mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
SourceSDK mathlib port with light modifications. Renamed Vector to Vector3D (to avoid confusion with std::vector (declared as vector) and Vector2D/Vector4D).
3108 lines
89 KiB
C++
3108 lines
89 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose: - defines SIMD "structure of arrays" classes and functions.
|
|
//
|
|
//===========================================================================//
|
|
#ifndef SSEMATH_H
|
|
#define SSEMATH_H
|
|
|
|
#if defined( _X360 )
|
|
#include <xboxmath.h>
|
|
#else
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#include <mathlib/vector.h>
|
|
#include <mathlib/mathlib.h>
|
|
|
|
#if defined(GNUC)
|
|
#define USE_STDC_FOR_SIMD 0
|
|
#else
|
|
#define USE_STDC_FOR_SIMD 0
|
|
#endif
|
|
|
|
#if (!defined(_X360) && (USE_STDC_FOR_SIMD == 0))
|
|
#define _SSE1 1
|
|
#endif
|
|
|
|
// I thought about defining a class/union for the SIMD packed floats instead of using fltx4,
|
|
// but decided against it because (a) the nature of SIMD code which includes comparisons is to blur
|
|
// the relationship between packed floats and packed integer types and (b) not sure that the
|
|
// compiler would handle generating good code for the intrinsics.
|
|
|
|
#if USE_STDC_FOR_SIMD
|
|
|
|
typedef union
|
|
{
|
|
float m128_f32[4];
|
|
uint32 m128_u32[4];
|
|
} fltx4;
|
|
|
|
typedef fltx4 i32x4;
|
|
typedef fltx4 u32x4;
|
|
|
|
#elif ( defined( _X360 ) )
|
|
|
|
typedef union
|
|
{
|
|
// This union allows float/int access (which generally shouldn't be done in inner loops)
|
|
__vector4 vmx;
|
|
float m128_f32[4];
|
|
uint32 m128_u32[4];
|
|
} fltx4_union;
|
|
|
|
typedef __vector4 fltx4;
|
|
typedef __vector4 i32x4; // a VMX register; just a way of making it explicit that we're doing integer ops.
|
|
typedef __vector4 u32x4; // a VMX register; just a way of making it explicit that we're doing unsigned integer ops.
|
|
|
|
#else
|
|
|
|
typedef __m128 fltx4;
|
|
typedef __m128 i32x4;
|
|
typedef __m128 u32x4;
|
|
|
|
#endif
|
|
|
|
// The FLTX4 type is a fltx4 used as a parameter to a function.
|
|
// On the 360, the best way to do this is pass-by-copy on the registers.
|
|
// On the PC, the best way is to pass by const reference.
|
|
// The compiler will sometimes, but not always, replace a pass-by-const-ref
|
|
// with a pass-in-reg on the 360; to avoid this confusion, you can
|
|
// explicitly use a FLTX4 as the parameter type.
|
|
#ifdef _X360
|
|
typedef __vector4 FLTX4;
|
|
#else
|
|
typedef const fltx4& FLTX4;
|
|
#endif
|
|
|
|
// A 16-byte aligned int32 datastructure
|
|
// (for use when writing out fltx4's as SIGNED
|
|
// ints).
|
|
struct ALIGN16 intx4
|
|
{
|
|
int32 m_i32[4];
|
|
|
|
inline int& operator[](int which)
|
|
{
|
|
return m_i32[which];
|
|
}
|
|
|
|
inline const int& operator[](int which) const
|
|
{
|
|
return m_i32[which];
|
|
}
|
|
|
|
inline int32* Base() {
|
|
return m_i32;
|
|
}
|
|
|
|
inline const int32* Base() const
|
|
{
|
|
return m_i32;
|
|
}
|
|
|
|
inline const bool operator==(const intx4& other) const
|
|
{
|
|
return m_i32[0] == other.m_i32[0] &&
|
|
m_i32[1] == other.m_i32[1] &&
|
|
m_i32[2] == other.m_i32[2] &&
|
|
m_i32[3] == other.m_i32[3];
|
|
}
|
|
} ALIGN16_POST;
|
|
|
|
|
|
#if defined( _DEBUG ) && defined( _X360 )
|
|
FORCEINLINE void TestVPUFlags()
|
|
{
|
|
// Check that the VPU is in the appropriate (Java-compliant) mode (see 3.2.1 in altivec_pem.pdf on xds.xbox.com)
|
|
__vector4 a;
|
|
__asm
|
|
{
|
|
mfvscr a;
|
|
}
|
|
unsigned int* flags = (unsigned int*)&a;
|
|
unsigned int controlWord = flags[3];
|
|
Assert(controlWord == 0);
|
|
}
|
|
#else // _DEBUG
|
|
FORCEINLINE void TestVPUFlags() {}
|
|
#endif // _DEBUG
|
|
|
|
|
|
// useful constants in SIMD packed float format:
|
|
// (note: some of these aren't stored on the 360,
|
|
// but are manufactured directly in one or two
|
|
// instructions, saving a load and possible L2
|
|
// miss.)
