mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
2480 lines
87 KiB
C++
2480 lines
87 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// from google3/strings/strutil.cc
|
|
|
|
#include <thirdparty/protobuf/stubs/strutil.h>
|
|
|
|
#include <errno.h>
|
|
#include <float.h> // FLT_DIG and DBL_DIG
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <cmath>
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
#include <thirdparty/protobuf/stubs/logging.h>
|
|
#include <thirdparty/protobuf/stubs/stl_util.h>
|
|
|
|
#ifdef _WIN32
|
|
// MSVC has only _snprintf, not snprintf.
|
|
//
|
|
// MinGW has both snprintf and _snprintf, but they appear to be different
|
|
// functions. The former is buggy. When invoked like so:
|
|
// char buffer[32];
|
|
// snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
|
|
// it prints "1.23000e+10". This is plainly wrong: %g should never print
|
|
// trailing zeros after the decimal point. For some reason this bug only
|
|
// occurs with some input values, not all. In any case, _snprintf does the
|
|
// right thing, so we use it.
|
|
#define snprintf _snprintf
|
|
#endif
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
// These are defined as macros on some platforms. #undef them so that we can
|
|
// redefine them.
|
|
#undef isxdigit
|
|
#undef isprint
|
|
|
|
// The definitions of these in ctype.h change based on locale. Since our
|
|
// string manipulation is all in relation to the protocol buffer and C++
|
|
// languages, we always want to use the C locale. So, we re-define these
|
|
// exactly as we want them.
|
|
inline bool isxdigit(char c) {
|
|
return ('0' <= c && c <= '9') ||
|
|
('a' <= c && c <= 'f') ||
|
|
('A' <= c && c <= 'F');
|
|
}
|
|
|
|
inline bool isprint(char c) {
|
|
return c >= 0x20 && c <= 0x7E;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// ReplaceCharacters
|
|
// Replaces any occurrence of the character 'remove' (or the characters
|
|
// in 'remove') with the character 'replacewith'.
|
|
// ----------------------------------------------------------------------
|
|
void ReplaceCharacters(std::string *s, const char *remove, char replacewith) {
|
|
const char *str_start = s->c_str();
|
|
const char *str = str_start;
|
|
for (str = strpbrk(str, remove);
|
|
str != nullptr;
|
|
str = strpbrk(str + 1, remove)) {
|
|
(*s)[str - str_start] = replacewith;
|
|
}
|
|
}
|
|
|
|
void StripWhitespace(std::string *str) {
|
|
int str_length = str->length();
|
|
|
|
// Strip off leading whitespace.
|
|
int first = 0;
|
|
while (first < str_length && ascii_isspace(str->at(first))) {
|
|
++first;
|
|
}
|
|
// If entire string is white space.
|
|
if (first == str_length) {
|
|
str->clear();
|
|
return;
|
|
}
|
|
if (first > 0) {
|
|
str->erase(0, first);
|
|
str_length -= first;
|
|
}
|
|
|
|
// Strip off trailing whitespace.
|
|
int last = str_length - 1;
|
|
while (last >= 0 && ascii_isspace(str->at(last))) {
|
|
--last;
|
|
}
|
|
if (last != (str_length - 1) && last >= 0) {
|
|
str->erase(last + 1, std::string::npos);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// StringReplace()
|
|
// Replace the "old" pattern with the "new" pattern in a string,
|
|
// and append the result to "res". If replace_all is false,
|
|
// it only replaces the first instance of "old."
|
|
// ----------------------------------------------------------------------
|
|
|
|
void StringReplace(const std::string &s, const std::string &oldsub,
|
|
const std::string &newsub, bool replace_all,
|
|
std::string *res) {
|
|
if (oldsub.empty()) {
|
|
res->append(s); // if empty, append the given string.
|
|
return;
|
|
}
|
|
|
|
std::string::size_type start_pos = 0;
|
|
std::string::size_type pos;
|
|
do {
|
|
pos = s.find(oldsub, start_pos);
|
|
if (pos == std::string::npos) {
|
|
break;
|
|
}
|
|
res->append(s, start_pos, pos - start_pos);
|
|
res->append(newsub);
|
|
start_pos = pos + oldsub.size(); // start searching again after the "old"
|
|
} while (replace_all);
|
|
res->append(s, start_pos, s.length() - start_pos);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// StringReplace()
|
|
// Give me a string and two patterns "old" and "new", and I replace
|
|
// the first instance of "old" in the string with "new", if it
|
|
// exists. If "global" is true; call this repeatedly until it
|
|
// fails. RETURN a new string, regardless of whether the replacement
|
|
// happened or not.
|
|
// ----------------------------------------------------------------------
|
|
|
|
std::string StringReplace(const std::string &s, const std::string &oldsub,
|
|
const std::string &newsub, bool replace_all) {
|
|
std::string ret;
|
|
StringReplace(s, oldsub, newsub, replace_all, &ret);
|
|
return ret;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// SplitStringUsing()
|
|
// Split a string using a character delimiter. Append the components
|
|
// to 'result'.
|
|
//
|
|
// Note: For multi-character delimiters, this routine will split on *ANY* of
|
|
// the characters in the string, not the entire string as a single delimiter.
|
|
// ----------------------------------------------------------------------
|
|
template <typename ITR>
|
|
static inline void SplitStringToIteratorUsing(StringPiece full,
|
|
const char *delim, ITR &result) {
|
|
// Optimize the common case where delim is a single character.
|
|
if (delim[0] != '\0' && delim[1] == '\0') {
|
|
char c = delim[0];
|
|
const char* p = full.data();
|
|
const char* end = p + full.size();
|
|
while (p != end) {
|
|
if (*p == c) {
|
|
++p;
|
|
} else {
|
|
const char* start = p;
|
|
while (++p != end && *p != c);
|
|
*result++ = std::string(start, p - start);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
std::string::size_type begin_index, end_index;
|
|
begin_index = full.find_first_not_of(delim);
|
|
while (begin_index != std::string::npos) {
|
|
end_index = full.find_first_of(delim, begin_index);
|
|
if (end_index == std::string::npos) {
|
|
*result++ = std::string(full.substr(begin_index));
|
|
return;
|
|
}
|
|
*result++ =
|
|
std::string(full.substr(begin_index, (end_index - begin_index)));
|
|
begin_index = full.find_first_not_of(delim, end_index);
|
|
}
|
|
}
|
|
|
|
void SplitStringUsing(StringPiece full, const char *delim,
|
|
std::vector<std::string> *result) {
|
|
std::back_insert_iterator<std::vector<std::string> > it(*result);
|
|
SplitStringToIteratorUsing(full, delim, it);
|
|
}
|
|
|
|
// Split a string using a character delimiter. Append the components
|
|
// to 'result'. If there are consecutive delimiters, this function
|
|
// will return corresponding empty strings. The string is split into
|
|
// at most the specified number of pieces greedily. This means that the
|
|
// last piece may possibly be split further. To split into as many pieces
|
|
// as possible, specify 0 as the number of pieces.
|
|
//
|
|
// If "full" is the empty string, yields an empty string as the only value.
|
|
//
|
|
// If "pieces" is negative for some reason, it returns the whole string
|
|
// ----------------------------------------------------------------------
|
|
template <typename ITR>
|
|
static inline void SplitStringToIteratorAllowEmpty(StringPiece full,
|
|
const char *delim,
|
|
int pieces, ITR &result) {
|
|
std::string::size_type begin_index, end_index;
|
|
begin_index = 0;
|
|
|
|
for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
|
|
end_index = full.find_first_of(delim, begin_index);
|
|
if (end_index == std::string::npos) {
|
|
*result++ = std::string(full.substr(begin_index));
|
|
return;
|
|
}
|
|
*result++ =
|
|
std::string(full.substr(begin_index, (end_index - begin_index)));
|
|
begin_index = end_index + 1;
|
|
}
|
|
*result++ = std::string(full.substr(begin_index));
|
|
}
|
|
|
|
void SplitStringAllowEmpty(StringPiece full, const char *delim,
|
|
std::vector<std::string> *result) {
|
|
std::back_insert_iterator<std::vector<std::string> > it(*result);
|
|
SplitStringToIteratorAllowEmpty(full, delim, 0, it);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// JoinStrings()
|
|
// This merges a vector of string components with delim inserted
|
|
// as separaters between components.
|
|
//
|
|
// ----------------------------------------------------------------------
|
|
template <class ITERATOR>
|
|
static void JoinStringsIterator(const ITERATOR &start, const ITERATOR &end,
|
|
const char *delim, std::string *result) {
|
|
GOOGLE_CHECK(result != nullptr);
|
|
result->clear();
|
|
int delim_length = strlen(delim);
|
|
|
|
// Precompute resulting length so we can reserve() memory in one shot.
|
|
int length = 0;
|
|
for (ITERATOR iter = start; iter != end; ++iter) {
|
|
if (iter != start) {
|
|
length += delim_length;
|
|
}
|
|
length += iter->size();
|
|
}
|
|
result->reserve(length);
|
|
|
|
// Now combine everything.
|
|
for (ITERATOR iter = start; iter != end; ++iter) {
|
|
if (iter != start) {
|
|
result->append(delim, delim_length);
|
|
}
|
|
result->append(iter->data(), iter->size());
|
|
}
|
|
}
|
|
|
|
void JoinStrings(const std::vector<std::string> &components, const char *delim,
|
|
std::string *result) {
|
|
JoinStringsIterator(components.begin(), components.end(), delim, result);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// UnescapeCEscapeSequences()
|
|
// This does all the unescaping that C does: \ooo, \r, \n, etc
|
|
// Returns length of resulting string.
|
|
// The implementation of \x parses any positive number of hex digits,
|
|
// but it is an error if the value requires more than 8 bits, and the
|
|
// result is truncated to 8 bits.
|
|
//
|
|
// The second call stores its errors in a supplied string vector.
|
|
// If the string vector pointer is nullptr, it reports the errors with LOG().
|
|
// ----------------------------------------------------------------------
|
|
|
|
#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
|
|
|
|
// Protocol buffers doesn't ever care about errors, but I don't want to remove
|
|
// the code.
