Amos d5b2e58dae Code base refactor + major performance and readability improvement. Read description for details.
* Codebase restructured to SourceSDK codebase style and .cpp/.h assertion paths in the game executable.
* Document most functions with valve style 'Purpose' blocks.
* Rename variables to match the rest of the codebase and Valve's naming convention.
* Dedicated DLL and the SDKLauncher now share the same codebase as the DevSDK.

* Obtain globals or pointers directly instead of waiting for runtime initialized data.
* Dynamically search for all functions and globals (this doesn't count for dedicated yet!).
* Initialize most in-SDK variables.

* Move certain prints and other utilities under ConVars to reduce verbosity and increase performance.
* Print all pattern scan results through a virtual function to make it easier to add and debug new patterns in the future.
* Type global var pointers appropriately if class or type is known and implemented.
* Forward declare 'CClient' class to avoid having 2 'g_pClient' copies.
* Add IDA's pseudo definitions for easier prototyping with decompiled assembly code.

* RPAK decompress Command callback implementation.
* Load decompressed RPaks from 'paks\Win32\' overriding the ones in 'paks\Win64\' (the decompress callback will automatically fix the header and write it to 'paks\Win32\').

* VPK decompress Command callback implementation.
* Move CRC32 ands Adler32 to implementation files.

* Server will print out more details about the connecting client.

* Upgrade ImGui lib to v1.86.
* Don't compile id3dx.h for dedicated.
* Don't compile id3dx.cpp for dedicated
* Implement DevMsg print function allowing to print information to the in-game VGUI/RUI console overlay, ImGui console overlay and the external windows console

* Fixed bug where the Error function would not properly terminate the process when an error is called. This caused access violations for critical/non-recoverable errors.
* Fixed bug where the game would crash if the console or server browser was enabled while the game was still starting up.
* Several bug fixes for the dedicated server (warning: dedicated is still considered work-in-progress!).
2021-12-25 22:36:38 +01:00

686 lines
22 KiB
C++

#pragma once
#include "public/include/utility.h"
class ADDRESS
{
public:
enum class Direction : int
{
DOWN = 0,
UP,
};
std::uintptr_t GetPtr()
{
return ptr;
}
ADDRESS() = default;
ADDRESS(std::uintptr_t ptr) : ptr(ptr) {}
ADDRESS(void* ptr) : ptr(std::uintptr_t(ptr)) {}
operator std::uintptr_t() const
{
return ptr;
}
operator void*()
{
return reinterpret_cast<void*>(ptr);
}
operator bool()
{
return ptr != NULL;
}
bool operator!= (const ADDRESS& addr) const
{
return ptr != addr.ptr;
}
bool operator== (const ADDRESS& addr) const
{
return ptr == addr.ptr;
}
bool operator== (const std::uintptr_t& addr) const
{
return ptr == addr;
}
template<typename T> T CCast()
{
return (T)ptr;
}
template<typename T> T RCast()
{
return reinterpret_cast<T>(ptr);
}
template<class T> T GetValue()
{
return *reinterpret_cast<T*>(ptr);
}
ADDRESS Offset(std::ptrdiff_t offset)
{
return ADDRESS(ptr + offset);
}
ADDRESS OffsetSelf(std::ptrdiff_t offset)
{
ptr += offset;
return *this;
}
ADDRESS Deref(int deref = 1)
{
std::uintptr_t reference = ptr;
while (deref--)
{
if (reference)
reference = *reinterpret_cast<std::uintptr_t*>(reference);
}
return ADDRESS(reference);
}
ADDRESS DerefSelf(int deref = 1)
{
while (deref--)
{
if (ptr)
ptr = *reinterpret_cast<std::uintptr_t*>(ptr);
}
return *this;
}
bool CheckOpCodes(const std::vector<std::uint8_t> opcodeArray)
{
std::uintptr_t reference = ptr; // Create pointer reference.
for (auto [byteAtCurrentAddress, i] = std::tuple{ std::uint8_t(), (std::size_t)0 }; i < opcodeArray.size(); i++, reference++) // Loop forward in the ptr class member.
{
byteAtCurrentAddress = *reinterpret_cast<std::uint8_t*>(reference); // Get byte at current Address.
if (byteAtCurrentAddress != opcodeArray[i]) // If byte at ptr doesn't equal in the byte array return false.
return false;
}
return true;
}
template<class T> T GetVirtualFunctionIndex()
{
return *reinterpret_cast<T*>(ptr) / 8; // Its divided by 8 in x64.
