mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
968 lines
31 KiB
C++
968 lines
31 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// This implementation is heavily optimized to make reads and writes
|
|
// of small values (especially varints) as fast as possible. In
|
|
// particular, we optimize for the common case that a read or a write
|
|
// will not cross the end of the buffer, since we can avoid a lot
|
|
// of branching in this case.
|
|
|
|
#include <thirdparty/protobuf/io/coded_stream.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
#include <thirdparty/protobuf/stubs/logging.h>
|
|
#include <thirdparty/protobuf/stubs/common.h>
|
|
#include <thirdparty/protobuf/arena.h>
|
|
#include <thirdparty/protobuf/io/zero_copy_stream.h>
|
|
#include <thirdparty/protobuf/io/zero_copy_stream_impl_lite.h>
|
|
#include <thirdparty/protobuf/stubs/stl_util.h>
|
|
|
|
|
|
// Must be included last.
|
|
#include <thirdparty/protobuf/port_def.inc>
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
namespace io {
|
|
|
|
namespace {
|
|
|
|
static const int kMaxVarintBytes = 10;
|
|
static const int kMaxVarint32Bytes = 5;
|
|
|
|
|
|
inline bool NextNonEmpty(ZeroCopyInputStream* input, const void** data,
|
|
int* size) {
|
|
bool success;
|
|
do {
|
|
success = input->Next(data, size);
|
|
} while (success && *size == 0);
|
|
return success;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// CodedInputStream ==================================================
|
|
|
|
CodedInputStream::~CodedInputStream() {
|
|
if (input_ != NULL) {
|
|
BackUpInputToCurrentPosition();
|
|
}
|
|
}
|
|
|
|
// Static.
|
|
int CodedInputStream::default_recursion_limit_ = 100;
|
|
|
|
|
|
void CodedInputStream::BackUpInputToCurrentPosition() {
|
|
int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_;
|
|
if (backup_bytes > 0) {
|
|
input_->BackUp(backup_bytes);
|
|
|
|
// total_bytes_read_ doesn't include overflow_bytes_.
|
|
total_bytes_read_ -= BufferSize() + buffer_size_after_limit_;
|
|
buffer_end_ = buffer_;
|
|
buffer_size_after_limit_ = 0;
|
|
overflow_bytes_ = 0;
|
|
}
|
|
}
|
|
|
|
inline void CodedInputStream::RecomputeBufferLimits() {
|
|
buffer_end_ += buffer_size_after_limit_;
|
|
int closest_limit = std::min(current_limit_, total_bytes_limit_);
|
|
if (closest_limit < total_bytes_read_) {
|
|
// The limit position is in the current buffer. We must adjust
|
|
// the buffer size accordingly.
|
|
buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
|
|
buffer_end_ -= buffer_size_after_limit_;
|
|
} else {
|
|
buffer_size_after_limit_ = 0;
|
|
}
|
|
}
|
|
|
|
CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
|
|
// Current position relative to the beginning of the stream.
|
|
int current_position = CurrentPosition();
|
|
|
|
Limit old_limit = current_limit_;
|
|
|
|
// security: byte_limit is possibly evil, so check for negative values
|
|
// and overflow. Also check that the new requested limit is before the
|
|
// previous limit; otherwise we continue to enforce the previous limit.
|
|
if (PROTOBUF_PREDICT_TRUE(byte_limit >= 0 &&
|
|
byte_limit <= INT_MAX - current_position &&
|
|
byte_limit < current_limit_ - current_position)) {
|
|
current_limit_ = current_position + byte_limit;
|
|
RecomputeBufferLimits();
|
|
}
|
|
|
|
return old_limit;
|
|
}
|
|
|
|
void CodedInputStream::PopLimit(Limit limit) {
|
|
// The limit passed in is actually the *old* limit, which we returned from
|
|
// PushLimit().
|
|
current_limit_ = limit;
|
|
RecomputeBufferLimits();
|
|
|
|
// We may no longer be at a legitimate message end. ReadTag() needs to be
|
|
// called again to find out.