|
|
#define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
|
|
|
|
int UnescapeCEscapeSequences(const char* source, char* dest) {
|
|
return UnescapeCEscapeSequences(source, dest, nullptr);
|
|
}
|
|
|
|
int UnescapeCEscapeSequences(const char *source, char *dest,
|
|
std::vector<std::string> *errors) {
|
|
GOOGLE_DCHECK(errors == nullptr) << "Error reporting not implemented.";
|
|
|
|
char* d = dest;
|
|
const char* p = source;
|
|
|
|
// Small optimization for case where source = dest and there's no escaping
|
|
while ( p == d && *p != '\0' && *p != '\\' )
|
|
p++, d++;
|
|
|
|
while (*p != '\0') {
|
|
if (*p != '\\') {
|
|
*d++ = *p++;
|
|
} else {
|
|
switch ( *++p ) { // skip past the '\\'
|
|
case '\0':
|
|
LOG_STRING(ERROR, errors) << "String cannot end with \\";
|
|
*d = '\0';
|
|
return d - dest; // we're done with p
|
|
case 'a': *d++ = '\a'; break;
|
|
case 'b': *d++ = '\b'; break;
|
|
case 'f': *d++ = '\f'; break;
|
|
case 'n': *d++ = '\n'; break;
|
|
case 'r': *d++ = '\r'; break;
|
|
case 't': *d++ = '\t'; break;
|
|
case 'v': *d++ = '\v'; break;
|
|
case '\\': *d++ = '\\'; break;
|
|
case '?': *d++ = '\?'; break; // \? Who knew?
|
|
case '\'': *d++ = '\''; break;
|
|
case '"': *d++ = '\"'; break;
|
|
case '0': case '1': case '2': case '3': // octal digit: 1 to 3 digits
|
|
case '4': case '5': case '6': case '7': {
|
|
char ch = *p - '0';
|
|
if ( IS_OCTAL_DIGIT(p[1]) )
|
|
ch = ch * 8 + *++p - '0';
|
|
if ( IS_OCTAL_DIGIT(p[1]) ) // safe (and easy) to do this twice
|
|
ch = ch * 8 + *++p - '0'; // now points at last digit
|
|
*d++ = ch;
|
|
break;
|
|
}
|
|
case 'x': case 'X': {
|
|
if (!isxdigit(p[1])) {
|
|
if (p[1] == '\0') {
|
|
LOG_STRING(ERROR, errors) << "String cannot end with \\x";
|
|
} else {
|
|
LOG_STRING(ERROR, errors) <<
|
|
"\\x cannot be followed by non-hex digit: \\" << *p << p[1];
|
|
}
|
|
break;
|
|
}
|
|
unsigned int ch = 0;
|
|
const char *hex_start = p;
|
|
while (isxdigit(p[1])) // arbitrarily many hex digits
|
|
ch = (ch << 4) + hex_digit_to_int(*++p);
|
|
if (ch > 0xFF)
|
|
LOG_STRING(ERROR, errors)
|
|
<< "Value of "
|
|
<< "\\" << std::string(hex_start, p + 1 - hex_start)
|
|
<< " exceeds 8 bits";
|
|
*d++ = ch;
|
|
break;
|
|
}
|
|
#if 0 // TODO(kenton): Support \u and \U? Requires runetochar().
|
|
case 'u': {
|
|
// \uhhhh => convert 4 hex digits to UTF-8
|
|
char32 rune = 0;
|
|
const char *hex_start = p;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (isxdigit(p[1])) { // Look one char ahead.
|
|
rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p.
|
|
} else {
|
|
LOG_STRING(ERROR, errors)
|
|
<< "\\u must be followed by 4 hex digits: \\"
|
|
<< std::string(hex_start, p+1-hex_start);
|
|
break;
|
|
}
|
|
}
|
|
d += runetochar(d, &rune);
|
|
break;
|
|
}
|
|
case 'U': {
|
|
// \Uhhhhhhhh => convert 8 hex digits to UTF-8
|
|
char32 rune = 0;
|
|
const char *hex_start = p;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (isxdigit(p[1])) { // Look one char ahead.
|
|
// Don't change rune until we're sure this
|
|
// is within the Unicode limit, but do advance p.
|
|
char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
|
|
if (newrune > 0x10FFFF) {
|
|
LOG_STRING(ERROR, errors)
|
|
<< "Value of \\"
|
|
<< std::string(hex_start, p + 1 - hex_start)
|
|
<< " exceeds Unicode limit (0x10FFFF)";
|
|
break;
|
|
} else {
|
|
rune = newrune;
|
|
}
|
|
} else {
|
|
LOG_STRING(ERROR, errors)
|
|
<< "\\U must be followed by 8 hex digits: \\"
|
|
<< std::string(hex_start, p+1-hex_start);
|
|
break;
|
|
}
|
|
}
|
|
d += runetochar(d, &rune);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
|
|
}
|
|
p++; // read past letter we escaped
|
|
}
|
|
}
|
|
*d = '\0';
|
|
return d - dest;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// UnescapeCEscapeString()
|
|
// This does the same thing as UnescapeCEscapeSequences, but creates
|
|
// a new string. The caller does not need to worry about allocating
|
|
// a dest buffer. This should be used for non performance critical
|
|
// tasks such as printing debug messages. It is safe for src and dest
|
|
// to be the same.
|
|
//
|
|
// The second call stores its errors in a supplied string vector.
|
|
// If the string vector pointer is nullptr, it reports the errors with LOG().
|
|
//
|
|
// In the first and second calls, the length of dest is returned. In the
|
|
// the third call, the new string is returned.
|
|
// ----------------------------------------------------------------------
|
|
int UnescapeCEscapeString(const std::string &src, std::string *dest) {
|
|
return UnescapeCEscapeString(src, dest, nullptr);
|
|
}
|
|
|
|
int UnescapeCEscapeString(const std::string &src, std::string *dest,
|
|
std::vector<std::string> *errors) {
|
|
std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
|
|
int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
|
|
GOOGLE_CHECK(dest);
|
|
dest->assign(unescaped.get(), len);
|
|
return len;
|
|
}
|
|
|
|
std::string UnescapeCEscapeString(const std::string &src) {
|
|
std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
|
|
int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), nullptr);
|
|
return std::string(unescaped.get(), len);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// CEscapeString()
|
|
// CHexEscapeString()
|
|
// Copies 'src' to 'dest', escaping dangerous characters using
|
|
// C-style escape sequences. This is very useful for preparing query
|
|
// flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
|
|
// hexadecimal rather than octal sequences.
|
|
// Returns the number of bytes written to 'dest' (not including the \0)
|
|
// or -1 if there was insufficient space.
|
|
//
|
|
// Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
|
|
// ----------------------------------------------------------------------
|
|
int CEscapeInternal(const char* src, int src_len, char* dest,
|
|
int dest_len, bool use_hex, bool utf8_safe) {
|
|
const char* src_end = src + src_len;
|
|
int used = 0;
|
|
bool last_hex_escape = false; // true if last output char was \xNN
|
|
|
|
for (; src < src_end; src++) {
|
|
if (dest_len - used < 2) // Need space for two letter escape
|
|
return -1;
|
|
|
|
bool is_hex_escape = false;
|
|
switch (*src) {
|
|
case '\n': dest[used++] = '\\'; dest[used++] = 'n'; break;
|
|
case '\r': dest[used++] = '\\'; dest[used++] = 'r'; break;
|
|
case '\t': dest[used++] = '\\'; dest[used++] = 't'; break;
|
|
case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
|
|
case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
|
|
case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
|
|
default:
|
|
// Note that if we emit \xNN and the src character after that is a hex
|
|
// digit then that digit must be escaped too to prevent it being
|
|
// interpreted as part of the character code by C.
|
|
if ((!utf8_safe || static_cast<uint8_t>(*src) < 0x80) &&
|
|
(!isprint(*src) ||
|
|
(last_hex_escape && isxdigit(*src)))) {
|
|
if (dest_len - used < 4) // need space for 4 letter escape
|
|
return -1;
|
|
sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
|
|
static_cast<uint8_t>(*src));
|
|
is_hex_escape = use_hex;
|
|
used += 4;
|
|
} else {
|
|
dest[used++] = *src; break;
|
|
}
|
|
}
|
|
last_hex_escape = is_hex_escape;
|
|
}
|
|
|
|
if (dest_len - used < 1) // make sure that there is room for \0
|
|
return -1;
|
|
|
|
dest[used] = '\0'; // doesn't count towards return value though
|
|
return used;
|
|
}
|
|
|
|
// Calculates the length of the C-style escaped version of 'src'.
|
|
// Assumes that non-printable characters are escaped using octal sequences, and
|
|
// that UTF-8 bytes are not handled specially.
|
|
static inline size_t CEscapedLength(StringPiece src) {
|
|
static char c_escaped_len[256] = {
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", '
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9'
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O'
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\'
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o'
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
};
|
|
|
|
size_t escaped_len = 0;
|
|
for (StringPiece::size_type i = 0; i < src.size(); ++i) {
|
|
unsigned char c = static_cast<unsigned char>(src[i]);
|
|
escaped_len += c_escaped_len[c];
|
|
}
|
|
return escaped_len;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// Escapes 'src' using C-style escape sequences, and appends the escaped string
|
|
// to 'dest'. This version is faster than calling CEscapeInternal as it computes
|
|
// the required space using a lookup table, and also does not do any special
|
|
// handling for Hex or UTF-8 characters.
|
|
// ----------------------------------------------------------------------
|
|
void CEscapeAndAppend(StringPiece src, std::string *dest) {
|
|
size_t escaped_len = CEscapedLength(src);
|
|
if (escaped_len == src.size()) {
|
|
dest->append(src.data(), src.size());
|
|
return;
|
|
}
|
|
|
|
size_t cur_dest_len = dest->size();
|
|
dest->resize(cur_dest_len + escaped_len);
|
|
char* append_ptr = &(*dest)[cur_dest_len];
|
|
|
|
for (StringPiece::size_type i = 0; i < src.size(); ++i) {
|
|
unsigned char c = static_cast<unsigned char>(src[i]);
|
|
switch (c) {
|
|
case '\n': *append_ptr++ = '\\'; *append_ptr++ = 'n'; break;
|
|
case '\r': *append_ptr++ = '\\'; *append_ptr++ = 'r'; break;
|
|
case '\t': *append_ptr++ = '\\'; *append_ptr++ = 't'; break;
|
|
case '\"': *append_ptr++ = '\\'; *append_ptr++ = '\"'; break;
|
|
case '\'': *append_ptr++ = '\\'; *append_ptr++ = '\''; break;
|
|
case '\\': *append_ptr++ = '\\'; *append_ptr++ = '\\'; break;
|
|
default:
|
|
if (!isprint(c)) {
|
|
*append_ptr++ = '\\';
|
|
*append_ptr++ = '0' + c / 64;
|
|
*append_ptr++ = '0' + (c % 64) / 8;
|
|
*append_ptr++ = '0' + c % 8;
|
|
} else {
|
|
*append_ptr++ = c;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string CEscape(const std::string &src) {
|
|
std::string dest;
|
|
CEscapeAndAppend(src, &dest);
|
|
return dest;
|
|
}
|
|
|
|
namespace strings {
|
|
|
|
std::string Utf8SafeCEscape(const std::string &src) {
|
|
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
|
|
std::unique_ptr<char[]> dest(new char[dest_length]);
|
|
const int len = CEscapeInternal(src.data(), src.size(),
|
|
dest.get(), dest_length, false, true);
|
|
GOOGLE_DCHECK_GE(len, 0);
|
|
return std::string(dest.get(), len);
|
|
}
|
|
|
|
std::string CHexEscape(const std::string &src) {
|
|
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
|
|
std::unique_ptr<char[]> dest(new char[dest_length]);
|
|
const int len = CEscapeInternal(src.data(), src.size(),
|
|
dest.get(), dest_length, true, false);
|
|
GOOGLE_DCHECK_GE(len, 0);
|
|
return std::string(dest.get(), len);
|
|
}
|
|
|
|
} // namespace strings
|
|
|
|
// ----------------------------------------------------------------------
|
|
// strto32_adaptor()
|
|
// strtou32_adaptor()
|
|
// Implementation of strto[u]l replacements that have identical
|
|
// overflow and underflow characteristics for both ILP-32 and LP-64
|
|
// platforms, including errno preservation in error-free calls.