}
void Patch(std::vector<std::uint8_t> opcodes)
{
DWORD oldProt = NULL;
SIZE_T dwSize = opcodes.size();
VirtualProtect((void*)ptr, dwSize, PAGE_EXECUTE_READWRITE, &oldProt); // Patch page to be able to read and write to it.
for (int i = 0; i < opcodes.size(); i++)
{
*(std::uint8_t*)(ptr + i) = opcodes[i]; // Write opcodes to Address.
}
dwSize = opcodes.size();
VirtualProtect((void*)ptr, dwSize, oldProt, &oldProt); // Restore protection.
}
ADDRESS FindPatternSelf(const std::string pattern, const Direction searchDirect, const int opCodesToScan = 100, const std::ptrdiff_t occurence = 1)
{
static auto PatternToBytes = [](const std::string pattern)
{
char* PatternStart = const_cast<char*>(pattern.c_str()); // Cast const away and get start of pattern.
char* PatternEnd = PatternStart + std::strlen(pattern.c_str()); // Get end of pattern.
std::vector<std::int32_t> Bytes = std::vector<std::int32_t>{ }; // Initialize byte vector.
for (char* CurrentByte = PatternStart; CurrentByte < PatternEnd; ++CurrentByte)
{
if (*CurrentByte == '?') // Is current char(byte) a wildcard?
{
++CurrentByte; // Skip 1 character.
if (*CurrentByte == '?') // Is it a double wildcard pattern?
++CurrentByte; // If so skip the next space that will come up so we can reach the next byte.
Bytes.push_back(-1); // Push the byte back as invalid.
}
else
{
// https://stackoverflow.com/a/43860875/12541255
// Here we convert our string to a unsigned long integer. We pass our string then we use 16 as the base because we want it as hexadecimal.
// Afterwards we push the byte into our bytes vector.
Bytes.push_back(std::strtoul(CurrentByte, &CurrentByte, 16));
}
}
return Bytes;
};
std::uint8_t* ScanBytes = reinterpret_cast<std::uint8_t*>(ptr); // Get the base of the module.
const std::vector<int> PatternBytes = PatternToBytes(pattern); // Convert our pattern to a byte array.
const std::pair BytesInfo = std::make_pair(PatternBytes.size(), PatternBytes.data()); // Get the size and data of our bytes.
std::ptrdiff_t occurences = 0;
for (long i = 01; i < opCodesToScan + BytesInfo.first; i++)
{
bool FoundAddress = true;
int memOffset = searchDirect == Direction::DOWN ? i : -i;
for (DWORD j = 0ul; j < BytesInfo.first; j++)
{
// If either the current byte equals to the byte in our pattern or our current byte in the pattern is a wildcard
// our if clause will be false.
std::uint8_t currentByte = *(ScanBytes + memOffset + j);
if (currentByte != BytesInfo.second[j] && BytesInfo.second[j] != -1)
{
FoundAddress = false;
break;
}
}
if (FoundAddress)
{
occurences++;
if (occurence == occurences)
{
ptr = std::uintptr_t(&*(ScanBytes + memOffset));
return *this;
}
}
}
ptr = std::uintptr_t();
return *this;
}
ADDRESS FindPattern(const std::string pattern, const Direction searchDirect, const int opCodesToScan = 100, const std::ptrdiff_t occurence = 1)
{
static auto PatternToBytes = [](const std::string pattern)
{
char* PatternStart = const_cast<char*>(pattern.c_str()); // Cast const away and get start of pattern.
char* PatternEnd = PatternStart + std::strlen(pattern.c_str()); // Get end of pattern.
std::vector<std::int32_t> Bytes = std::vector<std::int32_t>{ }; // Initialize byte vector.
for (char* CurrentByte = PatternStart; CurrentByte < PatternEnd; ++CurrentByte)
{
if (*CurrentByte == '?') // Is current char(byte) a wildcard?
{
++CurrentByte; // Skip 1 character.
if (*CurrentByte == '?') // Is it a double wildcard pattern?
++CurrentByte; // If so skip the next space that will come up so we can reach the next byte.
Bytes.push_back(-1); // Push the byte back as invalid.
}
else
{
// https://stackoverflow.com/a/43860875/12541255
// Here we convert our string to a unsigned long integer. We pass our string then we use 16 as the base because we want it as hexadecimal.
// Afterwards we push the byte into our bytes vector.
