r5sdk/r5dev/tier1/bitbuf.cpp
Kawe Mazidjatari 8c87ad219f Add more bitbuf inlines
Added:
- Tell()
- GetNumBitsLeft()
- GetNumBytesLeft()
2023-08-21 16:14:54 +02:00

704 lines
18 KiB
C++
Raw Blame History

//===== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: buffer serialization/deserialization.
//
// $NoKeywords: $
//===========================================================================//
#include "tier1/bitbuf.h"
#include "mathlib/swap.h"
#include "mathlib/bitvec.h"
//-----------------------------------------------------------------------------
// Write masks
//-----------------------------------------------------------------------------
class CBitWriteMasks
{
public:
CBitWriteMasks()
{
for (unsigned int startbit = 0; startbit < 32; startbit++)
{
for (unsigned int nBitsLeft = 0; nBitsLeft < 33; nBitsLeft++)
{
unsigned int endbit = startbit + nBitsLeft;
m_BitWriteMasks[startbit][nBitsLeft] = GetBitForBitnum(int(startbit)) - 1;
if (endbit < 32)
m_BitWriteMasks[startbit][nBitsLeft] |= ~(GetBitForBitnum(int(endbit)) - 1);
}
}
for (unsigned int maskBit = 0; maskBit < 32; maskBit++)
m_ExtraMasks[maskBit] = GetBitForBitnum(int(maskBit)) - 1;
m_ExtraMasks[32] = ~0ul;
for (unsigned int littleBit = 0; littleBit < 32; littleBit++)
StoreLittleDWord((unsigned int*)&m_LittleBits[littleBit], 0, 1u << littleBit);
}
// Precalculated bit masks for WriteUBitLong. Using these tables instead of
// doing the calculations gives a 33% speedup in WriteUBitLong.
unsigned long m_BitWriteMasks[32][33];
unsigned long m_LittleBits[32];
unsigned long m_ExtraMasks[33]; // (1 << i) - 1
};
static CBitWriteMasks s_BitWriteMasks;
//-----------------------------------------------------------------------------
// Error handler
//-----------------------------------------------------------------------------
static BitBufErrorHandler g_BitBufErrorHandler = 0;
void InternalBitBufErrorHandler(BitBufErrorType errorType, const char* pDebugName)
{
if (g_BitBufErrorHandler)
g_BitBufErrorHandler(errorType, pDebugName);
}
void SetBitBufErrorHandler(BitBufErrorHandler fn)
{
g_BitBufErrorHandler = fn;
}
// ---------------------------------------------------------------------------------------- //
// CBitBuffer
// ---------------------------------------------------------------------------------------- //
CBitBuffer::CBitBuffer(void)
{
m_bOverflow = false;
m_pDebugName = NULL;
m_nDataBits = -1;
m_nDataBytes = 0;
}
// ---------------------------------------------------------------------------------------- //
// bf_read
// ---------------------------------------------------------------------------------------- //
CBitRead::CBitRead(const void* pData, int nBytes, int nBits /*= -1*/)
{
StartReading(pData, nBytes, 0, nBits);
}
CBitRead::CBitRead(const char* pDebugName, const void* pData, int nBytes, int nBits /*= -1*/)
{
SetDebugName(pDebugName);
StartReading(pData, nBytes, 0, nBits);
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CBitRead::StartReading(const void* pData, size_t nBytes, int64 iStartBit, int64 nBits)
{
// Make sure it's dword aligned and padded.
assert((int64(pData) & 3) == 0);
m_pData = (uint32*)pData;
m_pDataIn = m_pData;
m_nDataBytes = nBytes;
if (nBits == -1)
{
m_nDataBits = nBytes << 3;
}
else
{
assert(nBits <= int64(nBytes * 8));
m_nDataBits = nBits;
}
m_bOverflow = false;
m_pBufferEnd = reinterpret_cast<uint32 const*> (reinterpret_cast<uint8 const*> (m_pData) + nBytes);
if (m_pData)
Seek(iStartBit);
}
//-----------------------------------------------------------------------------
// Purpose: seeks to a specific position in the buffer
//-----------------------------------------------------------------------------
bool CBitRead::Seek(int64 nPosition)
{
bool bSucc = true;
if (nPosition < 0 || nPosition > m_nDataBits)
{
SetOverflowFlag();
bSucc = false;
nPosition = m_nDataBits;
}
size_t nHead = m_nDataBytes & 3; // non-multiple-of-4 bytes at head of buffer. We put the "round off"
// at the head to make reading and detecting the end efficient.