|
|
// ----------------------------------------------------------------------
|
|
|
|
int32_t strto32_adaptor(const char *nptr, char **endptr, int base) {
|
|
const int saved_errno = errno;
|
|
errno = 0;
|
|
const long result = strtol(nptr, endptr, base);
|
|
if (errno == ERANGE && result == LONG_MIN) {
|
|
return std::numeric_limits<int32_t>::min();
|
|
} else if (errno == ERANGE && result == LONG_MAX) {
|
|
return std::numeric_limits<int32_t>::max();
|
|
} else if (errno == 0 && result < std::numeric_limits<int32_t>::min()) {
|
|
errno = ERANGE;
|
|
return std::numeric_limits<int32_t>::min();
|
|
} else if (errno == 0 && result > std::numeric_limits<int32_t>::max()) {
|
|
errno = ERANGE;
|
|
return std::numeric_limits<int32_t>::max();
|
|
}
|
|
if (errno == 0)
|
|
errno = saved_errno;
|
|
return static_cast<int32_t>(result);
|
|
}
|
|
|
|
uint32_t strtou32_adaptor(const char *nptr, char **endptr, int base) {
|
|
const int saved_errno = errno;
|
|
errno = 0;
|
|
const unsigned long result = strtoul(nptr, endptr, base);
|
|
if (errno == ERANGE && result == ULONG_MAX) {
|
|
return std::numeric_limits<uint32_t>::max();
|
|
} else if (errno == 0 && result > std::numeric_limits<uint32_t>::max()) {
|
|
errno = ERANGE;
|
|
return std::numeric_limits<uint32_t>::max();
|
|
}
|
|
if (errno == 0)
|
|
errno = saved_errno;
|
|
return static_cast<uint32_t>(result);
|
|
}
|
|
|
|
inline bool safe_parse_sign(std::string *text /*inout*/,
|
|
bool *negative_ptr /*output*/) {
|
|
const char* start = text->data();
|
|
const char* end = start + text->size();
|
|
|
|
// Consume whitespace.
|
|
while (start < end && (start[0] == ' ')) {
|
|
++start;
|
|
}
|
|
while (start < end && (end[-1] == ' ')) {
|
|
--end;
|
|
}
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
|
|
// Consume sign.
|
|
*negative_ptr = (start[0] == '-');
|
|
if (*negative_ptr || start[0] == '+') {
|
|
++start;
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
}
|
|
*text = text->substr(start - text->data(), end - start);
|
|
return true;
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool safe_parse_positive_int(std::string text, IntType *value_p) {
|
|
int base = 10;
|
|
IntType value = 0;
|
|
const IntType vmax = std::numeric_limits<IntType>::max();
|
|
assert(vmax > 0);
|
|
assert(vmax >= base);
|
|
const IntType vmax_over_base = vmax / base;
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = c - '0';
|
|
if (digit >= base || digit < 0) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value > vmax_over_base) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value > vmax - digit) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value += digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool safe_parse_negative_int(const std::string &text, IntType *value_p) {
|
|
int base = 10;
|
|
IntType value = 0;
|
|
const IntType vmin = std::numeric_limits<IntType>::min();
|
|
assert(vmin < 0);
|
|
assert(vmin <= 0 - base);
|
|
IntType vmin_over_base = vmin / base;
|
|
// 2003 c++ standard [expr.mul]
|
|
// "... the sign of the remainder is implementation-defined."
|
|
// Although (vmin/base)*base + vmin%base is always vmin.
|
|
// 2011 c++ standard tightens the spec but we cannot rely on it.
|
|
if (vmin % base > 0) {
|
|
vmin_over_base += 1;
|
|
}
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = c - '0';
|
|
if (digit >= base || digit < 0) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value < vmin_over_base) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value < vmin + digit) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value -= digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool safe_int_internal(std::string text, IntType *value_p) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign(&text, &negative)) {
|
|
return false;
|
|
}
|
|
if (!negative) {
|
|
return safe_parse_positive_int(text, value_p);
|
|
} else {
|
|
return safe_parse_negative_int(text, value_p);
|
|
}
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool safe_uint_internal(std::string text, IntType *value_p) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign(&text, &negative) || negative) {
|
|
return false;
|
|
}
|
|
return safe_parse_positive_int(text, value_p);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// FastIntToBuffer()
|
|
// FastInt64ToBuffer()
|
|
// FastHexToBuffer()
|
|
// FastHex64ToBuffer()
|
|
// FastHex32ToBuffer()
|
|
// ----------------------------------------------------------------------
|
|
|
|
// Offset into buffer where FastInt64ToBuffer places the end of string
|
|
// null character. Also used by FastInt64ToBufferLeft.
|
|
static const int kFastInt64ToBufferOffset = 21;
|
|
|
|
char *FastInt64ToBuffer(int64_t i, char* buffer) {
|
|
// We could collapse the positive and negative sections, but that
|
|
// would be slightly slower for positive numbers...
|
|
// 22 bytes is enough to store -2**64, -18446744073709551616.
|
|
char* p = buffer + kFastInt64ToBufferOffset;
|
|
*p-- = '\0';
|
|
if (i >= 0) {
|
|
do {
|
|
*p-- = '0' + i % 10;
|
|
i /= 10;
|
|
} while (i > 0);
|
|
return p + 1;
|
|
} else {
|
|
// On different platforms, % and / have different behaviors for
|
|
// negative numbers, so we need to jump through hoops to make sure
|
|
// we don't divide negative numbers.
|
|
if (i > -10) {
|
|
i = -i;
|
|
*p-- = '0' + i;
|
|
*p = '-';
|
|
return p;
|
|
} else {
|
|
// Make sure we aren't at MIN_INT, in which case we can't say i = -i
|
|
i = i + 10;
|
|
i = -i;
|
|
*p-- = '0' + i % 10;
|
|
// Undo what we did a moment ago
|
|
i = i / 10 + 1;
|
|
do {
|
|
*p-- = '0' + i % 10;
|
|
i /= 10;
|
|
} while (i > 0);
|
|
*p = '-';
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Offset into buffer where FastInt32ToBuffer places the end of string
|
|
// null character. Also used by FastInt32ToBufferLeft
|
|
static const int kFastInt32ToBufferOffset = 11;
|
|
|
|
// Yes, this is a duplicate of FastInt64ToBuffer. But, we need this for the
|
|
// compiler to generate 32 bit arithmetic instructions. It's much faster, at
|
|
// least with 32 bit binaries.
|
|
char *FastInt32ToBuffer(int32_t i, char* buffer) {
|
|
// We could collapse the positive and negative sections, but that
|
|
// would be slightly slower for positive numbers...
|
|
// 12 bytes is enough to store -2**32, -4294967296.
|
|
char* p = buffer + kFastInt32ToBufferOffset;
|
|
*p-- = '\0';
|
|
if (i >= 0) {
|
|
do {
|
|
*p-- = '0' + i % 10;
|
|
i /= 10;
|
|
} while (i > 0);
|
|
return p + 1;
|
|
} else {
|
|
// On different platforms, % and / have different behaviors for
|
|
// negative numbers, so we need to jump through hoops to make sure
|
|
// we don't divide negative numbers.
|
|
if (i > -10) {
|
|
i = -i;
|
|
*p-- = '0' + i;
|
|
*p = '-';
|
|
return p;
|
|
} else {
|
|
// Make sure we aren't at MIN_INT, in which case we can't say i = -i
|
|
i = i + 10;
|
|
i = -i;
|
|
*p-- = '0' + i % 10;
|
|
// Undo what we did a moment ago
|
|
i = i / 10 + 1;
|
|
do {
|
|
*p-- = '0' + i % 10;
|
|
i /= 10;
|
|
} while (i > 0);
|
|
*p = '-';
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
char *FastHexToBuffer(int i, char* buffer) {
|
|
GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
|
|
|
|
static const char *hexdigits = "0123456789abcdef";
|
|
char *p = buffer + 21;
|
|
*p-- = '\0';
|
|
do {
|
|
*p-- = hexdigits[i & 15]; // mod by 16
|
|
i >>= 4; // divide by 16
|
|
} while (i > 0);
|
|
return p + 1;
|
|
}
|
|
|
|
char *InternalFastHexToBuffer(uint64_t value, char* buffer, int num_byte) {
|
|
static const char *hexdigits = "0123456789abcdef";
|
|
buffer[num_byte] = '\0';
|
|
for (int i = num_byte - 1; i >= 0; i--) {
|
|
#ifdef _M_X64
|
|
// MSVC x64 platform has a bug optimizing the uint32(value) in the #else
|
|
// block. Given that the uint32 cast was to improve performance on 32-bit
|
|
// platforms, we use 64-bit '&' directly.
|
|
buffer[i] = hexdigits[value & 0xf];
|
|
#else
|
|
buffer[i] = hexdigits[uint32_t(value) & 0xf];
|
|
#endif
|
|
value >>= 4;
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
char *FastHex64ToBuffer(uint64_t value, char* buffer) {
|
|
return InternalFastHexToBuffer(value, buffer, 16);
|
|
}
|
|
|
|
char *FastHex32ToBuffer(uint32_t value, char* buffer) {
|
|
return InternalFastHexToBuffer(value, buffer, 8);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// FastInt32ToBufferLeft()
|
|
// FastUInt32ToBufferLeft()
|
|
// FastInt64ToBufferLeft()
|
|
// FastUInt64ToBufferLeft()
|
|
//
|
|
// Like the Fast*ToBuffer() functions above, these are intended for speed.