Bytes.push_back(std::strtoul(CurrentByte, &CurrentByte, 16));
}
}
return Bytes;
};
std::uint8_t* ScanBytes = reinterpret_cast<std::uint8_t*>(ptr); // Get the base of the module.
const std::vector<int> PatternBytes = PatternToBytes(pattern); // Convert our pattern to a byte array.
const std::pair BytesInfo = std::make_pair(PatternBytes.size(), PatternBytes.data()); // Get the size and data of our bytes.
std::ptrdiff_t occurences = 0;
for (long i = 01; i < opCodesToScan + BytesInfo.first; i++)
{
bool FoundAddress = true;
int memOffset = searchDirect == Direction::DOWN ? i : -i;
for (DWORD j = 0ul; j < BytesInfo.first; j++)
{
// If either the current byte equals to the byte in our pattern or our current byte in the pattern is a wildcard
// our if clause will be false.
std::uint8_t currentByte = *(ScanBytes + memOffset + j);
if (currentByte != BytesInfo.second[j] && BytesInfo.second[j] != -1)
{
FoundAddress = false;
break;
}
}
if (FoundAddress)
{
occurences++;
if (occurence == occurences)
{
return ADDRESS(&*(ScanBytes + memOffset));
}
}
}
return ADDRESS();
}
ADDRESS FollowNearCall(std::ptrdiff_t opcodeOffset = 0x1, std::ptrdiff_t nextInstructionOffset = 0x5)
{
return ResolveRelativeAddress(opcodeOffset, nextInstructionOffset);
}
ADDRESS FollowNearCallSelf(std::ptrdiff_t opcodeOffset = 0x1, std::ptrdiff_t nextInstructionOffset = 0x5)
{
return ResolveRelativeAddressSelf(opcodeOffset, nextInstructionOffset);
}
ADDRESS ResolveRelativeAddressSelf(std::ptrdiff_t registerOffset = 0x0, std::ptrdiff_t nextInstructionOffset = 0x4)
{
// Skip register.
std::uintptr_t skipRegister = ptr + registerOffset;
// Get 4-byte long relative Address.
std::int32_t relativeAddress = *reinterpret_cast<std::int32_t*>(skipRegister);
// Get location of next instruction.
std::uintptr_t nextInstruction = ptr + nextInstructionOffset;
// Get function location via adding relative Address to next instruction.
ptr = nextInstruction + relativeAddress;
return *this;
}
ADDRESS ResolveRelativeAddress(std::ptrdiff_t registerOffset = 0x0, std::ptrdiff_t nextInstructionOffset = 0x4)
{
// Skip register.
std::uintptr_t skipRegister = ptr + registerOffset;
// Get 4-byte long relative Address.
std::int32_t relativeAddress = *reinterpret_cast<std::int32_t*>(skipRegister);
// Get location of next instruction.
std::uintptr_t nextInstruction = ptr + nextInstructionOffset;
// Get function location via adding relative Address to next instruction.
return ADDRESS(nextInstruction + relativeAddress);
}
private:
std::uintptr_t ptr = 0;
};
class MODULE
{
public:
struct ModuleSections
{
ModuleSections() = default;
ModuleSections(std::string sectionName, std::uintptr_t sectionStartAddress, DWORD sectionSize) : sectionName(sectionName), sectionStartAddress(sectionStartAddress), sectionSize(sectionSize) {}
bool IsSectionValid()
{
return sectionSize != 0;
}
std::string sectionName = std::string(); // Name of section.
std::uintptr_t sectionStartAddress = 0; // Start memory Address of section.
DWORD sectionSize = 0; // Size of section.
};
ModuleSections GetSectionByName(const std::string sectionName)
{
for (ModuleSections& currentSection : moduleSections)
{
if (currentSection.sectionName.compare(sectionName) == 0)
return currentSection;
}
return ModuleSections();
}
MODULE() = default;
MODULE(std::string moduleName) : moduleName(moduleName)
{
const MODULEINFO mInfo = GetModuleInfo(moduleName.c_str()); // Get module info.
sizeOfModule = (DWORD64)mInfo.SizeOfImage; // Grab the module size.
moduleBase = (std::uintptr_t)mInfo.lpBaseOfDll; // Grab module base.
dosHeader = reinterpret_cast<IMAGE_DOS_HEADER*>(moduleBase); // Get dosHeader.
ntHeaders = reinterpret_cast<IMAGE_NT_HEADERS64*>(moduleBase + dosHeader->e_lfanew); // Get ntHeaders.
const IMAGE_SECTION_HEADER* hSection = IMAGE_FIRST_SECTION(ntHeaders); // Get first image section.
for (WORD i = 0; i < ntHeaders->FileHeader.NumberOfSections; i++) // Loop through the sections.