size_t nByteOfs = nPosition / 8;
if ((m_nDataBytes < 4) || (nHead && (nByteOfs < nHead)))
{
// partial first dword
uint8 const* pPartial = (uint8 const*)m_pData;
if (m_pData)
{
m_nInBufWord = *(pPartial++);
if (nHead > 1)
m_nInBufWord |= (*pPartial++) << 8;
if (nHead > 2)
m_nInBufWord |= (*pPartial++) << 16;
}
m_pDataIn = (uint32 const*)pPartial;
m_nInBufWord >>= (nPosition & 31);
m_nBitsAvail = int((nHead << 3) - (nPosition & 31));
}
else
{
ssize_t nAdjPosition = nPosition - (nHead << 3);
m_pDataIn = reinterpret_cast<uint32 const*> (
reinterpret_cast<uint8 const*>(m_pData) + ((nAdjPosition / 32) << 2) + nHead);
if (m_pData)
{
m_nBitsAvail = 32;
GrabNextDWord();
}
else
{
m_nInBufWord = 0;
m_nBitsAvail = 1;
}
m_nInBufWord >>= (nAdjPosition & 31);
m_nBitsAvail = min(m_nBitsAvail, 32 - (nAdjPosition & 31)); // in case grabnextdword overflowed
}
return bSucc;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CBitRead::GrabNextDWord(bool bOverFlowImmediately)
{
if (m_pDataIn == m_pBufferEnd)
{
m_nBitsAvail = 1;
m_nInBufWord = 0;
m_pDataIn++;
if (bOverFlowImmediately)
SetOverflowFlag();
}
else
{
if (m_pDataIn > m_pBufferEnd)
{
SetOverflowFlag();
m_nInBufWord = 0;
}
else
{
assert(reinterpret_cast<uintptr_t>(m_pDataIn) + 3 < reinterpret_cast<uintptr_t>(m_pBufferEnd));
m_nInBufWord = LittleDWord(*(m_pDataIn++));
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CBitRead::FetchNext()
{
m_nBitsAvail = 32;
GrabNextDWord(false);
}
//-----------------------------------------------------------------------------
// Purpose: reads an unsigned integer from the buffer
//-----------------------------------------------------------------------------
uint32 CBitRead::ReadUBitLong(int numbits)
{
if (m_nBitsAvail >= numbits)
{
unsigned int nRet = m_nInBufWord & s_BitWriteMasks.m_ExtraMasks[numbits];
m_nBitsAvail -= numbits;
if (m_nBitsAvail)
{
m_nInBufWord >>= numbits;
}
else
{
FetchNext();
}
return nRet;
}
else
{
uint32 nRet = m_nInBufWord;
numbits -= m_nBitsAvail;
GrabNextDWord(true);
if (IsOverflowed())
return 0;
nRet |= ((m_nInBufWord & s_BitWriteMasks.m_ExtraMasks[numbits]) << m_nBitsAvail);
m_nBitsAvail = 32 - numbits;
m_nInBufWord >>= numbits;
return nRet;
}
}
//-----------------------------------------------------------------------------
// Purpose: reads a signed integer from the buffer
//-----------------------------------------------------------------------------
int CBitRead::ReadSBitLong(int numbits)
{
int nRet = ReadUBitLong(numbits);
return (nRet << (32 - numbits)) >> (32 - numbits);
}
//-----------------------------------------------------------------------------
// Purpose: reads a signed 64-bit integer from the buffer
//-----------------------------------------------------------------------------
int64 CBitRead::ReadLongLong()
{
int64 retval;
uint* pLongs = (uint*)&retval;
// Read the two DWORDs according to network endian
const short endianIndex = 0x0100;
byte* idx = (byte*)&endianIndex;
pLongs[*idx++] = ReadUBitLong(sizeof(long) << 3);
pLongs[*idx] = ReadUBitLong(sizeof(long) << 3);
return retval;
}
//-----------------------------------------------------------------------------