|
|
// Unlike the Fast*ToBuffer() functions, however, these functions write
|
|
// their output to the beginning of the buffer (hence the name, as the
|
|
// output is left-aligned). The caller is responsible for ensuring that
|
|
// the buffer has enough space to hold the output.
|
|
//
|
|
// Returns a pointer to the end of the string (i.e. the null character
|
|
// terminating the string).
|
|
// ----------------------------------------------------------------------
|
|
|
|
static const char two_ASCII_digits[100][2] = {
|
|
{'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
|
|
{'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
|
|
{'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
|
|
{'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
|
|
{'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
|
|
{'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
|
|
{'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
|
|
{'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
|
|
{'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
|
|
{'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
|
|
{'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
|
|
{'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
|
|
{'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
|
|
{'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
|
|
{'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
|
|
{'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
|
|
{'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
|
|
{'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
|
|
{'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
|
|
{'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
|
|
};
|
|
|
|
char* FastUInt32ToBufferLeft(uint32_t u, char* buffer) {
|
|
uint32_t digits;
|
|
const char *ASCII_digits = nullptr;
|
|
// The idea of this implementation is to trim the number of divides to as few
|
|
// as possible by using multiplication and subtraction rather than mod (%),
|
|
// and by outputting two digits at a time rather than one.
|
|
// The huge-number case is first, in the hopes that the compiler will output
|
|
// that case in one branch-free block of code, and only output conditional
|
|
// branches into it from below.
|
|
if (u >= 1000000000) { // >= 1,000,000,000
|
|
digits = u / 100000000; // 100,000,000
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
sublt100_000_000:
|
|
u -= digits * 100000000; // 100,000,000
|
|
lt100_000_000:
|
|
digits = u / 1000000; // 1,000,000
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
sublt1_000_000:
|
|
u -= digits * 1000000; // 1,000,000
|
|
lt1_000_000:
|
|
digits = u / 10000; // 10,000
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
sublt10_000:
|
|
u -= digits * 10000; // 10,000
|
|
lt10_000:
|
|
digits = u / 100;
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
sublt100:
|
|
u -= digits * 100;
|
|
lt100:
|
|
digits = u;
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
done:
|
|
*buffer = 0;
|
|
return buffer;
|
|
}
|
|
|
|
if (u < 100) {
|
|
digits = u;
|
|
if (u >= 10) goto lt100;
|
|
*buffer++ = '0' + digits;
|
|
goto done;
|
|
}
|
|
if (u < 10000) { // 10,000
|
|
if (u >= 1000) goto lt10_000;
|
|
digits = u / 100;
|
|
*buffer++ = '0' + digits;
|
|
goto sublt100;
|
|
}
|
|
if (u < 1000000) { // 1,000,000
|
|
if (u >= 100000) goto lt1_000_000;
|
|
digits = u / 10000; // 10,000
|
|
*buffer++ = '0' + digits;
|
|
goto sublt10_000;
|
|
}
|
|
if (u < 100000000) { // 100,000,000
|
|
if (u >= 10000000) goto lt100_000_000;
|
|
digits = u / 1000000; // 1,000,000
|
|
*buffer++ = '0' + digits;
|
|
goto sublt1_000_000;
|
|
}
|
|
// we already know that u < 1,000,000,000
|
|
digits = u / 100000000; // 100,000,000
|
|
*buffer++ = '0' + digits;
|
|
goto sublt100_000_000;
|
|
}
|
|
|
|
char* FastInt32ToBufferLeft(int32_t i, char* buffer) {
|
|
uint32_t u = 0;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
u -= i;
|
|
} else {
|
|
u = i;
|
|
}
|
|
return FastUInt32ToBufferLeft(u, buffer);
|
|
}
|
|
|
|
char* FastUInt64ToBufferLeft(uint64_t u64, char* buffer) {
|
|
int digits;
|
|
const char *ASCII_digits = nullptr;
|
|
|
|
uint32_t u = static_cast<uint32_t>(u64);
|
|
if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
|
|
|
|
uint64_t top_11_digits = u64 / 1000000000;
|
|
buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
|
|
u = u64 - (top_11_digits * 1000000000);
|
|
|
|
digits = u / 10000000; // 10,000,000
|
|
GOOGLE_DCHECK_LT(digits, 100);
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
u -= digits * 10000000; // 10,000,000
|
|
digits = u / 100000; // 100,000
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
u -= digits * 100000; // 100,000
|
|
digits = u / 1000; // 1,000
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
u -= digits * 1000; // 1,000
|
|
digits = u / 10;
|
|
ASCII_digits = two_ASCII_digits[digits];
|
|
buffer[0] = ASCII_digits[0];
|
|
buffer[1] = ASCII_digits[1];
|
|
buffer += 2;
|
|
u -= digits * 10;
|
|
digits = u;
|
|
*buffer++ = '0' + digits;
|
|
*buffer = 0;
|
|
return buffer;
|
|
}
|
|
|
|
char* FastInt64ToBufferLeft(int64_t i, char* buffer) {
|
|
uint64_t u = 0;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
u -= i;
|
|
} else {
|
|
u = i;
|
|
}
|
|
return FastUInt64ToBufferLeft(u, buffer);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// SimpleItoa()
|
|
// Description: converts an integer to a string.
|
|
//
|
|
// Return value: string
|
|
// ----------------------------------------------------------------------
|
|
|
|
std::string SimpleItoa(int i) {
|
|
char buffer[kFastToBufferSize];
|
|
return (sizeof(i) == 4) ?
|
|
FastInt32ToBuffer(i, buffer) :
|
|
FastInt64ToBuffer(i, buffer);
|
|
}
|
|
|
|
std::string SimpleItoa(unsigned int i) {
|
|
char buffer[kFastToBufferSize];
|
|
return std::string(buffer, (sizeof(i) == 4)
|
|
? FastUInt32ToBufferLeft(i, buffer)
|
|
: FastUInt64ToBufferLeft(i, buffer));
|
|
}
|
|
|
|
std::string SimpleItoa(long i) {
|
|
char buffer[kFastToBufferSize];
|
|
return (sizeof(i) == 4) ?
|
|
FastInt32ToBuffer(i, buffer) :
|
|
FastInt64ToBuffer(i, buffer);
|
|
}
|
|
|
|
std::string SimpleItoa(unsigned long i) {
|
|
char buffer[kFastToBufferSize];
|
|
return std::string(buffer, (sizeof(i) == 4)
|
|
? FastUInt32ToBufferLeft(i, buffer)
|
|
: FastUInt64ToBufferLeft(i, buffer));
|
|
}
|
|
|
|
std::string SimpleItoa(long long i) {
|
|
char buffer[kFastToBufferSize];
|
|
return (sizeof(i) == 4) ?
|
|
FastInt32ToBuffer(i, buffer) :
|
|
FastInt64ToBuffer(i, buffer);
|
|
}
|
|
|
|
std::string SimpleItoa(unsigned long long i) {
|
|
char buffer[kFastToBufferSize];
|
|
return std::string(buffer, (sizeof(i) == 4)
|
|
? FastUInt32ToBufferLeft(i, buffer)
|
|
: FastUInt64ToBufferLeft(i, buffer));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// SimpleDtoa()
|
|
// SimpleFtoa()
|
|
// DoubleToBuffer()
|
|
// FloatToBuffer()
|
|
// We want to print the value without losing precision, but we also do
|
|
// not want to print more digits than necessary. This turns out to be
|
|
// trickier than it sounds. Numbers like 0.2 cannot be represented
|
|
// exactly in binary. If we print 0.2 with a very large precision,
|
|
// e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
|
|
// On the other hand, if we set the precision too low, we lose
|
|
// significant digits when printing numbers that actually need them.
|
|
// It turns out there is no precision value that does the right thing
|
|
// for all numbers.
|
|
//
|
|
// Our strategy is to first try printing with a precision that is never
|
|
// over-precise, then parse the result with strtod() to see if it
|
|
// matches. If not, we print again with a precision that will always
|
|
// give a precise result, but may use more digits than necessary.
|
|
//
|
|
// An arguably better strategy would be to use the algorithm described
|
|
// in "How to Print Floating-Point Numbers Accurately" by Steele &
|
|
// White, e.g. as implemented by David M. Gay's dtoa(). It turns out,
|
|
// however, that the following implementation is about as fast as
|
|
// DMG's code. Furthermore, DMG's code locks mutexes, which means it
|
|
// will not scale well on multi-core machines. DMG's code is slightly
|
|
// more accurate (in that it will never use more digits than
|
|
// necessary), but this is probably irrelevant for most users.
|
|
//
|
|
// Rob Pike and Ken Thompson also have an implementation of dtoa() in
|
|
// third_party/fmt/fltfmt.cc. Their implementation is similar to this
|
|
// one in that it makes guesses and then uses strtod() to check them.
|
|
// Their implementation is faster because they use their own code to
|
|
// generate the digits in the first place rather than use snprintf(),
|
|
// thus avoiding format string parsing overhead. However, this makes
|
|
// it considerably more complicated than the following implementation,
|
|
// and it is embedded in a larger library. If speed turns out to be
|
|
// an issue, we could re-implement this in terms of their
|
|
// implementation.
|
|
// ----------------------------------------------------------------------
|
|
|
|
std::string SimpleDtoa(double value) {
|
|
char buffer[kDoubleToBufferSize];
|
|
return DoubleToBuffer(value, buffer);
|
|
}
|
|
|
|
std::string SimpleFtoa(float value) {
|
|
char buffer[kFloatToBufferSize];
|
|
return FloatToBuffer(value, buffer);
|
|
}
|
|
|
|
static inline bool IsValidFloatChar(char c) {
|
|
return ('0' <= c && c <= '9') ||
|
|
c == 'e' || c == 'E' ||
|
|
c == '+' || c == '-';
|
|
}
|
|
|
|
void DelocalizeRadix(char* buffer) {
|
|
// Fast check: if the buffer has a normal decimal point, assume no
|
|
// translation is needed.
|
|
if (strchr(buffer, '.') != nullptr) return;
|
|
|
|
// Find the first unknown character.
|
|
while (IsValidFloatChar(*buffer)) ++buffer;
|
|
|
|
if (*buffer == '\0') {
|
|
// No radix character found.
|
|
return;
|
|
}
|
|
|
|
// We are now pointing at the locale-specific radix character. Replace it
|
|
// with '.'.
|
|
*buffer = '.';
|
|
++buffer;
|
|
|
|
if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
|
|
// It appears the radix was a multi-byte character. We need to remove the
|
|
// extra bytes.