|
|
#ifndef _X360
|
|
extern const fltx4 Four_Zeros; // 0 0 0 0
|
|
extern const fltx4 Four_Ones; // 1 1 1 1
|
|
extern const fltx4 Four_Twos; // 2 2 2 2
|
|
extern const fltx4 Four_Threes; // 3 3 3 3
|
|
extern const fltx4 Four_Fours; // guess.
|
|
extern const fltx4 Four_Point225s; // .225 .225 .225 .225
|
|
extern const fltx4 Four_PointFives; // .5 .5 .5 .5
|
|
extern const fltx4 Four_Epsilons; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
|
|
extern const fltx4 Four_2ToThe21s; // (1<<21)..
|
|
extern const fltx4 Four_2ToThe22s; // (1<<22)..
|
|
extern const fltx4 Four_2ToThe23s; // (1<<23)..
|
|
extern const fltx4 Four_2ToThe24s; // (1<<24)..
|
|
extern const fltx4 Four_Origin; // 0 0 0 1 (origin point, like vr0 on the PS2)
|
|
extern const fltx4 Four_NegativeOnes; // -1 -1 -1 -1
|
|
#else
|
|
#define Four_Zeros XMVectorZero() // 0 0 0 0
|
|
#define Four_Ones XMVectorSplatOne() // 1 1 1 1
|
|
extern const fltx4 Four_Twos; // 2 2 2 2
|
|
extern const fltx4 Four_Threes; // 3 3 3 3
|
|
extern const fltx4 Four_Fours; // guess.
|
|
extern const fltx4 Four_Point225s; // .225 .225 .225 .225
|
|
extern const fltx4 Four_PointFives; // .5 .5 .5 .5
|
|
extern const fltx4 Four_Epsilons; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
|
|
extern const fltx4 Four_2ToThe21s; // (1<<21)..
|
|
extern const fltx4 Four_2ToThe22s; // (1<<22)..
|
|
extern const fltx4 Four_2ToThe23s; // (1<<23)..
|
|
extern const fltx4 Four_2ToThe24s; // (1<<24)..
|
|
extern const fltx4 Four_Origin; // 0 0 0 1 (origin point, like vr0 on the PS2)
|
|
extern const fltx4 Four_NegativeOnes; // -1 -1 -1 -1
|
|
#endif
|
|
extern const fltx4 Four_FLT_MAX; // FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX
|
|
extern const fltx4 Four_Negative_FLT_MAX; // -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX
|
|
extern const fltx4 g_SIMD_0123; // 0 1 2 3 as float
|
|
|
|
// external aligned integer constants
|
|
extern const ALIGN16 uint32 g_SIMD_clear_signmask[] ALIGN16_POST; // 0x7fffffff x 4
|
|
extern const ALIGN16 uint32 g_SIMD_signmask[] ALIGN16_POST; // 0x80000000 x 4
|
|
extern const ALIGN16 uint32 g_SIMD_lsbmask[] ALIGN16_POST; // 0xfffffffe x 4
|
|
extern const ALIGN16 uint32 g_SIMD_clear_wmask[] ALIGN16_POST; // -1 -1 -1 0
|
|
extern const ALIGN16 uint32 g_SIMD_ComponentMask[4][4] ALIGN16_POST; // [0xFFFFFFFF 0 0 0], [0 0xFFFFFFFF 0 0], [0 0 0xFFFFFFFF 0], [0 0 0 0xFFFFFFFF]
|
|
extern const ALIGN16 uint32 g_SIMD_AllOnesMask[] ALIGN16_POST; // ~0,~0,~0,~0
|
|
extern const ALIGN16 uint32 g_SIMD_Low16BitsMask[] ALIGN16_POST; // 0xffff x 4
|
|
|
|
// this mask is used for skipping the tail of things. If you have N elements in an array, and wish
|
|
// to mask out the tail, g_SIMD_SkipTailMask[N & 3] what you want to use for the last iteration.