|
|
legitimate_message_end_ = false;
|
|
}
|
|
|
|
std::pair<CodedInputStream::Limit, int>
|
|
CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) {
|
|
return std::make_pair(PushLimit(byte_limit), --recursion_budget_);
|
|
}
|
|
|
|
CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() {
|
|
uint32_t length;
|
|
return PushLimit(ReadVarint32(&length) ? length : 0);
|
|
}
|
|
|
|
bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) {
|
|
bool result = ConsumedEntireMessage();
|
|
PopLimit(limit);
|
|
GOOGLE_DCHECK_LT(recursion_budget_, recursion_limit_);
|
|
++recursion_budget_;
|
|
return result;
|
|
}
|
|
|
|
bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) {
|
|
bool result = ConsumedEntireMessage();
|
|
PopLimit(limit);
|
|
return result;
|
|
}
|
|
|
|
int CodedInputStream::BytesUntilLimit() const {
|
|
if (current_limit_ == INT_MAX) return -1;
|
|
int current_position = CurrentPosition();
|
|
|
|
return current_limit_ - current_position;
|
|
}
|
|
|
|
void CodedInputStream::SetTotalBytesLimit(int total_bytes_limit) {
|
|
// Make sure the limit isn't already past, since this could confuse other
|
|
// code.
|
|
int current_position = CurrentPosition();
|
|
total_bytes_limit_ = std::max(current_position, total_bytes_limit);
|
|
RecomputeBufferLimits();
|
|
}
|
|
|
|
int CodedInputStream::BytesUntilTotalBytesLimit() const {
|
|
if (total_bytes_limit_ == INT_MAX) return -1;
|
|
return total_bytes_limit_ - CurrentPosition();
|
|
}
|
|
|
|
void CodedInputStream::PrintTotalBytesLimitError() {
|
|
GOOGLE_LOG(ERROR)
|
|
<< "A protocol message was rejected because it was too "
|
|
"big (more than "
|
|
<< total_bytes_limit_
|
|
<< " bytes). To increase the limit (or to disable these "
|
|
"warnings), see CodedInputStream::SetTotalBytesLimit() "
|
|
"in third_party/protobuf/io/coded_stream.h.";
|
|
}
|
|
|
|
bool CodedInputStream::SkipFallback(int count, int original_buffer_size) {
|
|
if (buffer_size_after_limit_ > 0) {
|
|
// We hit a limit inside this buffer. Advance to the limit and fail.
|
|
Advance(original_buffer_size);
|
|
return false;
|
|
}
|
|
|
|
count -= original_buffer_size;
|
|
buffer_ = NULL;
|
|
buffer_end_ = buffer_;
|
|
|
|
// Make sure this skip doesn't try to skip past the current limit.
|
|
int closest_limit = std::min(current_limit_, total_bytes_limit_);
|
|
int bytes_until_limit = closest_limit - total_bytes_read_;
|
|
if (bytes_until_limit < count) {
|
|
// We hit the limit. Skip up to it then fail.
|
|
if (bytes_until_limit > 0) {
|
|
total_bytes_read_ = closest_limit;
|
|
input_->Skip(bytes_until_limit);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!input_->Skip(count)) {
|
|
total_bytes_read_ = input_->ByteCount();
|
|
return false;
|
|
}
|
|
total_bytes_read_ += count;
|
|
return true;
|
|
}
|
|
|
|
bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
|
|
if (BufferSize() == 0 && !Refresh()) return false;
|
|
|
|
*data = buffer_;
|
|
*size = BufferSize();
|
|
return true;
|
|
}
|
|
|
|
bool CodedInputStream::ReadRaw(void* buffer, int size) {
|
|
int current_buffer_size;
|
|
while ((current_buffer_size = BufferSize()) < size) {
|
|
// Reading past end of buffer. Copy what we have, then refresh.
|
|
memcpy(buffer, buffer_, current_buffer_size);
|
|
buffer = reinterpret_cast<uint8_t*>(buffer) + current_buffer_size;
|
|
size -= current_buffer_size;
|
|
Advance(current_buffer_size);
|
|
if (!Refresh()) return false;
|
|
}
|
|
|
|
memcpy(buffer, buffer_, size);
|
|
Advance(size);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CodedInputStream::ReadString(std::string* buffer, int size) {
|
|
if (size < 0) return false; // security: size is often user-supplied
|
|
|
|
if (BufferSize() >= size) {
|
|
STLStringResizeUninitialized(buffer, size);
|
|
std::pair<char*, bool> z = as_string_data(buffer);
|
|
if (z.second) {
|
|
// Oddly enough, memcpy() requires its first two args to be non-NULL even
|
|
// if we copy 0 bytes. So, we have ensured that z.first is non-NULL here.