|
|
char* target = buffer;
|
|
do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
|
|
memmove(target, buffer, strlen(buffer) + 1);
|
|
}
|
|
}
|
|
|
|
char* DoubleToBuffer(double value, char* buffer) {
|
|
// DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
|
|
// platforms these days. Just in case some system exists where DBL_DIG
|
|
// is significantly larger -- and risks overflowing our buffer -- we have
|
|
// this assert.
|
|
static_assert(DBL_DIG < 20, "DBL_DIG_is_too_big");
|
|
|
|
if (value == std::numeric_limits<double>::infinity()) {
|
|
strcpy(buffer, "inf");
|
|
return buffer;
|
|
} else if (value == -std::numeric_limits<double>::infinity()) {
|
|
strcpy(buffer, "-inf");
|
|
return buffer;
|
|
} else if (std::isnan(value)) {
|
|
strcpy(buffer, "nan");
|
|
return buffer;
|
|
}
|
|
|
|
int snprintf_result =
|
|
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
|
|
|
|
// The snprintf should never overflow because the buffer is significantly
|
|
// larger than the precision we asked for.
|
|
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
|
|
|
|
// We need to make parsed_value volatile in order to force the compiler to
|
|
// write it out to the stack. Otherwise, it may keep the value in a
|
|
// register, and if it does that, it may keep it as a long double instead
|
|
// of a double. This long double may have extra bits that make it compare
|
|
// unequal to "value" even though it would be exactly equal if it were
|
|
// truncated to a double.
|
|
volatile double parsed_value = internal::NoLocaleStrtod(buffer, nullptr);
|
|
if (parsed_value != value) {
|
|
snprintf_result =
|
|
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG + 2, value);
|
|
|
|
// Should never overflow; see above.
|
|
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
|
|
}
|
|
|
|
DelocalizeRadix(buffer);
|
|
return buffer;
|
|
}
|
|
|
|
static int memcasecmp(const char *s1, const char *s2, size_t len) {
|
|
const unsigned char *us1 = reinterpret_cast<const unsigned char *>(s1);
|
|
const unsigned char *us2 = reinterpret_cast<const unsigned char *>(s2);
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
const int diff =
|
|
static_cast<int>(static_cast<unsigned char>(ascii_tolower(us1[i]))) -
|
|
static_cast<int>(static_cast<unsigned char>(ascii_tolower(us2[i])));
|
|
if (diff != 0) return diff;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline bool CaseEqual(StringPiece s1, StringPiece s2) {
|
|
if (s1.size() != s2.size()) return false;
|
|
return memcasecmp(s1.data(), s2.data(), s1.size()) == 0;
|
|
}
|
|
|
|
bool safe_strtob(StringPiece str, bool* value) {
|
|
GOOGLE_CHECK(value != nullptr) << "nullptr output boolean given.";
|
|
if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
|
|
CaseEqual(str, "yes") || CaseEqual(str, "y") ||
|
|
CaseEqual(str, "1")) {
|
|
*value = true;
|
|
return true;
|
|
}
|
|
if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
|
|
CaseEqual(str, "no") || CaseEqual(str, "n") ||
|
|
CaseEqual(str, "0")) {
|
|
*value = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool safe_strtof(const char* str, float* value) {
|
|
char* endptr;
|
|
errno = 0; // errno only gets set on errors
|
|
#if defined(_WIN32) || defined (__hpux) // has no strtof()
|
|
*value = internal::NoLocaleStrtod(str, &endptr);
|
|
#else
|
|
*value = strtof(str, &endptr);
|
|
#endif
|
|
return *str != 0 && *endptr == 0 && errno == 0;
|
|
}
|
|
|
|
bool safe_strtod(const char* str, double* value) {
|
|
char* endptr;
|
|
*value = internal::NoLocaleStrtod(str, &endptr);
|
|
if (endptr != str) {
|
|
while (ascii_isspace(*endptr)) ++endptr;
|
|
}
|
|
// Ignore range errors from strtod. The values it
|
|
// returns on underflow and overflow are the right
|
|
// fallback in a robust setting.
|
|
return *str != '\0' && *endptr == '\0';
|
|
}
|
|
|
|
bool safe_strto32(const std::string &str, int32_t *value) {
|
|
return safe_int_internal(str, value);
|
|
}
|
|
|
|
bool safe_strtou32(const std::string &str, uint32_t *value) {
|
|
return safe_uint_internal(str, value);
|
|
}
|
|
|
|
bool safe_strto64(const std::string &str, int64_t *value) {
|
|
return safe_int_internal(str, value);
|
|
}
|
|
|
|
bool safe_strtou64(const std::string &str, uint64_t *value) {
|
|
return safe_uint_internal(str, value);
|
|
}
|
|
|
|
char* FloatToBuffer(float value, char* buffer) {
|
|
// FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
|
|
// platforms these days. Just in case some system exists where FLT_DIG
|
|
// is significantly larger -- and risks overflowing our buffer -- we have
|
|
// this assert.
|
|
static_assert(FLT_DIG < 10, "FLT_DIG_is_too_big");
|
|
|
|
if (value == std::numeric_limits<double>::infinity()) {
|
|
strcpy(buffer, "inf");
|
|
return buffer;
|
|
} else if (value == -std::numeric_limits<double>::infinity()) {
|
|
strcpy(buffer, "-inf");
|
|
return buffer;
|
|
} else if (std::isnan(value)) {
|
|
strcpy(buffer, "nan");
|
|
return buffer;
|
|
}
|
|
|
|
int snprintf_result =
|
|
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
|
|
|
|
// The snprintf should never overflow because the buffer is significantly
|
|
// larger than the precision we asked for.
|
|
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
|
|
|
|
float parsed_value;
|
|
if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
|
|
snprintf_result =
|
|
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG + 3, value);
|
|
|
|
// Should never overflow; see above.
|
|
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
|
|
}
|
|
|
|
DelocalizeRadix(buffer);
|
|
return buffer;
|
|
}
|
|
|
|
namespace strings {
|
|
|
|
AlphaNum::AlphaNum(strings::Hex hex) {
|
|
char *const end = &digits[kFastToBufferSize];
|
|
char *writer = end;
|
|
uint64_t value = hex.value;
|
|
uint64_t width = hex.spec;
|
|
// We accomplish minimum width by OR'ing in 0x10000 to the user's value,
|
|
// where 0x10000 is the smallest hex number that is as wide as the user
|
|
// asked for.
|
|
uint64_t mask = (static_cast<uint64_t>(1) << ((width - 1) * 4)) | value;
|
|
static const char hexdigits[] = "0123456789abcdef";
|
|
do {
|
|
*--writer = hexdigits[value & 0xF];
|
|
value >>= 4;
|
|
mask >>= 4;
|
|
} while (mask != 0);
|
|
piece_data_ = writer;
|
|
piece_size_ = end - writer;
|
|
}
|
|
|
|
} // namespace strings
|
|
|
|
// ----------------------------------------------------------------------
|
|
// StrCat()
|
|
// This merges the given strings or integers, with no delimiter. This
|
|
// is designed to be the fastest possible way to construct a string out
|
|
// of a mix of raw C strings, C++ strings, and integer values.
|
|
// ----------------------------------------------------------------------
|
|
|
|
// Append is merely a version of memcpy that returns the address of the byte
|
|
// after the area just overwritten. It comes in multiple flavors to minimize
|
|
// call overhead.
|
|
static char *Append1(char *out, const AlphaNum &x) {
|
|
if (x.size() > 0) {
|
|
memcpy(out, x.data(), x.size());
|
|
out += x.size();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) {
|
|
if (x1.size() > 0) {
|
|
memcpy(out, x1.data(), x1.size());
|
|
out += x1.size();
|
|
}
|
|
if (x2.size() > 0) {
|
|
memcpy(out, x2.data(), x2.size());
|
|
out += x2.size();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static char *Append4(char *out, const AlphaNum &x1, const AlphaNum &x2,
|
|
const AlphaNum &x3, const AlphaNum &x4) {
|
|
if (x1.size() > 0) {
|
|
memcpy(out, x1.data(), x1.size());
|
|
out += x1.size();
|
|
}
|
|
if (x2.size() > 0) {
|
|
memcpy(out, x2.data(), x2.size());
|
|
out += x2.size();
|
|
}
|
|
if (x3.size() > 0) {
|
|
memcpy(out, x3.data(), x3.size());
|
|
out += x3.size();
|
|
}
|
|
if (x4.size() > 0) {
|
|
memcpy(out, x4.data(), x4.size());
|
|
out += x4.size();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append2(begin, a, b);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append2(begin, a, b);
|
|
out = Append1(out, c);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d, const AlphaNum &e) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size() + e.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
out = Append1(out, e);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
|
|
f.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
out = Append2(out, e, f);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
|
|
const AlphaNum &g) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
|
|
f.size() + g.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
out = Append2(out, e, f);
|
|
out = Append1(out, g);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
|
|
const AlphaNum &g, const AlphaNum &h) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
|
|
f.size() + g.size() + h.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
out = Append4(out, e, f, g, h);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
|
|
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
|
|
const AlphaNum &g, const AlphaNum &h, const AlphaNum &i) {
|
|
std::string result;
|
|
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
|
|
f.size() + g.size() + h.size() + i.size());
|
|
char *const begin = &*result.begin();
|
|
char *out = Append4(begin, a, b, c, d);
|
|
out = Append4(out, e, f, g, h);
|
|
out = Append1(out, i);
|
|
GOOGLE_DCHECK_EQ(out, begin + result.size());
|
|
return result;
|
|
}
|
|
|
|
// It's possible to call StrAppend with a char * pointer that is partway into
|
|
// the string we're appending to. However the results of this are random.
|
|
// Therefore, check for this in debug mode. Use unsigned math so we only have
|
|
// to do one comparison.