|
|
extern const uint32 ALIGN16 g_SIMD_SkipTailMask[4][4] ALIGN16_POST;
|
|
|
|
// Define prefetch macros.
|
|
// The characteristics of cache and prefetch are completely
|
|
// different between the different platforms, so you DO NOT
|
|
// want to just define one macro that maps to every platform
|
|
// intrinsic under the hood -- you need to prefetch at different
|
|
// intervals between x86 and PPC, for example, and that is
|
|
// a higher level code change.
|
|
// On the other hand, I'm tired of typing #ifdef _X360
|
|
// all over the place, so this is just a nop on Intel, PS3.
|
|
#ifdef _X360
|
|
#define PREFETCH360(address, offset) __dcbt(offset,address)
|
|
#else
|
|
#define PREFETCH360(x,y) // nothing
|
|
#endif
|
|
|
|
#if USE_STDC_FOR_SIMD
|
|
|
|
//---------------------------------------------------------------------
|
|
// Standard C (fallback/Linux) implementation (only there for compat - slow)
|
|
//---------------------------------------------------------------------
|
|
|
|
FORCEINLINE float SubFloat(const fltx4& a, int idx)
|
|
{
|
|
return a.m128_f32[idx];
|
|
}
|
|
|
|
FORCEINLINE float& SubFloat(fltx4& a, int idx)
|
|
{
|
|
return a.m128_f32[idx];
|
|
}
|
|
|
|
FORCEINLINE uint32 SubInt(const fltx4& a, int idx)
|
|
{
|
|
return a.m128_u32[idx];
|
|
}
|
|
|
|
FORCEINLINE uint32& SubInt(fltx4& a, int idx)
|
|
{
|
|
return a.m128_u32[idx];
|
|
}
|
|
|
|
// Return one in the fastest way -- on the x360, faster even than loading.
|
|
FORCEINLINE fltx4 LoadZeroSIMD(void)
|
|
{
|
|
return Four_Zeros;
|
|
}
|
|
|
|
// Return one in the fastest way -- on the x360, faster even than loading.
|
|
FORCEINLINE fltx4 LoadOneSIMD(void)
|
|
{
|
|
return Four_Ones;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatXSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 0);
|
|
SubFloat(retVal, 1) = SubFloat(a, 0);
|
|
SubFloat(retVal, 2) = SubFloat(a, 0);
|
|
SubFloat(retVal, 3) = SubFloat(a, 0);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatYSIMD(fltx4 a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 1);
|
|
SubFloat(retVal, 1) = SubFloat(a, 1);
|
|
SubFloat(retVal, 2) = SubFloat(a, 1);
|
|
SubFloat(retVal, 3) = SubFloat(a, 1);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatZSIMD(fltx4 a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 2);
|
|
SubFloat(retVal, 1) = SubFloat(a, 2);
|
|
SubFloat(retVal, 2) = SubFloat(a, 2);
|
|
SubFloat(retVal, 3) = SubFloat(a, 2);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatWSIMD(fltx4 a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 3);
|
|
SubFloat(retVal, 1) = SubFloat(a, 3);
|
|
SubFloat(retVal, 2) = SubFloat(a, 3);
|
|
SubFloat(retVal, 3) = SubFloat(a, 3);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetXSIMD(const fltx4& a, const fltx4& x)
|
|
{
|
|
fltx4 result = a;
|
|
SubFloat(result, 0) = SubFloat(x, 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetYSIMD(const fltx4& a, const fltx4& y)
|
|
{
|
|
fltx4 result = a;
|
|
SubFloat(result, 1) = SubFloat(y, 1);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetZSIMD(const fltx4& a, const fltx4& z)
|
|
{
|
|
fltx4 result = a;
|
|