{
const IMAGE_SECTION_HEADER& currentSection = hSection[i]; // Get current section.
moduleSections.push_back(ModuleSections(std::string(reinterpret_cast<const char*>(currentSection.Name)), (std::uintptr_t)(DWORD64)(moduleBase + currentSection.VirtualAddress), currentSection.SizeOfRawData)); // Push back a struct with the section data.
}
}
ADDRESS PatternSearch(const std::string pattern, const std::ptrdiff_t patternOccurence = 1)
{
static auto PatternToBytes = [](const std::string pattern)
{
char* PatternStart = const_cast<char*>(pattern.c_str()); // Cast const away and get start of pattern.
char* PatternEnd = PatternStart + std::strlen(pattern.c_str()); // Get end of pattern.
std::vector<std::int32_t> Bytes = std::vector<std::int32_t>{ }; // Initialize byte vector.
for (char* CurrentByte = PatternStart; CurrentByte < PatternEnd; ++CurrentByte)
{
if (*CurrentByte == '?') // Is current char(byte) a wildcard?
{
++CurrentByte; // Skip 1 character.
if (*CurrentByte == '?') // Is it a double wildcard pattern?
++CurrentByte; // If so skip the next space that will come up so we can reach the next byte.
Bytes.push_back(-1); // Push the byte back as invalid.
}
else
{
// https://stackoverflow.com/a/43860875/12541255
// Here we convert our string to a unsigned long integer. We pass our string then we use 16 as the base because we want it as hexadecimal.
// Afterwards we push the byte into our bytes vector.
Bytes.push_back(std::strtoul(CurrentByte, &CurrentByte, 16));
}
}
return Bytes;
};
ModuleSections textSection = GetSectionByName(".text"); // Get the .text section.
if (!textSection.IsSectionValid())
return ADDRESS();
const std::vector<std::int32_t> PatternBytes = PatternToBytes(pattern); // Convert our pattern to a byte array.
const std::pair BytesInfo = std::make_pair(PatternBytes.size(), PatternBytes.data()); // Get the size and data of our bytes.
std::uint8_t* latestOccurence = nullptr;
std::ptrdiff_t occurencesFound = 0;
std::uint8_t* StartOfCodeSection = reinterpret_cast<std::uint8_t*>(textSection.sectionStartAddress); // Get start of .text section.
for (DWORD i = 0ul; i < textSection.sectionSize - BytesInfo.first; i++)
{
bool FoundAddress = true;
for (DWORD j = 0ul; j < BytesInfo.first; j++)
{
// If either the current byte equals to the byte in our pattern or our current byte in the pattern is a wildcard
// our if clause will be false.
if (StartOfCodeSection[i + j] != BytesInfo.second[j] && BytesInfo.second[j] != -1)
{
FoundAddress = false;
break;
}
}
if (FoundAddress)
{
occurencesFound++; // Increment occurences found counter.
if (patternOccurence == occurencesFound) // Is it the occurence we want?
return ADDRESS(&StartOfCodeSection[i]); // If yes return it.
latestOccurence = &StartOfCodeSection[i]; // Stash latest occurence.
}
}
return ADDRESS(latestOccurence);
}
ADDRESS FindPatternSIMD(std::uint8_t* szPattern, const char* szMask)
{
ModuleSections mInfo = GetSectionByName(".text"); // Get the .text section.
if (!mInfo.IsSectionValid()) { return ADDRESS(); }
DWORD64 base = (DWORD64)mInfo.sectionStartAddress;
DWORD64 size = (DWORD64)mInfo.sectionSize;
unsigned char* pData = (unsigned char*)base;
unsigned int length = (unsigned int)size;
const unsigned char* end = pData + length - strlen(szMask);
int num_masks = (int)ceil((float)strlen(szMask) / (float)16);
int masks[32]; // 32*16 = enough masks for 512 bytes.