|
|
GOOGLE_DCHECK(z.first != NULL);
|
|
memcpy(z.first, buffer_, size);
|
|
Advance(size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return ReadStringFallback(buffer, size);
|
|
}
|
|
|
|
bool CodedInputStream::ReadStringFallback(std::string* buffer, int size) {
|
|
if (!buffer->empty()) {
|
|
buffer->clear();
|
|
}
|
|
|
|
int closest_limit = std::min(current_limit_, total_bytes_limit_);
|
|
if (closest_limit != INT_MAX) {
|
|
int bytes_to_limit = closest_limit - CurrentPosition();
|
|
if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) {
|
|
buffer->reserve(size);
|
|
}
|
|
}
|
|
|
|
int current_buffer_size;
|
|
while ((current_buffer_size = BufferSize()) < size) {
|
|
// Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
|
|
if (current_buffer_size != 0) {
|
|
// Note: string1.append(string2) is O(string2.size()) (as opposed to
|
|
// O(string1.size() + string2.size()), which would be bad).
|
|
buffer->append(reinterpret_cast<const char*>(buffer_),
|
|
current_buffer_size);
|
|
}
|
|
size -= current_buffer_size;
|
|
Advance(current_buffer_size);
|
|
if (!Refresh()) return false;
|
|
}
|
|
|
|
buffer->append(reinterpret_cast<const char*>(buffer_), size);
|
|
Advance(size);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool CodedInputStream::ReadLittleEndian32Fallback(uint32_t* value) {
|
|
uint8_t bytes[sizeof(*value)];
|
|
|
|
const uint8_t* ptr;
|
|
if (BufferSize() >= static_cast<int64_t>(sizeof(*value))) {
|
|
// Fast path: Enough bytes in the buffer to read directly.
|
|
ptr = buffer_;
|
|
Advance(sizeof(*value));
|
|
} else {
|
|
// Slow path: Had to read past the end of the buffer.
|
|
if (!ReadRaw(bytes, sizeof(*value))) return false;
|
|
ptr = bytes;
|
|
}
|
|
ReadLittleEndian32FromArray(ptr, value);
|
|
return true;
|
|
}
|
|
|
|
bool CodedInputStream::ReadLittleEndian64Fallback(uint64_t* value) {
|
|
uint8_t bytes[sizeof(*value)];
|
|
|
|
const uint8_t* ptr;
|
|
if (BufferSize() >= static_cast<int64_t>(sizeof(*value))) {
|
|
// Fast path: Enough bytes in the buffer to read directly.
|
|
ptr = buffer_;
|
|
Advance(sizeof(*value));
|
|
} else {
|
|
// Slow path: Had to read past the end of the buffer.
|
|
if (!ReadRaw(bytes, sizeof(*value))) return false;
|
|
ptr = bytes;
|
|
}
|
|
ReadLittleEndian64FromArray(ptr, value);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Decodes varint64 with known size, N, and returns next pointer. Knowing N at
|
|
// compile time, compiler can generate optimal code. For example, instead of
|
|
// subtracting 0x80 at each iteration, it subtracts properly shifted mask once.
|
|
template <size_t N>
|
|
const uint8_t* DecodeVarint64KnownSize(const uint8_t* buffer, uint64_t* value) {
|
|
GOOGLE_DCHECK_GT(N, 0);
|
|
uint64_t result = static_cast<uint64_t>(buffer[N - 1]) << (7 * (N - 1));
|
|
for (size_t i = 0, offset = 0; i < N - 1; i++, offset += 7) {
|
|
result += static_cast<uint64_t>(buffer[i] - 0x80) << offset;
|
|
}
|
|
*value = result;
|
|
return buffer + N;
|
|
}
|
|
|
|
// Read a varint from the given buffer, write it to *value, and return a pair.
|
|
// The first part of the pair is true iff the read was successful. The second
|
|
// part is buffer + (number of bytes read). This function is always inlined,
|
|
// so returning a pair is costless.
|
|
PROTOBUF_ALWAYS_INLINE
|
|
::std::pair<bool, const uint8_t*> ReadVarint32FromArray(uint32_t first_byte,
|
|
const uint8_t* buffer,
|
|
uint32_t* value);
|
|
inline ::std::pair<bool, const uint8_t*> ReadVarint32FromArray(
|
|
uint32_t first_byte, const uint8_t* buffer, uint32_t* value) {
|
|
// Fast path: We have enough bytes left in the buffer to guarantee that
|
|
// this read won't cross the end, so we can skip the checks.
|
|
GOOGLE_DCHECK_EQ(*buffer, first_byte);
|
|
GOOGLE_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte;
|
|
const uint8_t* ptr = buffer;
|
|
uint32_t b;
|
|
uint32_t result = first_byte - 0x80;
|
|
++ptr; // We just processed the first byte. Move on to the second.