SubFloat(result, 2) = SubFloat(z, 2);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetWSIMD(const fltx4& a, const fltx4& w)
|
|
{
|
|
fltx4 result = a;
|
|
SubFloat(result, 3) = SubFloat(w, 3);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetComponentSIMD(const fltx4& a, int nComponent, float flValue)
|
|
{
|
|
fltx4 result = a;
|
|
SubFloat(result, nComponent) = flValue;
|
|
return result;
|
|
}
|
|
|
|
// a b c d -> b c d a
|
|
FORCEINLINE fltx4 RotateLeft(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 1);
|
|
SubFloat(retVal, 1) = SubFloat(a, 2);
|
|
SubFloat(retVal, 2) = SubFloat(a, 3);
|
|
SubFloat(retVal, 3) = SubFloat(a, 0);
|
|
return retVal;
|
|
}
|
|
|
|
// a b c d -> c d a b
|
|
FORCEINLINE fltx4 RotateLeft2(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = SubFloat(a, 2);
|
|
SubFloat(retVal, 1) = SubFloat(a, 3);
|
|
SubFloat(retVal, 2) = SubFloat(a, 0);
|
|
SubFloat(retVal, 3) = SubFloat(a, 1);
|
|
return retVal;
|
|
}
|
|
|
|
#define BINOP(op) \
|
|
fltx4 retVal; \
|
|
SubFloat( retVal, 0 ) = ( SubFloat( a, 0 ) op SubFloat( b, 0 ) ); \
|
|
SubFloat( retVal, 1 ) = ( SubFloat( a, 1 ) op SubFloat( b, 1 ) ); \
|
|
SubFloat( retVal, 2 ) = ( SubFloat( a, 2 ) op SubFloat( b, 2 ) ); \
|
|
SubFloat( retVal, 3 ) = ( SubFloat( a, 3 ) op SubFloat( b, 3 ) ); \
|
|
return retVal;
|
|
|
|
#define IBINOP(op) \
|
|
fltx4 retVal; \
|
|
SubInt( retVal, 0 ) = ( SubInt( a, 0 ) op SubInt ( b, 0 ) ); \
|
|
SubInt( retVal, 1 ) = ( SubInt( a, 1 ) op SubInt ( b, 1 ) ); \
|
|
SubInt( retVal, 2 ) = ( SubInt( a, 2 ) op SubInt ( b, 2 ) ); \
|
|
SubInt( retVal, 3 ) = ( SubInt( a, 3 ) op SubInt ( b, 3 ) ); \
|
|
return retVal;
|
|
|
|
FORCEINLINE fltx4 AddSIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
BINOP(+);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SubSIMD(const fltx4& a, const fltx4& b) // a-b
|
|
{
|
|
BINOP(-);
|
|
};
|
|
|
|
FORCEINLINE fltx4 MulSIMD(const fltx4& a, const fltx4& b) // a*b
|
|
{
|
|
BINOP(*);
|
|
}
|
|
|
|
FORCEINLINE fltx4 DivSIMD(const fltx4& a, const fltx4& b) // a/b
|
|
{
|
|
BINOP(/ );
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 MaddSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // a*b + c
|
|
{
|
|
return AddSIMD(MulSIMD(a, b), c);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MsubSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // c - a*b
|
|
{
|
|
return SubSIMD(c, MulSIMD(a, b));
|
|
};
|
|
|
|
|
|
FORCEINLINE fltx4 SinSIMD(const fltx4& radians)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = sin(SubFloat(radians, 0));
|
|
SubFloat(result, 1) = sin(SubFloat(radians, 1));
|
|
SubFloat(result, 2) = sin(SubFloat(radians, 2));
|
|
SubFloat(result, 3) = sin(SubFloat(radians, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE void SinCos3SIMD(fltx4& sine, fltx4& cosine, const fltx4& radians)
|
|
{
|
|
SinCos(SubFloat(radians, 0), &SubFloat(sine, 0), &SubFloat(cosine, 0));
|
|
SinCos(SubFloat(radians, 1), &SubFloat(sine, 1), &SubFloat(cosine, 1));
|
|
SinCos(SubFloat(radians, 2), &SubFloat(sine, 2), &SubFloat(cosine, 2));
|
|
}
|
|
|
|
FORCEINLINE void SinCosSIMD(fltx4& sine, fltx4& cosine, const fltx4& radians)