memset(masks, 0, num_masks * sizeof(int));
for (int64_t i = 0; i < num_masks; ++i)
{
for (int64_t j = strnlen(szMask + i * 16, 16) - 1; j >= 0; --j)
{
if (szMask[i * 16 + j] == 'x')
{
masks[i] |= 1 << j;
}
}
}
__m128i xmm1 = _mm_loadu_si128((const __m128i*) szPattern);
__m128i xmm2, xmm3, msks;
for (; pData != end; _mm_prefetch((const char*)(++pData + 64), _MM_HINT_NTA))
{
if (szPattern[0] == pData[0])
{
xmm2 = _mm_loadu_si128((const __m128i*) pData);
msks = _mm_cmpeq_epi8(xmm1, xmm2);
if ((_mm_movemask_epi8(msks) & masks[0]) == masks[0])
{
for (DWORD64 i = 1; i < num_masks; ++i)
{
xmm2 = _mm_loadu_si128((const __m128i*) (pData + i * 16));
xmm3 = _mm_loadu_si128((const __m128i*) (szPattern + i * 16));
msks = _mm_cmpeq_epi8(xmm2, xmm3);
if ((_mm_movemask_epi8(msks) & masks[i]) == masks[i])
{
if ((i + 1) == num_masks)
{
return (ADDRESS)pData;
}
}
else goto cont;
}
return (ADDRESS)(&*(pData));
}
}cont:;
}
return ADDRESS();
}
ADDRESS GetExportedFunction(const std::string functionName)
{
if (!dosHeader || dosHeader->e_magic != IMAGE_DOS_SIGNATURE) // Is dosHeader valid?
return ADDRESS();
if (!ntHeaders || ntHeaders->Signature != IMAGE_NT_SIGNATURE) // Is ntHeader valid?
return ADDRESS();
// Get the location of IMAGE_EXPORT_DIRECTORY for this module by adding the IMAGE_DIRECTORY_ENTRY_EXPORT relative virtual Address onto our module base Address.
IMAGE_EXPORT_DIRECTORY* ImageExportDirectory = reinterpret_cast<IMAGE_EXPORT_DIRECTORY*>(moduleBase + ntHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
if (!ImageExportDirectory)
return ADDRESS();
// Are there any exported functions?
if (!ImageExportDirectory->NumberOfFunctions)
return ADDRESS();
// Get the location of the functions via adding the relative virtual Address from the struct into our module base Address.
DWORD* AddressOfFunctionsPtr = reinterpret_cast<DWORD*>(moduleBase + ImageExportDirectory->AddressOfFunctions);
if (!AddressOfFunctionsPtr)
return ADDRESS();
// Get the names of the functions via adding the relative virtual Address from the struct into our module base Address.
DWORD* AddressOfNamePtr = reinterpret_cast<DWORD*>(moduleBase + ImageExportDirectory->AddressOfNames);
if (!AddressOfNamePtr)
return ADDRESS();
// Get the ordinals of the functions via adding the relative virtual Address from the struct into our module base Address.
DWORD* AddressOfOrdinalsPtr = reinterpret_cast<DWORD*>(moduleBase + ImageExportDirectory->AddressOfNameOrdinals);
if (!AddressOfOrdinalsPtr)
return ADDRESS();
for (std::size_t i = 0; i < ImageExportDirectory->NumberOfFunctions; i++) // Iterate through all the functions.
{
// Get virtual relative Address of the function name. Then add module base Address to get the actual location.
std::string ExportFunctionName = reinterpret_cast<char*>(reinterpret_cast<DWORD*>(moduleBase + AddressOfNamePtr[i]));
if (ExportFunctionName.compare(functionName) == 0) // Is this our wanted exported function?
{
// Get the function ordinal. Then grab the relative virtual Address of our wanted function. Then add module base Address so we get the actual location.
return ADDRESS(moduleBase + AddressOfFunctionsPtr[reinterpret_cast<WORD*>(AddressOfOrdinalsPtr)[i]]); // Return as Address class.
}
}
return ADDRESS();
}
ADDRESS FindAddressForString(const std::string string, bool nullTerminator)
{
static auto StringToBytes = [](const std::string string, bool nullTerminator)
{
char* StringStart = const_cast<char*>(string.c_str()); // Cast const away and get start of string.
char* StringEnd = StringStart + std::strlen(string.c_str()); // Get end of string.
std::vector<std::int32_t> Bytes = std::vector<std::int32_t>{ }; // Initialize byte vector.
for (char* CurrentByte = StringStart; CurrentByte < StringEnd; ++CurrentByte) // Loop through all the characters in the .rdata string.
{
Bytes.push_back(*CurrentByte); // Dereference character and push back the byte.
}
if (nullTerminator) // Does the string have a null terminator at the end of it?