|
|
b = *(ptr++);
|
|
result += b << 7;
|
|
if (!(b & 0x80)) goto done;
|
|
result -= 0x80 << 7;
|
|
b = *(ptr++);
|
|
result += b << 14;
|
|
if (!(b & 0x80)) goto done;
|
|
result -= 0x80 << 14;
|
|
b = *(ptr++);
|
|
result += b << 21;
|
|
if (!(b & 0x80)) goto done;
|
|
result -= 0x80 << 21;
|
|
b = *(ptr++);
|
|
result += b << 28;
|
|
if (!(b & 0x80)) goto done;
|
|
// "result -= 0x80 << 28" is irrelevant.
|
|
|
|
// If the input is larger than 32 bits, we still need to read it all
|
|
// and discard the high-order bits.
|
|
for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
|
|
b = *(ptr++);
|
|
if (!(b & 0x80)) goto done;
|
|
}
|
|
|
|
// We have overrun the maximum size of a varint (10 bytes). Assume
|
|
// the data is corrupt.
|
|
return std::make_pair(false, ptr);
|
|
|
|
done:
|
|
*value = result;
|
|
return std::make_pair(true, ptr);
|
|
}
|
|
|
|
PROTOBUF_ALWAYS_INLINE::std::pair<bool, const uint8_t*> ReadVarint64FromArray(
|
|
const uint8_t* buffer, uint64_t* value);
|
|
inline ::std::pair<bool, const uint8_t*> ReadVarint64FromArray(
|
|
const uint8_t* buffer, uint64_t* value) {
|
|
// Assumes varint64 is at least 2 bytes.
|
|
GOOGLE_DCHECK_GE(buffer[0], 128);
|
|
|
|
const uint8_t* next;
|
|
if (buffer[1] < 128) {
|
|
next = DecodeVarint64KnownSize<2>(buffer, value);
|
|
} else if (buffer[2] < 128) {
|
|
next = DecodeVarint64KnownSize<3>(buffer, value);
|
|
} else if (buffer[3] < 128) {
|
|
next = DecodeVarint64KnownSize<4>(buffer, value);
|
|
} else if (buffer[4] < 128) {
|
|
next = DecodeVarint64KnownSize<5>(buffer, value);
|
|
} else if (buffer[5] < 128) {
|
|
next = DecodeVarint64KnownSize<6>(buffer, value);
|
|
} else if (buffer[6] < 128) {
|
|
next = DecodeVarint64KnownSize<7>(buffer, value);
|
|
} else if (buffer[7] < 128) {
|
|
next = DecodeVarint64KnownSize<8>(buffer, value);
|
|
} else if (buffer[8] < 128) {
|
|
next = DecodeVarint64KnownSize<9>(buffer, value);
|
|
} else if (buffer[9] < 128) {
|
|
next = DecodeVarint64KnownSize<10>(buffer, value);
|
|
} else {
|
|
// We have overrun the maximum size of a varint (10 bytes). Assume
|
|
// the data is corrupt.
|
|
return std::make_pair(false, buffer + 11);
|
|
}
|
|
|
|
return std::make_pair(true, next);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool CodedInputStream::ReadVarint32Slow(uint32_t* value) {
|
|
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
|
|
// for one-byte varints.
|
|
std::pair<uint64_t, bool> p = ReadVarint64Fallback();
|
|
*value = static_cast<uint32_t>(p.first);
|
|
return p.second;
|
|
}
|
|
|
|
int64_t CodedInputStream::ReadVarint32Fallback(uint32_t first_byte_or_zero) {
|
|
if (BufferSize() >= kMaxVarintBytes ||
|
|
// Optimization: We're also safe if the buffer is non-empty and it ends
|
|
// with a byte that would terminate a varint.
|
|
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
|
|
GOOGLE_DCHECK_NE(first_byte_or_zero, 0)
|
|
<< "Caller should provide us with *buffer_ when buffer is non-empty";
|
|
uint32_t temp;
|
|
::std::pair<bool, const uint8_t*> p =
|
|
ReadVarint32FromArray(first_byte_or_zero, buffer_, &temp);
|
|
if (!p.first) return -1;
|
|
buffer_ = p.second;
|
|
return temp;
|
|
} else {
|
|
// Really slow case: we will incur the cost of an extra function call here,
|
|
// but moving this out of line reduces the size of this function, which
|
|
// improves the common case. In micro benchmarks, this is worth about 10-15%
|
|
uint32_t temp;
|
|
return ReadVarint32Slow(&temp) ? static_cast<int64_t>(temp) : -1;
|
|
}
|
|
}
|
|
|
|
int CodedInputStream::ReadVarintSizeAsIntSlow() {
|
|
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
|
|
// for one-byte varints.