|
|
{
|
|
SinCos(SubFloat(radians, 0), &SubFloat(sine, 0), &SubFloat(cosine, 0));
|
|
SinCos(SubFloat(radians, 1), &SubFloat(sine, 1), &SubFloat(cosine, 1));
|
|
SinCos(SubFloat(radians, 2), &SubFloat(sine, 2), &SubFloat(cosine, 2));
|
|
SinCos(SubFloat(radians, 3), &SubFloat(sine, 3), &SubFloat(cosine, 3));
|
|
}
|
|
|
|
FORCEINLINE fltx4 ArcSinSIMD(const fltx4& sine)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = asin(SubFloat(sine, 0));
|
|
SubFloat(result, 1) = asin(SubFloat(sine, 1));
|
|
SubFloat(result, 2) = asin(SubFloat(sine, 2));
|
|
SubFloat(result, 3) = asin(SubFloat(sine, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ArcCosSIMD(const fltx4& cs)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = acos(SubFloat(cs, 0));
|
|
SubFloat(result, 1) = acos(SubFloat(cs, 1));
|
|
SubFloat(result, 2) = acos(SubFloat(cs, 2));
|
|
SubFloat(result, 3) = acos(SubFloat(cs, 3));
|
|
return result;
|
|
}
|
|
|
|
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
|
|
FORCEINLINE fltx4 ArcTan2SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = atan2(SubFloat(a, 0), SubFloat(b, 0));
|
|
SubFloat(result, 1) = atan2(SubFloat(a, 1), SubFloat(b, 1));
|
|
SubFloat(result, 2) = atan2(SubFloat(a, 2), SubFloat(b, 2));
|
|
SubFloat(result, 3) = atan2(SubFloat(a, 3), SubFloat(b, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 MaxSIMD(const fltx4& a, const fltx4& b) // max(a,b)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = max(SubFloat(a, 0), SubFloat(b, 0));
|
|
SubFloat(retVal, 1) = max(SubFloat(a, 1), SubFloat(b, 1));
|
|
SubFloat(retVal, 2) = max(SubFloat(a, 2), SubFloat(b, 2));
|
|
SubFloat(retVal, 3) = max(SubFloat(a, 3), SubFloat(b, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 MinSIMD(const fltx4& a, const fltx4& b) // min(a,b)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = min(SubFloat(a, 0), SubFloat(b, 0));
|
|
SubFloat(retVal, 1) = min(SubFloat(a, 1), SubFloat(b, 1));
|
|
SubFloat(retVal, 2) = min(SubFloat(a, 2), SubFloat(b, 2));
|
|
SubFloat(retVal, 3) = min(SubFloat(a, 3), SubFloat(b, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndSIMD(const fltx4& a, const fltx4& b) // a & b
|
|
{
|
|
IBINOP(&);
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndNotSIMD(const fltx4& a, const fltx4& b) // ~a & b
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = ~SubInt(a, 0) & SubInt(b, 0);
|
|
SubInt(retVal, 1) = ~SubInt(a, 1) & SubInt(b, 1);
|
|
SubInt(retVal, 2) = ~SubInt(a, 2) & SubInt(b, 2);
|
|
SubInt(retVal, 3) = ~SubInt(a, 3) & SubInt(b, 3);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 XorSIMD(const fltx4& a, const fltx4& b) // a ^ b
|
|
{
|
|
IBINOP(^);
|
|
}
|
|
|
|
FORCEINLINE fltx4 OrSIMD(const fltx4& a, const fltx4& b) // a | b
|
|
{
|
|
IBINOP(| );
|
|
}
|
|
|
|
FORCEINLINE fltx4 NegSIMD(const fltx4& a) // negate: -a
|
|
{
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = -SubFloat(a, 0);
|
|
SubFloat(retval, 1) = -SubFloat(a, 1);
|
|
SubFloat(retval, 2) = -SubFloat(a, 2);
|
|
SubFloat(retval, 3) = -SubFloat(a, 3);
|
|
|
|
return retval;
|
|
}
|
|
|
|
FORCEINLINE bool IsAllZeros(const fltx4& a) // all floats of a zero?