Bytes.push_back(0x0); // If yes push back 0 at the end of the byte array.
return Bytes;
};
ModuleSections rdataSection = GetSectionByName(".rdata"); // .Get rdata section, we only loop through here because most important strings are in the .rdata section.
if (!rdataSection.IsSectionValid())
return ADDRESS();
std::vector<std::int32_t> stringBytes = StringToBytes(string, nullTerminator); // Convert our string to a byte array.
const std::pair BytesInfo = std::make_pair(stringBytes.size(), stringBytes.data()); // Get the size and data of our bytes.
std::uint8_t* StartOfRdata = reinterpret_cast<std::uint8_t*>(rdataSection.sectionStartAddress); // Get start of .rdata section.
for (DWORD i = 0ul; i < rdataSection.sectionSize - BytesInfo.first; i++)
{
bool FoundAddress = true;
// If either the current byte equals to the byte in our pattern or our current byte in the pattern is a wildcard
// our if clause will be false.
for (DWORD j = 0ul; j < BytesInfo.first; j++)
{
if (StartOfRdata[i + j] != BytesInfo.second[j] && BytesInfo.second[j] != -1)
{
FoundAddress = false;
break;
}
}
if (FoundAddress)
{
return ADDRESS(&StartOfRdata[i]);
}
}
return ADDRESS();
}
ADDRESS StringSearch(const std::string string, const std::ptrdiff_t occurence = 1, bool nullTerminator = false)
{
static auto PatternToBytes = [](const std::string pattern)
{
char* PatternStart = const_cast<char*>(pattern.c_str()); // Cast const away and get start of pattern.
char* PatternEnd = PatternStart + std::strlen(pattern.c_str()); // Get end of pattern.
std::vector<std::int32_t> Bytes = std::vector<std::int32_t>{ }; // Initialize byte vector.
for (char* CurrentByte = PatternStart; CurrentByte < PatternEnd; ++CurrentByte)
{
if (*CurrentByte == '?') // Is current char(byte) a wildcard?
{
++CurrentByte; // Skip 1 character.
if (*CurrentByte == '?') // Is it a double wildcard pattern?
++CurrentByte; // If so skip the next space that will come up so we can reach the next byte.
Bytes.push_back(-1); // Push the byte back as invalid.
}
else
{
// https://stackoverflow.com/a/43860875/12541255
// Here we convert our string to a unsigned long integer. We pass our string then we use 16 as the base because we want it as hexadecimal.
// Afterwards we push the byte into our bytes vector.
Bytes.push_back(std::strtoul(CurrentByte, &CurrentByte, 16));
}
}
return Bytes;
};
ModuleSections textSection = GetSectionByName(".text"); // Get the .text section.
if (!textSection.IsSectionValid())
return ADDRESS();
ADDRESS stringAddress = FindAddressForString(string, nullTerminator); // Get Address for the string in the .rdata section.
if (!stringAddress)
return ADDRESS();
std::uint8_t* latestOccurence = nullptr;
std::ptrdiff_t occurencesFound = 0;
std::uint8_t* StartOfCodeSection = reinterpret_cast<std::uint8_t*>(textSection.sectionStartAddress); // Get the start of the .text section.
for (DWORD i = 0ul; i < textSection.sectionSize - 0x5; i++)
{
byte byte = StartOfCodeSection[i];
if (byte == 0x8D) // is it a LEA instruction?
{
ADDRESS skipOpCode = ADDRESS((std::uintptr_t)&StartOfCodeSection[i]).OffsetSelf(0x2); // Skip next 2 opcodes, those being the instruction and then the register.
std::int32_t relativeAddress = skipOpCode.GetValue<std::int32_t>(); // Get 4-byte long string relative Address
std::uintptr_t nextInstruction = skipOpCode.Offset(0x4).GetPtr(); // Get location of next instruction.
ADDRESS potentialLocation = ADDRESS(nextInstruction + relativeAddress); // Get potential string location.
if (potentialLocation == stringAddress)
{
occurencesFound++; // Increment occurences found counter.
if (occurence == occurencesFound) // Is it the occurence we want?
return ADDRESS(&StartOfCodeSection[i]); // If yes return it.
latestOccurence = &StartOfCodeSection[i]; // Stash latest occurence.
}
}
}
return ADDRESS(latestOccurence);
}
std::uintptr_t GetModuleBase()
{
return moduleBase;
}
std::string GetModuleName()
{
return moduleName;
}
private:
std::string moduleName = std::string();
std::uintptr_t moduleBase = 0;
DWORD64 sizeOfModule = 0;
IMAGE_NT_HEADERS64* ntHeaders = nullptr;
IMAGE_DOS_HEADER* dosHeader = nullptr;
std::vector<ModuleSections> moduleSections = {};
};