|
|
std::pair<uint64_t, bool> p = ReadVarint64Fallback();
|
|
if (!p.second || p.first > static_cast<uint64_t>(INT_MAX)) return -1;
|
|
return p.first;
|
|
}
|
|
|
|
int CodedInputStream::ReadVarintSizeAsIntFallback() {
|
|
if (BufferSize() >= kMaxVarintBytes ||
|
|
// Optimization: We're also safe if the buffer is non-empty and it ends
|
|
// with a byte that would terminate a varint.
|
|
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
|
|
uint64_t temp;
|
|
::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer_, &temp);
|
|
if (!p.first || temp > static_cast<uint64_t>(INT_MAX)) return -1;
|
|
buffer_ = p.second;
|
|
return temp;
|
|
} else {
|
|
// Really slow case: we will incur the cost of an extra function call here,
|
|
// but moving this out of line reduces the size of this function, which
|
|
// improves the common case. In micro benchmarks, this is worth about 10-15%
|
|
return ReadVarintSizeAsIntSlow();
|
|
}
|
|
}
|
|
|
|
uint32_t CodedInputStream::ReadTagSlow() {
|
|
if (buffer_ == buffer_end_) {
|
|
// Call refresh.
|
|
if (!Refresh()) {
|
|
// Refresh failed. Make sure that it failed due to EOF, not because
|
|
// we hit total_bytes_limit_, which, unlike normal limits, is not a
|
|
// valid place to end a message.
|
|
int current_position = total_bytes_read_ - buffer_size_after_limit_;
|
|
if (current_position >= total_bytes_limit_) {
|
|
// Hit total_bytes_limit_. But if we also hit the normal limit,
|
|
// we're still OK.
|
|
legitimate_message_end_ = current_limit_ == total_bytes_limit_;
|
|
} else {
|
|
legitimate_message_end_ = true;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// For the slow path, just do a 64-bit read. Try to optimize for one-byte tags
|
|
// again, since we have now refreshed the buffer.
|
|
uint64_t result = 0;
|
|
if (!ReadVarint64(&result)) return 0;
|
|
return static_cast<uint32_t>(result);
|
|
}
|
|
|
|
uint32_t CodedInputStream::ReadTagFallback(uint32_t first_byte_or_zero) {
|
|
const int buf_size = BufferSize();
|
|
if (buf_size >= kMaxVarintBytes ||
|
|
// Optimization: We're also safe if the buffer is non-empty and it ends
|
|
// with a byte that would terminate a varint.
|
|
(buf_size > 0 && !(buffer_end_[-1] & 0x80))) {
|
|
GOOGLE_DCHECK_EQ(first_byte_or_zero, buffer_[0]);
|
|
if (first_byte_or_zero == 0) {
|
|
++buffer_;
|
|
return 0;
|
|
}
|
|
uint32_t tag;
|
|
::std::pair<bool, const uint8_t*> p =
|
|
ReadVarint32FromArray(first_byte_or_zero, buffer_, &tag);
|
|
if (!p.first) {
|
|
return 0;
|
|
}
|
|
buffer_ = p.second;
|
|
return tag;
|
|
} else {
|
|
// We are commonly at a limit when attempting to read tags. Try to quickly
|
|
// detect this case without making another function call.
|
|
if ((buf_size == 0) &&
|
|
((buffer_size_after_limit_ > 0) ||
|
|
(total_bytes_read_ == current_limit_)) &&
|
|
// Make sure that the limit we hit is not total_bytes_limit_, since
|
|
// in that case we still need to call Refresh() so that it prints an
|
|
// error.
|
|
total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
|
|
// We hit a byte limit.
|
|
legitimate_message_end_ = true;
|
|
return 0;
|
|
}
|
|
return ReadTagSlow();
|
|
}
|
|
}
|
|
|
|
bool CodedInputStream::ReadVarint64Slow(uint64_t* value) {
|
|
// Slow path: This read might cross the end of the buffer, so we
|
|
// need to check and refresh the buffer if and when it does.
|
|
|
|
uint64_t result = 0;
|
|
int count = 0;
|
|
uint32_t b;
|
|
|
|
do {
|
|
if (count == kMaxVarintBytes) {
|
|
*value = 0;
|
|
return false;
|
|
}
|
|
while (buffer_ == buffer_end_) {
|
|
if (!Refresh()) {
|
|
*value = 0;
|
|
return false;
|
|
}
|
|
}
|
|
b = *buffer_;
|
|
result |= static_cast<uint64_t>(b & 0x7F) << (7 * count);
|
|
Advance(1);
|
|
++count;
|
|
} while (b & 0x80);
|
|
|
|
*value = result;
|
|
return true;
|
|
}
|
|
|
|
std::pair<uint64_t, bool> CodedInputStream::ReadVarint64Fallback() {
|
|
if (BufferSize() >= kMaxVarintBytes ||
|
|
// Optimization: We're also safe if the buffer is non-empty and it ends
|
|
// with a byte that would terminate a varint.
