterpreted_option_->negative_int_value() < static_cast(std::numeric_limits::min())) { return AddValueError("Value out of range for int32 option \"" + option_field->full_name() + "\"."); } else { SetInt32(option_field->number(), uninterpreted_option_->negative_int_value(), option_field->type(), unknown_fields); } } else { return AddValueError("Value must be integer for int32 option \"" + option_field->full_name() + "\"."); } break; case FieldDescriptor::CPPTYPE_INT64: if (uninterpreted_option_->has_positive_int_value()) { if (uninterpreted_option_->positive_int_value() > static_cast(std::numeric_limits::max())) { return AddValueError("Value out of range for int64 option \"" + option_field->full_name() + "\"."); } else { SetInt64(option_field->number(), uninterpreted_option_->positive_int_value(), option_field->type(), unknown_fields); } } else if (uninterpreted_option_->has_negative_int_value()) { SetInt64(option_field->number(), uninterpreted_option_->negative_int_value(), option_field->type(), unknown_fields); } else { return AddValueError("Value must be integer for int64 option \"" + option_field->full_name() + "\"."); } break; case FieldDescriptor::CPPTYPE_UINT32: if (uninterpreted_option_->has_positive_int_value()) { if (uninterpreted_option_->positive_int_value() > std::numeric_limits::max()) { return AddValueError("Value out of range for uint32 option \"" + option_field->name() + "\"."); } else { SetUInt32(option_field->number(), uninterpreted_option_->positive_int_value(), option_field->type(), unknown_fields); } } else { return AddValueError( "Value must be non-negative integer for uint32 " "option \"" + option_field->full_name() + "\"."); } break; case FieldDescriptor::CPPTYPE_UINT64: if (uninterpreted_option_->has_positive_int_value()) { SetUInt64(option_field->number(), uninterpreted_option_->positive_int_value(), option_field->type(), unknown_fields); } else { return AddValueError( "Value must be non-negative integer for uint64 " "option \"" + option_field->full_name() + "\"."); } break; case FieldDescriptor::CPPTYPE_FLOAT: { float value; if (uninterpreted_option_->has_double_value()) { value = uninterpreted_option_->double_value(); } else if (uninterpreted_option_->has_positive_int_value()) { value = uninterpreted_option_->positive_int_value(); } else if (uninterpreted_option_->has_negative_int_value()) { value = uninterpreted_option_->negative_int_value(); } else { return AddValueError("Value must be number for float option \"" + option_field->full_name() + "\"."); } unknown_fields->AddFixed32(option_field->number(), internal::WireFormatLite::EncodeFloat(value)); break; } case FieldDescriptor::CPPTYPE_DOUBLE: { double value; if (uninterpreted_option_->has_double_value()) { value = uninterpreted_option_->double_value(); } else if (uninterpreted_option_->has_positive_int_value()) { value = uninterpreted_option_->positive_int_value(); } else if (uninterpreted_option_->has_negative_int_value()) { value = uninterpreted_option_->negative_int_value(); } else { return AddValueError("Value must be number for double option \"" + option_field->full_name() + "\"."); } unknown_fields->AddFixed64(option_field->number(), internal::WireFormatLite::EncodeDouble(value)); break; } case FieldDescriptor::CPPTYPE_BOOL: uint64_t value; if (!uninterpreted_option_->has_identifier_value()) { return AddValueError( "Value must be identifier for boolean option " "\"" + option_field->full_name() + "\"."); } if (uninterpreted_option_->identifier_value() == "true") { value = 1; } else if (uninterpreted_option_->identifier_value() == "false") { value = 0; } else { return AddValueError( "Value must be \"true\" or \"false\" for boolean " "option \"" + option_field->full_name() + "\"."); } unknown_fields->AddVarint(option_field->number(), value); break; case FieldDescriptor::CPPTYPE_ENUM: { if (!uninterpreted_option_->has_identifier_value()) { return AddValueError( "Value must be identifier for enum-valued option " "\"" + option_field->full_name() + "\"."); } const EnumDescriptor* enum_type = option_field->enum_type(); const std::string& value_name = uninterpreted_option_->identifier_value(); const EnumValueDescriptor* enum_value = nullptr; if (enum_type->file()->pool() != DescriptorPool::generated_pool()) { // Note that the enum value's fully-qualified name is a sibling of the // enum's name, not a child of it. std::string fully_qualified_name = enum_type->full_name(); fully_qualified_name.resize(fully_qualified_name.size() - enum_type->name().size()); fully_qualified_name += value_name; // Search for the enum value's descriptor in the builder's pool. Note // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not // DescriptorPool::FindEnumValueByName() because we're already holding // the pool's mutex, and the latter method locks it again. Symbol symbol = builder_->FindSymbolNotEnforcingDeps(fully_qualified_name); if (auto* candicate_descriptor = symbol.enum_value_descriptor()) { if (candicate_descriptor->type() != enum_type) { return AddValueError( "Enum type \"" + enum_type->full_name() + "\" has no value named \"" + value_name + "\" for option \"" + option_field->full_name() + "\". This appears to be a value from a sibling type."); } else { enum_value = candicate_descriptor; } } } else { // The enum type is in the generated pool, so we can search for the // value there. enum_value = enum_type->FindValueByName(value_name); } if (enum_value == nullptr) { return AddValueError("Enum type \"" + option_field->enum_type()->full_name() + "\" has no value named \"" + value_name + "\" for " "option \"" + option_field->full_name() + "\"."); } else { // Sign-extension is not a problem, since we cast directly from int32_t // to uint64_t, without first going through uint32_t. unknown_fields->AddVarint( option_field->number(), static_cast(static_cast(enum_value->number()))); } break; } case FieldDescriptor::CPPTYPE_STRING: if (!uninterpreted_option_->has_string_value()) { return AddValueError( "Value must be quoted string for string option " "\"" + option_field->full_name() + "\"."); } // The string has already been unquoted and unescaped by the parser. unknown_fields->AddLengthDelimited(option_field->number(), uninterpreted_option_->string_value()); break; case FieldDescriptor::CPPTYPE_MESSAGE: if (!SetAggregateOption(option_field, unknown_fields)) { return false; } break; } return true; } class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder : public TextFormat::Finder { public: DescriptorBuilder* builder_; const Descriptor* FindAnyType(const Message& /*message*/, const std::string& prefix, const std::string& name) const override { if (prefix != internal::kTypeGoogleApisComPrefix && prefix != internal::kTypeGoogleProdComPrefix) { return nullptr; } assert_mutex_held(builder_->pool_); return builder_->FindSymbol(name).descriptor(); } const FieldDescriptor* FindExtension(Message* message, const std::string& name) const override { assert_mutex_held(builder_->pool_); const Descriptor* descriptor = message->GetDescriptor(); Symbol result = builder_->LookupSymbolNoPlaceholder(name, descriptor->full_name()); if (auto* field = result.field_descriptor()) { return field; } else if (result.type() == Symbol::MESSAGE && descriptor->options().message_set_wire_format()) { const Descriptor* foreign_type = result.descriptor(); // The text format allows MessageSet items to be specified using // the type name, rather than the extension identifier. If the symbol // lookup returned a Message, and the enclosing Message has // message_set_wire_format = true, then return the message set // extension, if one exists. for (int i = 0; i < foreign_type->extension_count(); i++) { const FieldDescriptor* extension = foreign_type->extension(i); if (extension->containing_type() == descriptor && extension->type() == FieldDescriptor::TYPE_MESSAGE && extension->is_optional() && extension->message_type() == foreign_type) { // Found it. return extension; } } } return nullptr; } }; // A custom error collector to record any text-format parsing errors namespace { class AggregateErrorCollector : public io::ErrorCollector { public: std::string error_; void AddError(int /* line */, int /* column */, const std::string& message) override { if (!error_.empty()) { error_ += "; "; } error_ += message; } void AddWarning(int /* line */, int /* column */, const std::string& /* message */) override { // Ignore warnings } }; } // namespace // We construct a dynamic message of the type corresponding to // option_field, parse the supplied text-format string into this // message, and serialize the resulting message to produce the value. bool DescriptorBuilder::OptionInterpreter::SetAggregateOption( const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) { if (!uninterpreted_option_->has_aggregate_value()) { return AddValueError("Option \"" + option_field->full_name() + "\" is a message. To set the entire message, use " "syntax like \"" + option_field->name() + " = { }\". " "To