|
|
{
|
|
return (SubFloat(a, 0) == 0.0) &&
|
|
(SubFloat(a, 1) == 0.0) &&
|
|
(SubFloat(a, 2) == 0.0) &&
|
|
(SubFloat(a, 3) == 0.0);
|
|
}
|
|
|
|
|
|
// for branching when a.xyzw > b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThan(const fltx4& a, const fltx4& b)
|
|
{
|
|
return SubFloat(a, 0) > SubFloat(b, 0) &&
|
|
SubFloat(a, 1) > SubFloat(b, 1) &&
|
|
SubFloat(a, 2) > SubFloat(b, 2) &&
|
|
SubFloat(a, 3) > SubFloat(b, 3);
|
|
}
|
|
|
|
// for branching when a.xyzw >= b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThanOrEq(const fltx4& a, const fltx4& b)
|
|
{
|
|
return SubFloat(a, 0) >= SubFloat(b, 0) &&
|
|
SubFloat(a, 1) >= SubFloat(b, 1) &&
|
|
SubFloat(a, 2) >= SubFloat(b, 2) &&
|
|
SubFloat(a, 3) >= SubFloat(b, 3);
|
|
}
|
|
|
|
// For branching if all a.xyzw == b.xyzw
|
|
FORCEINLINE bool IsAllEqual(const fltx4& a, const fltx4& b)
|
|
{
|
|
return SubFloat(a, 0) == SubFloat(b, 0) &&
|
|
SubFloat(a, 1) == SubFloat(b, 1) &&
|
|
SubFloat(a, 2) == SubFloat(b, 2) &&
|
|
SubFloat(a, 3) == SubFloat(b, 3);
|
|
}
|
|
|
|
FORCEINLINE int TestSignSIMD(const fltx4& a) // mask of which floats have the high bit set
|
|
{
|
|
int nRet = 0;
|
|
|
|
nRet |= (SubInt(a, 0) & 0x80000000) >> 31; // sign(x) -> bit 0
|
|
nRet |= (SubInt(a, 1) & 0x80000000) >> 30; // sign(y) -> bit 1
|
|
nRet |= (SubInt(a, 2) & 0x80000000) >> 29; // sign(z) -> bit 2
|
|
nRet |= (SubInt(a, 3) & 0x80000000) >> 28; // sign(w) -> bit 3
|
|
|
|
return nRet;
|
|
}
|
|
|
|
FORCEINLINE bool IsAnyNegative(const fltx4& a) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
|
|
{
|
|
return (0 != TestSignSIMD(a));
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpEqSIMD(const fltx4& a, const fltx4& b) // (a==b) ? ~0:0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) == SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) == SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) == SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) == SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpGtSIMD(const fltx4& a, const fltx4& b) // (a>b) ? ~0:0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) > SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) > SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) > SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) > SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpGeSIMD(const fltx4& a, const fltx4& b) // (a>=b) ? ~0:0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) >= SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) >= SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) >= SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) >= SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLtSIMD(const fltx4& a, const fltx4& b) // (a<b) ? ~0:0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) < SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) < SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) < SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) < SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLeSIMD(const fltx4& a, const fltx4& b) // (a<=b) ? ~0:0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) <= SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) <= SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) <= SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) <= SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpInBoundsSIMD(const fltx4& a, const fltx4& b) // (a <= b && a >= -b) ? ~0 : 0
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = (SubFloat(a, 0) <= SubFloat(b, 0) && SubFloat(a, 0) >= -SubFloat(b, 0)) ? ~0 : 0;
|
|
SubInt(retVal, 1) = (SubFloat(a, 1) <= SubFloat(b, 1) && SubFloat(a, 1) >= -SubFloat(b, 1)) ? ~0 : 0;
|
|
SubInt(retVal, 2) = (SubFloat(a, 2) <= SubFloat(b, 2) && SubFloat(a, 2) >= -SubFloat(b, 2)) ? ~0 : 0;
|
|
SubInt(retVal, 3) = (SubFloat(a, 3) <= SubFloat(b, 3) && SubFloat(a, 3) >= -SubFloat(b, 3)) ? ~0 : 0;
|
|
return retVal;
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 MaskedAssign(const fltx4& ReplacementMask, const fltx4& NewValue, const fltx4& OldValue)
|
|
{
|
|
return OrSIMD(
|
|
AndSIMD(ReplacementMask, NewValue),
|
|
AndNotSIMD(ReplacementMask, OldValue));
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReplicateX4(float flValue) // a,a,a,a
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = flValue;
|
|
SubFloat(retVal, 1) = flValue;
|
|
SubFloat(retVal, 2) = flValue;
|
|
SubFloat(retVal, 3) = flValue;
|
|
return retVal;
|
|
}
|
|
|
|
/// replicate a single 32 bit integer value to all 4 components of an m128
|
|
FORCEINLINE fltx4 ReplicateIX4(int nValue)
|
|
{
|
|
fltx4 retVal;
|
|
SubInt(retVal, 0) = nValue;
|
|
SubInt(retVal, 1) = nValue;
|
|
SubInt(retVal, 2) = nValue;
|
|
SubInt(retVal, 3) = nValue;
|
|
return retVal;
|
|
|
|
}
|
|
|
|
// Round towards positive infinity
|
|