|
|
#define GOOGLE_DCHECK_NO_OVERLAP(dest, src) \
|
|
GOOGLE_DCHECK_GT(uintptr_t((src).data() - (dest).data()), \
|
|
uintptr_t((dest).size()))
|
|
|
|
void StrAppend(std::string *result, const AlphaNum &a) {
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, a);
|
|
result->append(a.data(), a.size());
|
|
}
|
|
|
|
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b) {
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, a);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, b);
|
|
std::string::size_type old_size = result->size();
|
|
result->resize(old_size + a.size() + b.size());
|
|
char *const begin = &*result->begin();
|
|
char *out = Append2(begin + old_size, a, b);
|
|
GOOGLE_DCHECK_EQ(out, begin + result->size());
|
|
}
|
|
|
|
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b,
|
|
const AlphaNum &c) {
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, a);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, b);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, c);
|
|
std::string::size_type old_size = result->size();
|
|
result->resize(old_size + a.size() + b.size() + c.size());
|
|
char *const begin = &*result->begin();
|
|
char *out = Append2(begin + old_size, a, b);
|
|
out = Append1(out, c);
|
|
GOOGLE_DCHECK_EQ(out, begin + result->size());
|
|
}
|
|
|
|
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b,
|
|
const AlphaNum &c, const AlphaNum &d) {
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, a);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, b);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, c);
|
|
GOOGLE_DCHECK_NO_OVERLAP(*result, d);
|
|
std::string::size_type old_size = result->size();
|
|
result->resize(old_size + a.size() + b.size() + c.size() + d.size());
|
|
char *const begin = &*result->begin();
|
|
char *out = Append4(begin + old_size, a, b, c, d);
|
|
GOOGLE_DCHECK_EQ(out, begin + result->size());
|
|
}
|
|
|
|
int GlobalReplaceSubstring(const std::string &substring,
|
|
const std::string &replacement, std::string *s) {
|
|
GOOGLE_CHECK(s != nullptr);
|
|
if (s->empty() || substring.empty())
|
|
return 0;
|
|
std::string tmp;
|
|
int num_replacements = 0;
|
|
int pos = 0;
|
|
for (StringPiece::size_type match_pos =
|
|
s->find(substring.data(), pos, substring.length());
|
|
match_pos != std::string::npos; pos = match_pos + substring.length(),
|
|
match_pos = s->find(substring.data(), pos,
|
|
substring.length())) {
|
|
++num_replacements;
|
|
// Append the original content before the match.
|
|
tmp.append(*s, pos, match_pos - pos);
|
|
// Append the replacement for the match.
|
|
tmp.append(replacement.begin(), replacement.end());
|
|
}
|
|
// Append the content after the last match. If no replacements were made, the
|
|
// original string is left untouched.
|
|
if (num_replacements > 0) {
|
|
tmp.append(*s, pos, s->length() - pos);
|
|
s->swap(tmp);
|
|
}
|
|
return num_replacements;
|
|
}
|
|
|
|
int CalculateBase64EscapedLen(int input_len, bool do_padding) {
|
|
// Base64 encodes three bytes of input at a time. If the input is not
|
|
// divisible by three, we pad as appropriate.
|
|
//
|
|
// (from http://tools.ietf.org/html/rfc3548)
|
|
// Special processing is performed if fewer than 24 bits are available
|
|
// at the end of the data being encoded. A full encoding quantum is
|
|
// always completed at the end of a quantity. When fewer than 24 input
|
|
// bits are available in an input group, zero bits are added (on the
|
|
// right) to form an integral number of 6-bit groups. Padding at the
|
|
// end of the data is performed using the '=' character. Since all base
|
|
// 64 input is an integral number of octets, only the following cases
|
|
// can arise:
|
|
|
|
|
|
// Base64 encodes each three bytes of input into four bytes of output.
|
|
int len = (input_len / 3) * 4;
|
|
|
|
if (input_len % 3 == 0) {
|
|
// (from http://tools.ietf.org/html/rfc3548)
|
|
// (1) the final quantum of encoding input is an integral multiple of 24
|
|
// bits; here, the final unit of encoded output will be an integral
|
|
// multiple of 4 characters with no "=" padding,
|
|
} else if (input_len % 3 == 1) {
|
|
// (from http://tools.ietf.org/html/rfc3548)
|
|
// (2) the final quantum of encoding input is exactly 8 bits; here, the
|
|
// final unit of encoded output will be two characters followed by two
|
|
// "=" padding characters, or
|
|
len += 2;
|
|
if (do_padding) {
|
|
len += 2;
|
|
}
|
|
} else { // (input_len % 3 == 2)
|
|
// (from http://tools.ietf.org/html/rfc3548)
|
|
// (3) the final quantum of encoding input is exactly 16 bits; here, the
|
|
// final unit of encoded output will be three characters followed by one
|
|
// "=" padding character.
|
|
len += 3;
|
|
if (do_padding) {
|
|
len += 1;
|
|
}
|
|
}
|
|
|
|
assert(len >= input_len); // make sure we didn't overflow
|
|
return len;
|
|
}
|
|
|
|
// Base64Escape does padding, so this calculation includes padding.
|
|
int CalculateBase64EscapedLen(int input_len) {
|
|
return CalculateBase64EscapedLen(input_len, true);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// int Base64Unescape() - base64 decoder
|
|
// int Base64Escape() - base64 encoder
|
|
// int WebSafeBase64Unescape() - Google's variation of base64 decoder
|
|
// int WebSafeBase64Escape() - Google's variation of base64 encoder
|
|
//
|
|
// Check out
|
|
// http://tools.ietf.org/html/rfc2045 for formal description, but what we
|
|
// care about is that...
|
|
// Take the encoded stuff in groups of 4 characters and turn each
|
|
// character into a code 0 to 63 thus:
|
|
// A-Z map to 0 to 25
|
|
// a-z map to 26 to 51
|
|
// 0-9 map to 52 to 61
|
|
// +(- for WebSafe) maps to 62
|
|
// /(_ for WebSafe) maps to 63
|
|
// There will be four numbers, all less than 64 which can be represented
|
|
// by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).
|
|
// Arrange the 6 digit binary numbers into three bytes as such:
|
|
// aaaaaabb bbbbcccc ccdddddd
|
|
// Equals signs (one or two) are used at the end of the encoded block to
|
|
// indicate that the text was not an integer multiple of three bytes long.
|
|
// ----------------------------------------------------------------------
|
|
|
|
int Base64UnescapeInternal(const char *src_param, int szsrc,
|
|
char *dest, int szdest,
|
|
const signed char* unbase64) {
|
|
static const char kPad64Equals = '=';
|
|
static const char kPad64Dot = '.';
|
|
|
|
int decode = 0;
|
|
int destidx = 0;
|
|
int state = 0;
|
|
unsigned int ch = 0;
|
|
unsigned int temp = 0;
|
|
|
|
// If "char" is signed by default, using *src as an array index results in
|
|
// accessing negative array elements. Treat the input as a pointer to
|
|
// unsigned char to avoid this.
|
|
const unsigned char *src = reinterpret_cast<const unsigned char*>(src_param);
|
|
|
|
// The GET_INPUT macro gets the next input character, skipping
|
|
// over any whitespace, and stopping when we reach the end of the
|
|
// string or when we read any non-data character. The arguments are
|
|
// an arbitrary identifier (used as a label for goto) and the number
|
|
// of data bytes that must remain in the input to avoid aborting the
|
|
// loop.
|
|
#define GET_INPUT(label, remain) \
|
|
label: \
|
|
--szsrc; \
|
|
ch = *src++; \
|
|
decode = unbase64[ch]; \
|
|
if (decode < 0) { \
|
|
if (ascii_isspace(ch) && szsrc >= remain) \
|
|
goto label; \
|
|
state = 4 - remain; \
|
|
break; \
|
|
}
|
|
|
|
// if dest is null, we're just checking to see if it's legal input
|
|
// rather than producing output. (I suspect this could just be done
|
|
// with a regexp...). We duplicate the loop so this test can be
|
|
// outside it instead of in every iteration.
|
|
|
|
if (dest) {
|
|
// This loop consumes 4 input bytes and produces 3 output bytes
|
|
// per iteration. We can't know at the start that there is enough
|
|
// data left in the string for a full iteration, so the loop may
|
|
// break out in the middle; if so 'state' will be set to the
|
|
// number of input bytes read.
|
|
|
|
while (szsrc >= 4) {
|
|
// We'll start by optimistically assuming that the next four
|
|
// bytes of the string (src[0..3]) are four good data bytes
|
|
// (that is, no nulls, whitespace, padding chars, or illegal
|
|
// chars). We need to test src[0..2] for nulls individually
|
|
// before constructing temp to preserve the property that we
|
|
// never read past a null in the string (no matter how long
|
|
// szsrc claims the string is).
|
|
|
|
if (!src[0] || !src[1] || !src[2] ||
|
|
(temp = ((unsigned(unbase64[src[0]]) << 18) |
|
|
(unsigned(unbase64[src[1]]) << 12) |
|
|
(unsigned(unbase64[src[2]]) << 6) |
|
|
(unsigned(unbase64[src[3]])))) & 0x80000000) {
|
|
// Iff any of those four characters was bad (null, illegal,
|
|
// whitespace, padding), then temp's high bit will be set
|
|
// (because unbase64[] is -1 for all bad characters).
|
|
//
|
|
// We'll back up and resort to the slower decoder, which knows
|
|
// how to handle those cases.
|
|
|
|
GET_INPUT(first, 4);
|
|
temp = decode;
|
|
GET_INPUT(second, 3);
|
|
temp = (temp << 6) | decode;
|
|
GET_INPUT(third, 2);
|
|
temp = (temp << 6) | decode;
|
|
GET_INPUT(fourth, 1);
|
|
temp = (temp << 6) | decode;
|
|
} else {
|
|
// We really did have four good data bytes, so advance four
|
|
// characters in the string.
|
|
|
|
szsrc -= 4;
|
|
src += 4;
|
|
decode = -1;
|
|
ch = '\0';
|
|
}
|
|
|
|
// temp has 24 bits of input, so write that out as three bytes.
|
|
|
|
if (destidx+3 > szdest) return -1;
|
|
dest[destidx+2] = temp;
|
|
temp >>= 8;
|
|
dest[destidx+1] = temp;
|
|
temp >>= 8;
|
|
dest[destidx] = temp;
|
|
destidx += 3;
|
|
}
|
|
} else {
|
|
while (szsrc >= 4) {
|
|
if (!src[0] || !src[1] || !src[2] ||
|
|
(temp = ((unsigned(unbase64[src[0]]) << 18) |
|
|
(unsigned(unbase64[src[1]]) << 12) |
|
|
(unsigned(unbase64[src[2]]) << 6) |
|
|
(unsigned(unbase64[src[3]])))) & 0x80000000) {
|
|
GET_INPUT(first_no_dest, 4);
|
|
GET_INPUT(second_no_dest, 3);
|
|
GET_INPUT(third_no_dest, 2);
|
|
GET_INPUT(fourth_no_dest, 1);
|
|
} else {
|
|
szsrc -= 4;
|
|
src += 4;
|
|
decode = -1;
|
|
ch = '\0';
|
|
}
|
|
destidx += 3;
|
|
}
|
|
}
|
|
|
|
#undef GET_INPUT
|
|
|
|
// if the loop terminated because we read a bad character, return
|
|
// now.
|
|
if (decode < 0 && ch != '\0' &&
|
|
ch != kPad64Equals && ch != kPad64Dot && !ascii_isspace(ch))
|
|
return -1;
|
|
|
|
if (ch == kPad64Equals || ch == kPad64Dot) {
|
|
// if we stopped by hitting an '=' or '.', un-read that character -- we'll
|
|
// look at it again when we count to check for the proper number of
|
|
// equals signs at the end.