set fields within it, use " "syntax like \"" + option_field->name() + ".foo = value\"."); } const Descriptor* type = option_field->message_type(); std::unique_ptr dynamic(dynamic_factory_.GetPrototype(type)->New()); GOOGLE_CHECK(dynamic.get() != nullptr) << "Could not create an instance of " << option_field->DebugString(); AggregateErrorCollector collector; AggregateOptionFinder finder; finder.builder_ = builder_; TextFormat::Parser parser; parser.RecordErrorsTo(&collector); parser.SetFinder(&finder); if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(), dynamic.get())) { AddValueError("Error while parsing option value for \"" + option_field->name() + "\": " + collector.error_); return false; } else { std::string serial; dynamic->SerializeToString(&serial); // Never fails if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) { unknown_fields->AddLengthDelimited(option_field->number(), serial); } else { GOOGLE_CHECK_EQ(option_field->type(), FieldDescriptor::TYPE_GROUP); UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number()); group->ParseFromString(serial); } return true; } } void DescriptorBuilder::OptionInterpreter::SetInt32( int number, int32_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { switch (type) { case FieldDescriptor::TYPE_INT32: unknown_fields->AddVarint( number, static_cast(static_cast(value))); break; case FieldDescriptor::TYPE_SFIXED32: unknown_fields->AddFixed32(number, static_cast(value)); break; case FieldDescriptor::TYPE_SINT32: unknown_fields->AddVarint( number, internal::WireFormatLite::ZigZagEncode32(value)); break; default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type; break; } } void DescriptorBuilder::OptionInterpreter::SetInt64( int number, int64_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { switch (type) { case FieldDescriptor::TYPE_INT64: unknown_fields->AddVarint(number, static_cast(value)); break; case FieldDescriptor::TYPE_SFIXED64: unknown_fields->AddFixed64(number, static_cast(value)); break; case FieldDescriptor::TYPE_SINT64: unknown_fields->AddVarint( number, internal::WireFormatLite::ZigZagEncode64(value)); break; default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type; break; } } void DescriptorBuilder::OptionInterpreter::SetUInt32( int number, uint32_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { switch (type) { case FieldDescriptor::TYPE_UINT32: unknown_fields->AddVarint(number, static_cast(value)); break; case FieldDescriptor::TYPE_FIXED32: unknown_fields->AddFixed32(number, static_cast(value)); break; default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type; break; } } void DescriptorBuilder::OptionInterpreter::SetUInt64( int number, uint64_t value, FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { switch (type) { case FieldDescriptor::TYPE_UINT64: unknown_fields->AddVarint(number, value); break; case FieldDescriptor::TYPE_FIXED64: unknown_fields->AddFixed64(number, value); break; default: GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type; break; } } void DescriptorBuilder::LogUnusedDependency(const FileDescriptorProto& proto, const FileDescriptor* result) { (void)result; // Parameter is used by Google-internal code. if (!unused_dependency_.empty()) { auto itr = pool_->unused_import_track_files_.find(proto.name()); bool is_error = itr != pool_->unused_import_track_files_.end() && itr->second; for (std::set::const_iterator it = unused_dependency_.begin(); it != unused_dependency_.end(); ++it) { std::string error_message = "Import " + (*it)->name() + " is unused."; if (is_error) { AddError((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT, error_message); } else { AddWarning((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT, error_message); } } } } Symbol DescriptorPool::CrossLinkOnDemandHelper(StringPiece name, bool expecting_enum) const { (void)expecting_enum; // Parameter is used by Google-internal code. auto lookup_name = std::string(name); if (!lookup_name.empty() && lookup_name[0] == '.') { lookup_name = lookup_name.substr(1); } Symbol result = tables_->FindByNameHelper(this, lookup_name); return result; } // Handle the lazy import building for a message field whose type wasn't built // at cross link time. If that was the case, we saved the name of the type to // be looked up when the accessor for the type was called. Set type_, // enum_type_, message_type_, and default_value_enum_ appropriately. void FieldDescriptor::InternalTypeOnceInit() const { GOOGLE_CHECK(file()->finished_building_ == true); const EnumDescriptor* enum_type = nullptr; Symbol result = file()->pool()->CrossLinkOnDemandHelper( type_descriptor_.lazy_type_name, type_ == FieldDescriptor::TYPE_ENUM); if (result.type() == Symbol::MESSAGE) { type_ = FieldDescriptor::TYPE_MESSAGE; type_descriptor_.message_type = result.descriptor(); } else if (result.type() == Symbol::ENUM) { type_ = FieldDescriptor::TYPE_ENUM; enum_type = type_descriptor_.enum_type = result.enum_descriptor(); } if (enum_type) { if (lazy_default_value_enum_name_) { // Have to build the full name now instead of at CrossLink time, // because enum_type may not be known at the time. std::string name = enum_type->full_name(); // Enum values reside in the same scope as the enum type. std::string::size_type last_dot = name.find_last_of('.'); if (last_dot != std::string::npos) { name = name.substr(0, last_dot) + "." + lazy_default_value_enum_name_; } else { name = lazy_default_value_enum_name_; } Symbol result = file()->pool()->CrossLinkOnDemandHelper(name, true); default_value_enum_ = result.enum_value_descriptor(); } else { default_value_enum_ = nullptr; } if (!default_value_enum_) { // We use the first defined value as the default // if a default is not explicitly defined. GOOGLE_CHECK(enum_type->value_count()); default_value_enum_ = enum_type->value(0); } } } void FieldDescriptor::TypeOnceInit(const FieldDescriptor* to_init) { to_init->InternalTypeOnceInit(); } // message_type(), enum_type(), default_value_enum(), and type() // all share the same internal::call_once init path to do lazy // import building and cross linking of a field of a message. const Descriptor* FieldDescriptor::message_type() const { if (type_once_) { internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this); } return type_ == TYPE_MESSAGE || type_ == TYPE_GROUP ? type_descriptor_.message_type : nullptr; } const EnumDescriptor* FieldDescriptor::enum_type() const { if (type_once_) { internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this); } return type_ == TYPE_ENUM ? type_descriptor_.enum_type : nullptr; } const EnumValueDescriptor* FieldDescriptor::default_value_enum() const { if (type_once_) { internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this); } return default_value_enum_; } const std::string& FieldDescriptor::PrintableNameForExtension() const { const bool is_message_set_extension = is_extension() && containing_type()->options().message_set_wire_format() && type() == FieldDescriptor::TYPE_MESSAGE && is_optional() && extension_scope() == message_type(); return is_message_set_extension ? message_type()->full_name() : full_name(); } void FileDescriptor::InternalDependenciesOnceInit() const { GOOGLE_CHECK(finished_building_ == true); auto* names = dependencies_once_->dependencies_names; for (int i = 0; i < dependency_count(); i++) { if (names[i]) { dependencies_[i] = pool_->FindFileByName(names[i]); } } } void FileDescriptor::DependenciesOnceInit(const FileDescriptor* to_init) { to_init->InternalDependenciesOnceInit(); } const FileDescriptor* FileDescriptor::dependency(int index) const { if (dependencies_once_) { // Do once init for all indices, as it's unlikely only a single index would // be called, and saves on internal::call_once allocations. internal::call_once(dependencies_once_->once, FileDescriptor::DependenciesOnceInit, this); } return dependencies_[index]; } const Descriptor* MethodDescriptor::input_type() const { return input_type_.Get(service()); } const Descriptor* MethodDescriptor::output_type() const { return output_type_.Get(service()); } namespace internal { void LazyDescriptor::Set(const Descriptor* descriptor) { GOOGLE_CHECK(!once_); descriptor_ = descriptor; } void LazyDescriptor::SetLazy(StringPiece name, const FileDescriptor* file) { // verify Init() has been called and Set hasn't been called yet. GOOGLE_CHECK(!descriptor_); GOOGLE_CHECK(!once_); GOOGLE_CHECK(file && file->pool_); GOOGLE_CHECK(file->pool_->lazily_build_dependencies_); GOOGLE_CHECK(!file->finished_building_); once_ = file->pool_->tables_->Create(); lazy_name_ = file->pool_->tables_->Strdup(name); } void LazyDescriptor::Once(const ServiceDescriptor* service) { if (once_) { internal::call_once(*once_, [&] { auto* file = service->file(); GOOGLE_CHECK(file->finished_building_); descriptor_ = file->pool_->CrossLinkOnDemandHelper(lazy_name_, false).descriptor(); }); } } } // namespace internal } // namespace protobuf } // namespace google #include