FORCEINLINE fltx4 CeilSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = ceil(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = ceil(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = ceil(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = ceil(SubFloat(a, 3));
|
|
return retVal;
|
|
|
|
}
|
|
|
|
// Round towards negative infinity
|
|
FORCEINLINE fltx4 FloorSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = floor(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = floor(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = floor(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = floor(SubFloat(a, 3));
|
|
return retVal;
|
|
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtEstSIMD(const fltx4& a) // sqrt(a), more or less
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = sqrt(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = sqrt(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = sqrt(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = sqrt(SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtSIMD(const fltx4& a) // sqrt(a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = sqrt(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = sqrt(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = sqrt(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = sqrt(SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD(const fltx4& a) // 1/sqrt(a), more or less
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / sqrt(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = 1.0 / sqrt(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = 1.0 / sqrt(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = 1.0 / sqrt(SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / sqrt(SubFloat(a, 0) != 0.0f ? SubFloat(a, 0) : FLT_EPSILON);
|
|
SubFloat(retVal, 1) = 1.0 / sqrt(SubFloat(a, 1) != 0.0f ? SubFloat(a, 1) : FLT_EPSILON);
|
|
SubFloat(retVal, 2) = 1.0 / sqrt(SubFloat(a, 2) != 0.0f ? SubFloat(a, 2) : FLT_EPSILON);
|
|
SubFloat(retVal, 3) = 1.0 / sqrt(SubFloat(a, 3) != 0.0f ? SubFloat(a, 3) : FLT_EPSILON);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtSIMD(const fltx4& a) // 1/sqrt(a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / sqrt(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = 1.0 / sqrt(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = 1.0 / sqrt(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = 1.0 / sqrt(SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalEstSIMD(const fltx4& a) // 1/a, more or less
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / SubFloat(a, 0);
|
|
SubFloat(retVal, 1) = 1.0 / SubFloat(a, 1);
|
|
SubFloat(retVal, 2) = 1.0 / SubFloat(a, 2);
|
|
SubFloat(retVal, 3) = 1.0 / SubFloat(a, 3);
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSIMD(const fltx4& a) // 1/a
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / SubFloat(a, 0);
|
|
SubFloat(retVal, 1) = 1.0 / SubFloat(a, 1);
|
|
SubFloat(retVal, 2) = 1.0 / SubFloat(a, 2);
|
|
SubFloat(retVal, 3) = 1.0 / SubFloat(a, 3);
|
|
return retVal;
|
|
}
|
|
|
|
/// 1/x for all 4 values.
|
|
/// 1/0 will result in a big but NOT infinite result
|
|
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / (SubFloat(a, 0) == 0.0f ? FLT_EPSILON : SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = 1.0 / (SubFloat(a, 1) == 0.0f ? FLT_EPSILON : SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = 1.0 / (SubFloat(a, 2) == 0.0f ? FLT_EPSILON : SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = 1.0 / (SubFloat(a, 3) == 0.0f ? FLT_EPSILON : SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = 1.0 / (SubFloat(a, 0) == 0.0f ? FLT_EPSILON : SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = 1.0 / (SubFloat(a, 1) == 0.0f ? FLT_EPSILON : SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = 1.0 / (SubFloat(a, 2) == 0.0f ? FLT_EPSILON : SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = 1.0 / (SubFloat(a, 3) == 0.0f ? FLT_EPSILON : SubFloat(a, 3));
|
|
return retVal;
|
|
}
|
|
|
|
// 2^x for all values (the antilog)
|
|
FORCEINLINE fltx4 ExpSIMD(const fltx4& toPower)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = powf(2, SubFloat(toPower, 0));
|
|
SubFloat(retVal, 1) = powf(2, SubFloat(toPower, 1));
|
|
SubFloat(retVal, 2) = powf(2, SubFloat(toPower, 2));
|
|
SubFloat(retVal, 3) = powf(2, SubFloat(toPower, 3));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
FORCEINLINE fltx4 Dot3SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
float flDot = SubFloat(a, 0) * SubFloat(b, 0) +
|
|
SubFloat(a, 1) * SubFloat(b, 1) +
|
|
SubFloat(a, 2) * SubFloat(b, 2);
|
|
return ReplicateX4(flDot);
|
|
}
|
|
|
|
FORCEINLINE fltx4 Dot4SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
float flDot = SubFloat(a, 0) * SubFloat(b, 0) +
|
|
SubFloat(a, 1) * SubFloat(b, 1) +
|
|
SubFloat(a, 2) * SubFloat(b, 2) +
|
|
SubFloat(a, 3) * SubFloat(b, 3);
|
|
return ReplicateX4(flDot);
|
|
}
|
|
|
|
// Clamps the components of a vector to a specified minimum and maximum range.