|
|
++szsrc;
|
|
--src;
|
|
} else {
|
|
// This loop consumes 1 input byte per iteration. It's used to
|
|
// clean up the 0-3 input bytes remaining when the first, faster
|
|
// loop finishes. 'temp' contains the data from 'state' input
|
|
// characters read by the first loop.
|
|
while (szsrc > 0) {
|
|
--szsrc;
|
|
ch = *src++;
|
|
decode = unbase64[ch];
|
|
if (decode < 0) {
|
|
if (ascii_isspace(ch)) {
|
|
continue;
|
|
} else if (ch == '\0') {
|
|
break;
|
|
} else if (ch == kPad64Equals || ch == kPad64Dot) {
|
|
// back up one character; we'll read it again when we check
|
|
// for the correct number of pad characters at the end.
|
|
++szsrc;
|
|
--src;
|
|
break;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Each input character gives us six bits of output.
|
|
temp = (temp << 6) | decode;
|
|
++state;
|
|
if (state == 4) {
|
|
// If we've accumulated 24 bits of output, write that out as
|
|
// three bytes.
|
|
if (dest) {
|
|
if (destidx+3 > szdest) return -1;
|
|
dest[destidx+2] = temp;
|
|
temp >>= 8;
|
|
dest[destidx+1] = temp;
|
|
temp >>= 8;
|
|
dest[destidx] = temp;
|
|
}
|
|
destidx += 3;
|
|
state = 0;
|
|
temp = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process the leftover data contained in 'temp' at the end of the input.
|
|
int expected_equals = 0;
|
|
switch (state) {
|
|
case 0:
|
|
// Nothing left over; output is a multiple of 3 bytes.
|
|
break;
|
|
|
|
case 1:
|
|
// Bad input; we have 6 bits left over.
|
|
return -1;
|
|
|
|
case 2:
|
|
// Produce one more output byte from the 12 input bits we have left.
|
|
if (dest) {
|
|
if (destidx+1 > szdest) return -1;
|
|
temp >>= 4;
|
|
dest[destidx] = temp;
|
|
}
|
|
++destidx;
|
|
expected_equals = 2;
|
|
break;
|
|
|
|
case 3:
|
|
// Produce two more output bytes from the 18 input bits we have left.
|
|
if (dest) {
|
|
if (destidx+2 > szdest) return -1;
|
|
temp >>= 2;
|
|
dest[destidx+1] = temp;
|
|
temp >>= 8;
|
|
dest[destidx] = temp;
|
|
}
|
|
destidx += 2;
|
|
expected_equals = 1;
|
|
break;
|
|
|
|
default:
|
|
// state should have no other values at this point.
|
|
GOOGLE_LOG(FATAL) << "This can't happen; base64 decoder state = " << state;
|
|
}
|
|
|
|
// The remainder of the string should be all whitespace, mixed with
|
|
// exactly 0 equals signs, or exactly 'expected_equals' equals
|
|
// signs. (Always accepting 0 equals signs is a google extension
|
|
// not covered in the RFC, as is accepting dot as the pad character.)
|
|
|
|
int equals = 0;
|
|
while (szsrc > 0 && *src) {
|
|
if (*src == kPad64Equals || *src == kPad64Dot)
|
|
++equals;
|
|
else if (!ascii_isspace(*src))
|
|
return -1;
|
|
--szsrc;
|
|
++src;
|
|
}
|
|
|
|
return (equals == 0 || equals == expected_equals) ? destidx : -1;
|
|
}
|
|
|
|
// The arrays below were generated by the following code
|
|
// #include <sys/time.h>
|
|
// #include <stdlib.h>
|
|
// #include <string.h>
|
|
// #include <stdio.h>
|
|
// main()
|
|
// {
|
|
// static const char Base64[] =
|
|
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
// const char *pos;
|
|
// int idx, i, j;
|
|
// printf(" ");
|
|
// for (i = 0; i < 255; i += 8) {
|
|
// for (j = i; j < i + 8; j++) {
|
|
// pos = strchr(Base64, j);
|
|
// if ((pos == nullptr) || (j == 0))
|
|
// idx = -1;
|
|
// else
|
|
// idx = pos - Base64;
|
|
// if (idx == -1)
|
|
// printf(" %2d, ", idx);
|
|
// else
|
|
// printf(" %2d/""*%c*""/,", idx, j);
|
|
// }
|
|
// printf("\n ");
|
|
// }
|
|
// }
|
|
//
|
|
// where the value of "Base64[]" was replaced by one of the base-64 conversion
|
|
// tables from the functions below.
|
|
static const signed char kUnBase64[] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
|
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
|
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
|
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
|
|
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
|
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
|
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
|
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
|
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
|
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
|
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1
|
|
};
|
|
static const signed char kUnWebSafeBase64[] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, 62/*-*/, -1, -1,
|
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
|
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
|
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
|
|
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
|
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
|
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/,
|
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
|
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
|
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
|
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1
|
|
};
|
|
|
|
int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {
|
|
return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64);
|
|
}
|
|
|
|
static bool Base64UnescapeInternal(const char *src, int slen, std::string *dest,
|
|
const signed char *unbase64) {
|
|
// Determine the size of the output string. Base64 encodes every 3 bytes into
|
|
// 4 characters. any leftover chars are added directly for good measure.
|
|
// This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548
|
|
const int dest_len = 3 * (slen / 4) + (slen % 4);
|
|
|
|
dest->resize(dest_len);
|
|
|
|
// We are getting the destination buffer by getting the beginning of the
|
|
// string and converting it into a char *.
|
|
const int len = Base64UnescapeInternal(src, slen, string_as_array(dest),
|
|
dest_len, unbase64);
|
|
if (len < 0) {
|
|
dest->clear();
|
|
return false;
|
|
}
|
|
|
|
// could be shorter if there was padding
|
|
GOOGLE_DCHECK_LE(len, dest_len);
|
|
dest->erase(len);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Base64Unescape(StringPiece src, std::string *dest) {
|
|
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64);
|
|
}
|
|
|
|
bool WebSafeBase64Unescape(StringPiece src, std::string *dest) {
|
|
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64);
|
|
}
|
|
|
|
int Base64EscapeInternal(const unsigned char *src, int szsrc,
|
|
char *dest, int szdest, const char *base64,
|
|
bool do_padding) {
|
|
static const char kPad64 = '=';
|
|
|
|
if (szsrc <= 0) return 0;
|
|
|
|
if (szsrc * 4 > szdest * 3) return 0;
|
|
|
|
char *cur_dest = dest;
|
|
const unsigned char *cur_src = src;
|
|
|
|
char *limit_dest = dest + szdest;
|
|
const unsigned char *limit_src = src + szsrc;
|
|
|
|
// Three bytes of data encodes to four characters of ciphertext.
|
|
// So we can pump through three-byte chunks atomically.
|
|
while (cur_src < limit_src - 3) { // keep going as long as we have >= 32 bits
|
|
uint32_t in = BigEndian::Load32(cur_src) >> 8;
|
|
|
|
cur_dest[0] = base64[in >> 18];
|
|
in &= 0x3FFFF;
|
|
cur_dest[1] = base64[in >> 12];
|
|
in &= 0xFFF;
|
|
cur_dest[2] = base64[in >> 6];
|
|
in &= 0x3F;
|
|
cur_dest[3] = base64[in];
|
|
|
|
cur_dest += 4;
|
|
cur_src += 3;
|
|
}
|
|
// To save time, we didn't update szdest or szsrc in the loop. So do it now.
|
|
szdest = limit_dest - cur_dest;
|
|
szsrc = limit_src - cur_src;
|
|
|
|
/* now deal with the tail (<=3 bytes) */
|
|
switch (szsrc) {
|
|
case 0:
|
|
// Nothing left; nothing more to do.
|
|
break;
|
|
case 1: {
|
|
// One byte left: this encodes to two characters, and (optionally)
|
|
// two pad characters to round out the four-character cipherblock.
|
|
if ((szdest -= 2) < 0) return 0;
|
|
uint32_t in = cur_src[0];
|
|
cur_dest[0] = base64[in >> 2];
|
|
in &= 0x3;
|
|
cur_dest[1] = base64[in << 4];
|
|
cur_dest += 2;
|
|
if (do_padding) {
|
|
if ((szdest -= 2) < 0) return 0;
|
|
cur_dest[0] = kPad64;
|
|
cur_dest[1] = kPad64;
|
|
cur_dest += 2;
|
|
}
|
|
break;
|
|
}
|
|
case 2: {
|
|
// Two bytes left: this encodes to three characters, and (optionally)
|
|
// one pad character to round out the four-character cipherblock.
|
|
if ((szdest -= 3) < 0) return 0;
|
|
uint32_t in = BigEndian::Load16(cur_src);
|
|
cur_dest[0] = base64[in >> 10];
|
|
in &= 0x3FF;
|
|
cur_dest[1] = base64[in >> 4];
|
|
in &= 0x00F;
|
|
cur_dest[2] = base64[in << 2];
|
|
cur_dest += 3;
|
|
if (do_padding) {
|
|
if ((szdest -= 1) < 0) return 0;
|
|
cur_dest[0] = kPad64;
|
|
cur_dest += 1;
|
|
}
|
|
break;
|
|
}
|
|
case 3: {
|
|
// Three bytes left: same as in the big loop above. We can't do this in
|
|
// the loop because the loop above always reads 4 bytes, and the fourth
|
|
// byte is past the end of the input.
|
|
if ((szdest -= 4) < 0) return 0;
|
|
uint32_t in = (cur_src[0] << 16) + BigEndian::Load16(cur_src + 1);
|
|
cur_dest[0] = base64[in >> 18];
|
|
in &= 0x3FFFF;
|
|
cur_dest[1] = base64[in >> 12];
|
|
in &= 0xFFF;
|
|
cur_dest[2] = base64[in >> 6];
|
|
in &= 0x3F;
|
|
cur_dest[3] = base64[in];
|
|
cur_dest += 4;
|
|
break;
|
|
}
|
|
default:
|
|
// Should not be reached: blocks of 4 bytes are handled
|
|
// in the while loop before this switch statement.