// Purpose: reads a float from the buffer
//-----------------------------------------------------------------------------
float CBitRead::ReadFloat()
{
float ret;
Assert(sizeof(ret) == 4);
ReadBits(&ret, 32);
// Swap the float, since ReadBits reads raw data
LittleFloat(&ret, &ret);
return ret;
}
//-----------------------------------------------------------------------------
// Purpose: reads bits from the buffer
//-----------------------------------------------------------------------------
void CBitRead::ReadBits(void* pOutData, int nBits)
{
unsigned char* pOut = (unsigned char*)pOutData;
int nBitsLeft = nBits;
// align output to dword boundary
while (((uintp)pOut & 3) != 0 && nBitsLeft >= 8)
{
*pOut = (unsigned char)ReadUBitLong(8);
++pOut;
nBitsLeft -= 8;
}
// X360TBD: Can't read dwords in ReadBits because they'll get swapped
if (IsPC())
{
// read dwords
while (nBitsLeft >= 32)
{
*((uint32*)pOut) = ReadUBitLong(32);
pOut += sizeof(uint32);
nBitsLeft -= 32;
}
}
// read remaining bytes
while (nBitsLeft >= 8)
{
*pOut = (unsigned char)ReadUBitLong(8);
++pOut;
nBitsLeft -= 8;
}
// read remaining bits
if (nBitsLeft)
{
*pOut = (unsigned char)ReadUBitLong(nBitsLeft);
}
}
//-----------------------------------------------------------------------------
// Purpose: reads bytes from the buffer
//-----------------------------------------------------------------------------
bool CBitRead::ReadBytes(void* pOut, int nBytes)
{
ReadBits(pOut, nBytes << 3);
return !IsOverflowed();
}
//-----------------------------------------------------------------------------
// Purpose: reads a string from the buffer
//-----------------------------------------------------------------------------
bool CBitRead::ReadString(char* pStr, int maxLen, bool bLine, int* pOutNumChars)
{
assert(maxLen != 0);
bool bTooSmall = false;
int iChar = 0;
while (1)
{
char val = char(ReadChar());
if (val == 0)
break;
else if (bLine && val == '\n')
break;
if (iChar < (maxLen - 1))
{
pStr[iChar] = val;
++iChar;
}
else
{
bTooSmall = true;
}
}
// Make sure it's null-terminated.
pStr[iChar] = '\0';
if (pOutNumChars)
*pOutNumChars = iChar;
return !IsOverflowed() && !bTooSmall;
}
// ---------------------------------------------------------------------------------------- //
// bf_write
// ---------------------------------------------------------------------------------------- //
CBitWrite::CBitWrite()
{
//DEBUG_LINK_CHECK;
m_pData = NULL;
m_nDataBytes = 0;
m_nDataBits = -1; // set to -1 so we generate overflow on any operation
m_iCurBit = 0;
m_bOverflow = false;
m_bAssertOnOverflow = true;
m_pDebugName = NULL;
}
CBitWrite::CBitWrite(const char* pDebugName, void* pData, int nBytes, int nBits)
{
//DEBUG_LINK_CHECK;
m_bAssertOnOverflow = true;
m_pDebugName = pDebugName;
StartWriting(pData, nBytes, 0, nBits);
}
CBitWrite::CBitWrite(void* pData, int nBytes, int nBits)
{
m_bAssertOnOverflow = true;
m_pDebugName = NULL;
StartWriting(pData, nBytes, 0, nBits);
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CBitWrite::StartWriting(void* pData, int nBytes, int iStartBit, int nBits)
{
// Make sure it's dword aligned and padded.
