#pragma once #include #include #include // Provides data for various hashtable implementations class HashHelpers { private: // Pre-calculated table of primes constexpr static const int Primes[] = { 3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919, 1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591, 17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437, 187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263, 1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369 }; // A good hash prime value constexpr static int HashPrime = 101; // This is the maximum prime smaller than array length constexpr static int MaxPrimeArrayLength = 0x7FEFFFFD; public: // Threshhold used when calculating hashes constexpr static int HashCollisionThreshhold = 100; // Calculates whether or not the candidate is a prime number constexpr static bool IsPrime(uint32_t Candidate) { if ((Candidate & 1) != 0) { auto Limit = (uint32_t)std::sqrt(Candidate); for (uint32_t Divisor = 3; Divisor <= Limit; Divisor += 2) { if ((Candidate % Divisor) == 0) return false; } return true; } return (Candidate == 2); } // Gets the nearest prime number constexpr static uint32_t GetPrime(uint32_t Min) { for (const auto& Prime : Primes) { if ((uint32_t)Prime >= Min) return Prime; } for (uint32_t i = (Min | 1); i < INT32_MAX; i += 2) { if (IsPrime(i) && ((i - 1) % HashPrime != 0)) return i; } return Min; } // Returns the new prime size constexpr static uint32_t ExpandPrime(uint32_t OldSize) { auto NewSize = 2 * OldSize; if (NewSize > MaxPrimeArrayLength && MaxPrimeArrayLength > OldSize) return MaxPrimeArrayLength; return GetPrime(NewSize); } };