|
|
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
|
|
uint64_t temp;
|
|
::std::pair<bool, const uint8_t*> p = ReadVarint64FromArray(buffer_, &temp);
|
|
if (!p.first) {
|
|
return std::make_pair(0, false);
|
|
}
|
|
buffer_ = p.second;
|
|
return std::make_pair(temp, true);
|
|
} else {
|
|
uint64_t temp;
|
|
bool success = ReadVarint64Slow(&temp);
|
|
return std::make_pair(temp, success);
|
|
}
|
|
}
|
|
|
|
bool CodedInputStream::Refresh() {
|
|
GOOGLE_DCHECK_EQ(0, BufferSize());
|
|
|
|
if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
|
|
total_bytes_read_ == current_limit_) {
|
|
// We've hit a limit. Stop.
|
|
int current_position = total_bytes_read_ - buffer_size_after_limit_;
|
|
|
|
if (current_position >= total_bytes_limit_ &&
|
|
total_bytes_limit_ != current_limit_) {
|
|
// Hit total_bytes_limit_.
|
|
PrintTotalBytesLimitError();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const void* void_buffer;
|
|
int buffer_size;
|
|
if (NextNonEmpty(input_, &void_buffer, &buffer_size)) {
|
|
buffer_ = reinterpret_cast<const uint8_t*>(void_buffer);
|
|
buffer_end_ = buffer_ + buffer_size;
|
|
GOOGLE_CHECK_GE(buffer_size, 0);
|
|
|
|
if (total_bytes_read_ <= INT_MAX - buffer_size) {
|
|
total_bytes_read_ += buffer_size;
|
|
} else {
|
|
// Overflow. Reset buffer_end_ to not include the bytes beyond INT_MAX.
|
|
// We can't get that far anyway, because total_bytes_limit_ is guaranteed
|
|
// to be less than it. We need to keep track of the number of bytes
|
|
// we discarded, though, so that we can call input_->BackUp() to back
|
|
// up over them on destruction.
|
|
|
|
// The following line is equivalent to:
|
|
// overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX;
|
|
// except that it avoids overflows. Signed integer overflow has
|
|
// undefined results according to the C standard.
|
|
overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size);
|
|
buffer_end_ -= overflow_bytes_;
|
|
total_bytes_read_ = INT_MAX;
|
|
}
|
|
|
|
RecomputeBufferLimits();
|
|
return true;
|
|
} else {
|
|
buffer_ = NULL;
|
|
buffer_end_ = NULL;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// CodedOutputStream =================================================
|
|
|
|
void EpsCopyOutputStream::EnableAliasing(bool enabled) {
|
|
aliasing_enabled_ = enabled && stream_->AllowsAliasing();
|
|
}
|
|
|
|
int64_t EpsCopyOutputStream::ByteCount(uint8_t* ptr) const {
|
|
// Calculate the current offset relative to the end of the stream buffer.
|
|
int delta = (end_ - ptr) + (buffer_end_ ? 0 : kSlopBytes);
|
|
return stream_->ByteCount() - delta;
|
|
}
|
|
|
|
// Flushes what's written out to the underlying ZeroCopyOutputStream buffers.
|
|
// Returns the size remaining in the buffer and sets buffer_end_ to the start
|
|
// of the remaining buffer, ie. [buffer_end_, buffer_end_ + return value)
|
|
int EpsCopyOutputStream::Flush(uint8_t* ptr) {
|
|
while (buffer_end_ && ptr > end_) {
|
|
int overrun = ptr - end_;
|
|
GOOGLE_DCHECK(!had_error_);
|
|
GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
|
|
ptr = Next() + overrun;
|
|
if (had_error_) return 0;
|
|
}
|
|
int s;
|
|
if (buffer_end_) {
|
|
std::memcpy(buffer_end_, buffer_, ptr - buffer_);
|
|
buffer_end_ += ptr - buffer_;
|
|
s = end_ - ptr;
|
|
} else {
|
|
// The stream is writing directly in the ZeroCopyOutputStream buffer.