//DEBUG_LINK_CHECK;
Assert((nBytes % 4) == 0);
Assert(((uintp)pData & 3) == 0);
// The writing code will overrun the end of the buffer if it isn't dword aligned, so truncate to force alignment
nBytes &= ~3;
m_pData = (unsigned char*)pData;
m_nDataBytes = nBytes;
if (nBits == -1)
{
m_nDataBits = nBytes << 3;
}
else
{
Assert(nBits <= nBytes * 8);
m_nDataBits = nBits;
}
m_iCurBit = iStartBit;
m_bOverflow = false;
}
//-----------------------------------------------------------------------------
// Purpose: writes a bit to the buffer without checking for overflow
//-----------------------------------------------------------------------------
inline void CBitWrite::WriteOneBitNoCheck(int nValue)
{
if (nValue)
m_pData[m_iCurBit >> 3] |= (1 << (m_iCurBit & 7));
else
m_pData[m_iCurBit >> 3] &= ~(1 << (m_iCurBit & 7));
++m_iCurBit;
}
//-----------------------------------------------------------------------------
// Purpose: writes a bit to the buffer
//-----------------------------------------------------------------------------
inline void CBitWrite::WriteOneBit(int nValue)
{
if (!CheckForOverflow(1))
WriteOneBitNoCheck(nValue);
}
//-----------------------------------------------------------------------------
// Purpose: writes a bit to the buffer at a specific bit index
//-----------------------------------------------------------------------------
inline void CBitWrite::WriteOneBitAt(int iBit, int nValue)
{
if (iBit + 1 > m_nDataBits)
{
SetOverflowFlag();
CallErrorHandler(BITBUFERROR_BUFFER_OVERRUN, GetDebugName());
return;
}
if (nValue)
m_pData[iBit >> 3] |= (1 << (iBit & 7));
else
m_pData[iBit >> 3] &= ~(1 << (iBit & 7));
}
//-----------------------------------------------------------------------------
// Purpose: writes an unsigned integer to the buffer
//-----------------------------------------------------------------------------
/*BITBUF_INLINE*/ void CBitWrite::WriteUBitLong(unsigned int curData, int numbits, bool bCheckRange)
{
#ifdef _DEBUG
// Make sure it doesn't overflow.
if (bCheckRange && numbits < 32)
{
if (curData >= (uint32)(1 << numbits))
{
CallErrorHandler(BITBUFERROR_VALUE_OUT_OF_RANGE, GetDebugName());
}
}
Assert(numbits >= 0 && numbits <= 32);
#else
NOTE_UNUSED(bCheckRange);
#endif
// Bounds checking..
if ((m_iCurBit + numbits) > m_nDataBits)
{
m_iCurBit = m_nDataBits;
SetOverflowFlag();
CallErrorHandler(BITBUFERROR_BUFFER_OVERRUN, GetDebugName());
return;
}
int nBitsLeft = numbits;
int iCurBit = m_iCurBit;
// Mask in a dword.
unsigned int iDWord = iCurBit >> 5;
Assert((iDWord * 4 + sizeof(int32)) <= (unsigned int)m_nDataBytes);
uint32 iCurBitMasked = iCurBit & 31;
uint32 dword = LoadLittleDWord((uint32*)m_pData, iDWord);
dword &= s_BitWriteMasks.m_BitWriteMasks[iCurBitMasked][nBitsLeft];
dword |= curData << iCurBitMasked;
// write to stream (lsb to msb) properly
StoreLittleDWord((uint32*)m_pData, iDWord, dword);
// Did it span a dword?
int nBitsWritten = 32 - iCurBitMasked;
if (nBitsWritten < nBitsLeft)
{
nBitsLeft -= nBitsWritten;
curData >>= nBitsWritten;
// read from stream (lsb to msb) properly
dword = LoadLittleDWord((uint32*)m_pData, iDWord + 1);
dword &= s_BitWriteMasks.m_BitWriteMasks[0][nBitsLeft];
dword |= curData;
// write to stream (lsb to msb) properly
StoreLittleDWord((uint32*)m_pData, iDWord + 1, dword);
}
m_iCurBit += numbits;
}
//-----------------------------------------------------------------------------
// Purpose: writes a signed integer to the buffer
// (Sign bit comes first)
//-----------------------------------------------------------------------------
void CBitWrite::WriteSBitLong(int data, int numbits)
{
// Do we have a valid # of bits to encode with?
Assert(numbits >= 1);
// Note: it does this weirdness here so it's bit-compatible with regular integer data in the buffer.