|
|
GOOGLE_LOG(FATAL) << "Logic problem? szsrc = " << szsrc;
|
|
break;
|
|
}
|
|
return (cur_dest - dest);
|
|
}
|
|
|
|
static const char kBase64Chars[] =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
|
static const char kWebSafeBase64Chars[] =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
|
|
|
|
int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {
|
|
return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);
|
|
}
|
|
int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,
|
|
int szdest, bool do_padding) {
|
|
return Base64EscapeInternal(src, szsrc, dest, szdest,
|
|
kWebSafeBase64Chars, do_padding);
|
|
}
|
|
|
|
void Base64EscapeInternal(const unsigned char *src, int szsrc,
|
|
std::string *dest, bool do_padding,
|
|
const char *base64_chars) {
|
|
const int calc_escaped_size =
|
|
CalculateBase64EscapedLen(szsrc, do_padding);
|
|
dest->resize(calc_escaped_size);
|
|
const int escaped_len = Base64EscapeInternal(src, szsrc,
|
|
string_as_array(dest),
|
|
dest->size(),
|
|
base64_chars,
|
|
do_padding);
|
|
GOOGLE_DCHECK_EQ(calc_escaped_size, escaped_len);
|
|
dest->erase(escaped_len);
|
|
}
|
|
|
|
void Base64Escape(const unsigned char *src, int szsrc, std::string *dest,
|
|
bool do_padding) {
|
|
Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars);
|
|
}
|
|
|
|
void WebSafeBase64Escape(const unsigned char *src, int szsrc, std::string *dest,
|
|
bool do_padding) {
|
|
Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars);
|
|
}
|
|
|
|
void Base64Escape(StringPiece src, std::string *dest) {
|
|
Base64Escape(reinterpret_cast<const unsigned char*>(src.data()),
|
|
src.size(), dest, true);
|
|
}
|
|
|
|
void WebSafeBase64Escape(StringPiece src, std::string *dest) {
|
|
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
|
|
src.size(), dest, false);
|
|
}
|
|
|
|
void WebSafeBase64EscapeWithPadding(StringPiece src, std::string *dest) {
|
|
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
|
|
src.size(), dest, true);
|
|
}
|
|
|
|
// Helper to append a Unicode code point to a string as UTF8, without bringing
|
|
// in any external dependencies.
|
|
int EncodeAsUTF8Char(uint32_t code_point, char* output) {
|
|
uint32_t tmp = 0;
|
|
int len = 0;
|
|
if (code_point <= 0x7f) {
|
|
tmp = code_point;
|
|
len = 1;
|
|
} else if (code_point <= 0x07ff) {
|
|
tmp = 0x0000c080 |
|
|
((code_point & 0x07c0) << 2) |
|
|
(code_point & 0x003f);
|
|
len = 2;
|
|
} else if (code_point <= 0xffff) {
|
|
tmp = 0x00e08080 |
|
|
((code_point & 0xf000) << 4) |
|
|
((code_point & 0x0fc0) << 2) |
|
|
(code_point & 0x003f);
|
|
len = 3;
|
|
} else {
|
|
// UTF-16 is only defined for code points up to 0x10FFFF, and UTF-8 is
|
|
// normally only defined up to there as well.
|
|
tmp = 0xf0808080 |
|
|
((code_point & 0x1c0000) << 6) |
|
|
((code_point & 0x03f000) << 4) |
|
|
((code_point & 0x000fc0) << 2) |
|
|
(code_point & 0x003f);
|
|
len = 4;
|
|
}
|
|
tmp = ghtonl(tmp);
|
|
memcpy(output, reinterpret_cast<const char*>(&tmp) + sizeof(tmp) - len, len);
|
|
return len;
|
|
}
|
|
|
|
// Table of UTF-8 character lengths, based on first byte
|
|
static const unsigned char kUTF8LenTbl[256] = {
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
// Return length of a single UTF-8 source character
|
|
int UTF8FirstLetterNumBytes(const char* src, int len) {
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
return kUTF8LenTbl[*reinterpret_cast<const uint8_t*>(src)];
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// CleanStringLineEndings()
|
|
// Clean up a multi-line string to conform to Unix line endings.
|
|
// Reads from src and appends to dst, so usually dst should be empty.
|
|
//
|
|
// If there is no line ending at the end of a non-empty string, it can
|
|
// be added automatically.
|
|
//
|
|
// Four different types of input are correctly handled:
|
|
//
|
|
// - Unix/Linux files: line ending is LF: pass through unchanged
|
|
//
|
|
// - DOS/Windows files: line ending is CRLF: convert to LF
|
|
//
|
|
// - Legacy Mac files: line ending is CR: convert to LF
|
|
//
|
|
// - Garbled files: random line endings: convert gracefully
|
|
// lonely CR, lonely LF, CRLF: convert to LF
|
|
//
|
|
// @param src The multi-line string to convert
|
|
// @param dst The converted string is appended to this string
|
|
// @param auto_end_last_line Automatically terminate the last line
|
|
//
|
|
// Limitations:
|
|
//
|
|
// This does not do the right thing for CRCRLF files created by
|
|
// broken programs that do another Unix->DOS conversion on files
|
|
// that are already in CRLF format. For this, a two-pass approach
|
|
// brute-force would be needed that
|
|
//
|
|
// (1) determines the presence of LF (first one is ok)
|
|
// (2) if yes, removes any CR, else convert every CR to LF
|
|
|
|
void CleanStringLineEndings(const std::string &src, std::string *dst,
|
|
bool auto_end_last_line) {
|
|
if (dst->empty()) {
|
|
dst->append(src);
|
|
CleanStringLineEndings(dst, auto_end_last_line);
|
|
} else {
|
|
std::string tmp = src;
|
|
CleanStringLineEndings(&tmp, auto_end_last_line);
|
|
dst->append(tmp);
|
|
}
|
|
}
|
|
|
|
void CleanStringLineEndings(std::string *str, bool auto_end_last_line) {
|
|
ptrdiff_t output_pos = 0;
|
|
bool r_seen = false;
|
|
ptrdiff_t len = str->size();
|
|
|
|
char *p = &(*str)[0];
|
|
|
|
for (ptrdiff_t input_pos = 0; input_pos < len;) {
|
|
if (!r_seen && input_pos + 8 < len) {
|
|
uint64_t v = GOOGLE_UNALIGNED_LOAD64(p + input_pos);
|
|
// Loop over groups of 8 bytes at a time until we come across
|
|
// a word that has a byte whose value is less than or equal to
|
|
// '\r' (i.e. could contain a \n (0x0a) or a \r (0x0d) ).
|
|
//
|
|
// We use a has_less macro that quickly tests a whole 64-bit
|
|
// word to see if any of the bytes has a value < N.
|
|
//
|
|
// For more details, see:
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
|
|
#define has_less(x, n) (((x) - ~0ULL / 255 * (n)) & ~(x) & ~0ULL / 255 * 128)
|
|
if (!has_less(v, '\r' + 1)) {
|
|
#undef has_less
|
|
// No byte in this word has a value that could be a \r or a \n
|
|
if (output_pos != input_pos) {
|
|
GOOGLE_UNALIGNED_STORE64(p + output_pos, v);
|
|
}
|
|
input_pos += 8;
|
|
output_pos += 8;
|
|
continue;
|
|
}
|
|
}
|
|
std::string::const_reference in = p[input_pos];
|
|
if (in == '\r') {
|
|
if (r_seen) p[output_pos++] = '\n';
|
|
r_seen = true;
|
|
} else if (in == '\n') {
|
|
if (input_pos != output_pos)
|
|
p[output_pos++] = '\n';
|
|
else
|
|
output_pos++;
|
|
r_seen = false;
|
|
} else {
|
|
if (r_seen) p[output_pos++] = '\n';
|
|
r_seen = false;
|
|
if (input_pos != output_pos)
|
|
p[output_pos++] = in;
|
|
else
|
|
output_pos++;
|
|
}
|
|
input_pos++;
|
|
}
|
|
if (r_seen ||
|
|
(auto_end_last_line && output_pos > 0 && p[output_pos - 1] != '\n')) {
|
|
str->resize(output_pos + 1);
|
|
str->operator[](output_pos) = '\n';
|
|
} else if (output_pos < len) {
|
|
str->resize(output_pos);
|
|
}
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------
|
|
// NoLocaleStrtod()
|
|
// This code will make you cry.
|
|
// ----------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
// Returns a string identical to *input except that the character pointed to
|
|
// by radix_pos (which should be '.') is replaced with the locale-specific
|
|
// radix character.
|
|
std::string LocalizeRadix(const char *input, const char *radix_pos) {
|
|
// Determine the locale-specific radix character by calling sprintf() to
|
|
// print the number 1.5, then stripping off the digits. As far as I can
|
|
// tell, this is the only portable, thread-safe way to get the C library
|
|
// to divuldge the locale's radix character. No, localeconv() is NOT
|
|
// thread-safe.
|
|
char temp[16];
|
|
int size = snprintf(temp, sizeof(temp), "%.1f", 1.5);
|
|
GOOGLE_CHECK_EQ(temp[0], '1');
|
|
GOOGLE_CHECK_EQ(temp[size - 1], '5');
|
|
GOOGLE_CHECK_LE(size, 6);
|
|
|
|
// Now replace the '.' in the input with it.
|
|
std::string result;
|
|
result.reserve(strlen(input) + size - 3);
|
|
result.append(input, radix_pos);
|
|
result.append(temp + 1, size - 2);
|
|
result.append(radix_pos + 1);
|
|
return result;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
double NoLocaleStrtod(const char *str, char **endptr) {
|
|
// We cannot simply set the locale to "C" temporarily with setlocale()
|
|
// as this is not thread-safe. Instead, we try to parse in the current
|
|
// locale first. If parsing stops at a '.' character, then this is a
|
|
// pretty good hint that we're actually in some other locale in which
|
|
// '.' is not the radix character.
|
|
|
|
char *temp_endptr;
|
|
double result = strtod(str, &temp_endptr);
|
|
if (endptr != NULL) *endptr = temp_endptr;
|
|
if (*temp_endptr != '.') return result;
|
|
|
|
// Parsing halted on a '.'. Perhaps we're in a different locale? Let's
|
|
// try to replace the '.' with a locale-specific radix character and
|
|
// try again.
|
|
std::string localized = LocalizeRadix(str, temp_endptr);
|
|
const char *localized_cstr = localized.c_str();
|
|
char *localized_endptr;
|
|
result = strtod(localized_cstr, &localized_endptr);
|
|
if ((localized_endptr - localized_cstr) > (temp_endptr - str)) {
|
|
// This attempt got further, so replacing the decimal must have helped.
|
|
// Update endptr to point at the right location.
|
|
if (endptr != NULL) {
|
|
// size_diff is non-zero if the localized radix has multiple bytes.
|
|
int size_diff = localized.size() - strlen(str);
|
|
// const_cast is necessary to match the strtod() interface.
|
|
*endptr = const_cast<char *>(
|
|
str + (localized_endptr - localized_cstr - size_diff));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace protobuf
|
|
} // namespace google
|