|
|
s = end_ + kSlopBytes - ptr;
|
|
buffer_end_ = ptr;
|
|
}
|
|
GOOGLE_DCHECK(s >= 0); // NOLINT
|
|
return s;
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::Trim(uint8_t* ptr) {
|
|
if (had_error_) return ptr;
|
|
int s = Flush(ptr);
|
|
stream_->BackUp(s);
|
|
// Reset to initial state (expecting new buffer)
|
|
buffer_end_ = end_ = buffer_;
|
|
return buffer_;
|
|
}
|
|
|
|
|
|
uint8_t* EpsCopyOutputStream::FlushAndResetBuffer(uint8_t* ptr) {
|
|
if (had_error_) return buffer_;
|
|
int s = Flush(ptr);
|
|
if (had_error_) return buffer_;
|
|
return SetInitialBuffer(buffer_end_, s);
|
|
}
|
|
|
|
bool EpsCopyOutputStream::Skip(int count, uint8_t** pp) {
|
|
if (count < 0) return false;
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return false;
|
|
}
|
|
int size = Flush(*pp);
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return false;
|
|
}
|
|
void* data = buffer_end_;
|
|
while (count > size) {
|
|
count -= size;
|
|
if (!stream_->Next(&data, &size)) {
|
|
*pp = Error();
|
|
return false;
|
|
}
|
|
}
|
|
*pp = SetInitialBuffer(static_cast<uint8_t*>(data) + count, size - count);
|
|
return true;
|
|
}
|
|
|
|
bool EpsCopyOutputStream::GetDirectBufferPointer(void** data, int* size,
|
|
uint8_t** pp) {
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return false;
|
|
}
|
|
*size = Flush(*pp);
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return false;
|
|
}
|
|
*data = buffer_end_;
|
|
while (*size == 0) {
|
|
if (!stream_->Next(data, size)) {
|
|
*pp = Error();
|
|
return false;
|
|
}
|
|
}
|
|
*pp = SetInitialBuffer(*data, *size);
|
|
return true;
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::GetDirectBufferForNBytesAndAdvance(int size,
|
|
uint8_t** pp) {
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return nullptr;
|
|
}
|
|
int s = Flush(*pp);
|
|
if (had_error_) {
|
|
*pp = buffer_;
|
|
return nullptr;
|
|
}
|
|
if (s >= size) {
|
|
auto res = buffer_end_;
|
|
*pp = SetInitialBuffer(buffer_end_ + size, s - size);
|
|
return res;
|
|
} else {
|
|
*pp = SetInitialBuffer(buffer_end_, s);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::Next() {
|
|
GOOGLE_DCHECK(!had_error_); // NOLINT
|
|
if (PROTOBUF_PREDICT_FALSE(stream_ == nullptr)) return Error();
|
|
if (buffer_end_) {
|
|
// We're in the patch buffer and need to fill up the previous buffer.
|
|
std::memcpy(buffer_end_, buffer_, end_ - buffer_);
|
|
uint8_t* ptr;
|
|
int size;
|
|
do {
|
|
void* data;
|
|
if (PROTOBUF_PREDICT_FALSE(!stream_->Next(&data, &size))) {
|
|
// Stream has an error, we use the patch buffer to continue to be
|
|
// able to write.
|
|
return Error();
|
|
}
|
|
ptr = static_cast<uint8_t*>(data);
|
|
} while (size == 0);
|
|
if (PROTOBUF_PREDICT_TRUE(size > kSlopBytes)) {
|
|
std::memcpy(ptr, end_, kSlopBytes);
|
|
end_ = ptr + size - kSlopBytes;
|
|
buffer_end_ = nullptr;
|
|
return ptr;
|
|
} else {
|
|
GOOGLE_DCHECK(size > 0); // NOLINT
|
|
// Buffer to small
|
|
std::memmove(buffer_, end_, kSlopBytes);
|
|
buffer_end_ = ptr;
|
|
end_ = buffer_ + size;
|
|
return buffer_;
|
|
}
|
|
} else {
|
|
std::memcpy(buffer_, end_, kSlopBytes);
|
|
buffer_end_ = end_;
|
|
end_ = buffer_ + kSlopBytes;
|
|
return buffer_;
|
|
}
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::EnsureSpaceFallback(uint8_t* ptr) {
|
|
do {
|
|
if (PROTOBUF_PREDICT_FALSE(had_error_)) return buffer_;
|
|
int overrun = ptr - end_;
|
|
GOOGLE_DCHECK(overrun >= 0); // NOLINT
|
|
GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
|
|
ptr = Next() + overrun;
|
|
} while (ptr >= end_);
|
|
GOOGLE_DCHECK(ptr < end_); // NOLINT
|
|
return ptr;
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::WriteRawFallback(const void* data, int size,
|
|
uint8_t* ptr) {
|
|
int s = GetSize(ptr);
|
|