// (Some old code writes direct integers right into the buffer).
if (data < 0)
{
#ifdef _DEBUG
if (numbits < 32)
{
// Make sure it doesn't overflow.
if (data < 0)
{
Assert(data >= -(GetBitForBitnum(numbits - 1)));
}
else
{
Assert(data < (GetBitForBitnum(numbits - 1)));
}
}
#endif
WriteUBitLong((unsigned int)(0x80000000 + data), numbits - 1, false);
WriteOneBit(1);
}
else
{
WriteUBitLong((unsigned int)data, numbits - 1);
WriteOneBit(0);
}
}
//-----------------------------------------------------------------------------
// Purpose: writes a signed or unsigned integer to the buffer
//-----------------------------------------------------------------------------
void CBitWrite::WriteBitLong(unsigned int data, int numbits, bool bSigned)
{
if (bSigned)
WriteSBitLong((int)data, numbits);
else
WriteUBitLong(data, numbits);
}
//-----------------------------------------------------------------------------
// Purpose: writes a list of bits to the buffer
//-----------------------------------------------------------------------------
bool CBitWrite::WriteBits(const void* pInData, int nBits)
{
unsigned char* pIn = (unsigned char*)pInData;
int nBitsLeft = nBits;
// Bounds checking..
if ((m_iCurBit + nBits) > m_nDataBits)
{
SetOverflowFlag();
CallErrorHandler(BITBUFERROR_BUFFER_OVERRUN, GetDebugName());
return false;
}
// Align input to dword boundary
while (((uintp)pIn & 3) != 0 && nBitsLeft >= 8)
{
WriteUBitLong(*pIn, 8, false);
++pIn;
nBitsLeft -= 8;
}
if (nBitsLeft >= 32)
{
if ((m_iCurBit & 7) == 0)
{
// current bit is byte aligned, do block copy
int numbytes = nBitsLeft >> 3;
int numbits = numbytes << 3;
memcpy(m_pData + (m_iCurBit >> 3), pIn, numbytes);
pIn += numbytes;
nBitsLeft -= numbits;
m_iCurBit += numbits;
}
else
{
const uint32 iBitsRight = (m_iCurBit & 31);
Assert(iBitsRight > 0); // should not be aligned, otherwise it would have been handled before
const uint32 iBitsLeft = 32 - iBitsRight;
const int iBitsChanging = 32 + iBitsLeft; // how many bits are changed during one step (not necessary written meaningful)
unsigned int iDWord = m_iCurBit >> 5;
uint32 outWord = LoadLittleDWord((uint32*)m_pData, iDWord);
outWord &= s_BitWriteMasks.m_BitWriteMasks[iBitsRight][32]; // clear rest of beginning DWORD
// copy in DWORD blocks
while (nBitsLeft >= iBitsChanging)
{
uint32 curData = LittleDWord(*(uint32*)pIn);
pIn += sizeof(uint32);
outWord |= curData << iBitsRight;
StoreLittleDWord((uint32*)m_pData, iDWord, outWord);
++iDWord;
outWord = curData >> iBitsLeft;
nBitsLeft -= 32;
m_iCurBit += 32;
}
// store last word
StoreLittleDWord((uint32*)m_pData, iDWord, outWord);
// write remaining DWORD
if (nBitsLeft >= 32)
{
WriteUBitLong(LittleDWord(*((uint32*)pIn)), 32, false);
pIn += sizeof(uint32);
nBitsLeft -= 32;
}
}
}
// write remaining bytes
while (nBitsLeft >= 8)
{
WriteUBitLong(*pIn, 8, false);
++pIn;
nBitsLeft -= 8;
}
// write remaining bits
if (nBitsLeft)
{
WriteUBitLong(*pIn, nBitsLeft, false);
}
return !IsOverflowed();
}
//-----------------------------------------------------------------------------
// Purpose: checks if we have enough space for the requested number of bits
//-----------------------------------------------------------------------------
bool CBitWrite::CheckForOverflow(int nBits)
{
if (this->m_iCurBit + nBits > this->m_nDataBits)
{
this->SetOverflowFlag();
}
return IsOverflowed();
}
//-----------------------------------------------------------------------------
// Purpose: sets the overflow flag
//-----------------------------------------------------------------------------
void CBitWrite::SetOverflowFlag()
{
if (this->m_bAssertOnOverflow)
{
assert(false);
}
this->m_bOverflow = true;
}