while (s < size) {
|
|
std::memcpy(ptr, data, s);
|
|
size -= s;
|
|
data = static_cast<const uint8_t*>(data) + s;
|
|
ptr = EnsureSpaceFallback(ptr + s);
|
|
s = GetSize(ptr);
|
|
}
|
|
std::memcpy(ptr, data, size);
|
|
return ptr + size;
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::WriteAliasedRaw(const void* data, int size,
|
|
uint8_t* ptr) {
|
|
if (size < GetSize(ptr)
|
|
) {
|
|
return WriteRaw(data, size, ptr);
|
|
} else {
|
|
ptr = Trim(ptr);
|
|
if (stream_->WriteAliasedRaw(data, size)) return ptr;
|
|
return Error();
|
|
}
|
|
}
|
|
|
|
#ifndef PROTOBUF_LITTLE_ENDIAN
|
|
uint8_t* EpsCopyOutputStream::WriteRawLittleEndian32(const void* data, int size,
|
|
uint8_t* ptr) {
|
|
auto p = static_cast<const uint8_t*>(data);
|
|
auto end = p + size;
|
|
while (end - p >= kSlopBytes) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint32_t buffer[4];
|
|
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
|
|
std::memcpy(buffer, p, kSlopBytes);
|
|
p += kSlopBytes;
|
|
for (auto x : buffer)
|
|
ptr = CodedOutputStream::WriteLittleEndian32ToArray(x, ptr);
|
|
}
|
|
while (p < end) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint32_t buffer;
|
|
std::memcpy(&buffer, p, 4);
|
|
p += 4;
|
|
ptr = CodedOutputStream::WriteLittleEndian32ToArray(buffer, ptr);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::WriteRawLittleEndian64(const void* data, int size,
|
|
uint8_t* ptr) {
|
|
auto p = static_cast<const uint8_t*>(data);
|
|
auto end = p + size;
|
|
while (end - p >= kSlopBytes) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint64_t buffer[2];
|
|
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
|
|
std::memcpy(buffer, p, kSlopBytes);
|
|
p += kSlopBytes;
|
|
for (auto x : buffer)
|
|
ptr = CodedOutputStream::WriteLittleEndian64ToArray(x, ptr);
|
|
}
|
|
while (p < end) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint64_t buffer;
|
|
std::memcpy(&buffer, p, 8);
|
|
p += 8;
|
|
ptr = CodedOutputStream::WriteLittleEndian64ToArray(buffer, ptr);
|
|
}
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
|
|
uint8_t* EpsCopyOutputStream::WriteStringMaybeAliasedOutline(uint32_t num,
|
|
const std::string& s,
|
|
uint8_t* ptr) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint32_t size = s.size();
|
|
ptr = WriteLengthDelim(num, size, ptr);
|
|
return WriteRawMaybeAliased(s.data(), size, ptr);
|
|
}
|
|
|
|
uint8_t* EpsCopyOutputStream::WriteStringOutline(uint32_t num, const std::string& s,
|
|
uint8_t* ptr) {
|
|
ptr = EnsureSpace(ptr);
|
|
uint32_t size = s.size();
|
|
ptr = WriteLengthDelim(num, size, ptr);
|
|
return WriteRaw(s.data(), size, ptr);
|
|
}
|
|
|
|
std::atomic<bool> CodedOutputStream::default_serialization_deterministic_{
|
|
false};
|
|
|
|
CodedOutputStream::~CodedOutputStream() { Trim(); }
|
|
|
|
|
|
uint8_t* CodedOutputStream::WriteStringWithSizeToArray(const std::string& str,
|
|
uint8_t* target) {
|
|
GOOGLE_DCHECK_LE(str.size(), std::numeric_limits<uint32_t>::max());
|
|
target = WriteVarint32ToArray(str.size(), target);
|
|
return WriteStringToArray(str, target);
|
|
}
|
|
|
|
uint8_t* CodedOutputStream::WriteVarint32ToArrayOutOfLineHelper(uint32_t value,
|
|
uint8_t* target) {
|
|
GOOGLE_DCHECK_GE(value, 0x80);
|
|
target[0] |= static_cast<uint8_t>(0x80);
|
|
value >>= 7;
|
|
target[1] = static_cast<uint8_t>(value);
|
|
if (value < 0x80) {
|
|
return target + 2;
|
|
}
|
|
target += 2;
|
|
do {
|
|
// Turn on continuation bit in the byte we just wrote.
|
|
target[-1] |= static_cast<uint8_t>(0x80);
|
|
value >>= 7;
|
|
*target = static_cast<uint8_t>(value);
|
|
++target;
|
|
} while (value >= 0x80);
|
|
return target;
|
|
}
|
|
|
|
} // namespace io
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include <thirdparty/protobuf/port_undef.inc>
|