|
|
FORCEINLINE fltx4 ClampVectorSIMD(FLTX4 in, FLTX4 min, FLTX4 max)
|
|
{
|
|
return MaxSIMD(min, MinSIMD(max, in));
|
|
}
|
|
|
|
// Squelch the w component of a vector to +0.0.
|
|
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
|
|
FORCEINLINE fltx4 SetWToZeroSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retval;
|
|
retval = a;
|
|
SubFloat(retval, 0) = 0;
|
|
return retval;
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadUnalignedSIMD(const void* pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const fltx4*> (pSIMD));
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadUnaligned3SIMD(const void* pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const fltx4*> (pSIMD));
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const void* pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const fltx4*> (pSIMD));
|
|
}
|
|
|
|
// for the transitional class -- load a 3-by VectorAligned and squash its w component
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const VectorAligned& pSIMD)
|
|
{
|
|
fltx4 retval = LoadAlignedSIMD(pSIMD.Base());
|
|
// squelch w
|
|
SubInt(retval, 3) = 0;
|
|
return retval;
|
|
}
|
|
|
|
FORCEINLINE void StoreAlignedSIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<fltx4*> (pSIMD)) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedSIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<fltx4*> (pSIMD)) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreUnaligned3SIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
*pSIMD = SubFloat(a, 0);
|
|
*(pSIMD + 1) = SubFloat(a, 1);
|
|
*(pSIMD + 2) = SubFloat(a, 2);
|
|
}
|
|
|
|
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
|
|
FORCEINLINE void StoreAligned3SIMD(VectorAligned* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
StoreAlignedSIMD(pSIMD->Base(), a);
|
|
}
|
|
|
|
FORCEINLINE void TransposeSIMD(fltx4& x, fltx4& y, fltx4& z, fltx4& w)
|
|
{
|
|
#define SWAP_FLOATS( _a_, _ia_, _b_, _ib_ ) { float tmp = SubFloat( _a_, _ia_ ); SubFloat( _a_, _ia_ ) = SubFloat( _b_, _ib_ ); SubFloat( _b_, _ib_ ) = tmp; }
|
|
SWAP_FLOATS(x, 1, y, 0);
|
|
SWAP_FLOATS(x, 2, z, 0);
|
|
SWAP_FLOATS(x, 3, w, 0);
|
|
SWAP_FLOATS(y, 2, z, 1);
|
|
SWAP_FLOATS(y, 3, w, 1);
|
|
SWAP_FLOATS(z, 3, w, 2);
|
|
}
|
|
|
|
// find the lowest component of a.x, a.y, a.z,
|
|
// and replicate it to the whole return value.
|
|
FORCEINLINE fltx4 FindLowestSIMD3(const fltx4& a)
|
|
{
|
|
float lowest = min(min(SubFloat(a, 0), SubFloat(a, 1)), SubFloat(a, 2));
|
|
return ReplicateX4(lowest);
|
|
}
|
|
|
|
// find the highest component of a.x, a.y, a.z,
|
|
// and replicate it to the whole return value.
|
|
FORCEINLINE fltx4 FindHighestSIMD3(const fltx4& a)
|
|
{
|
|
float highest = max(max(SubFloat(a, 0), SubFloat(a, 1)), SubFloat(a, 2));
|
|
return ReplicateX4(highest);
|
|
}
|
|
|
|
// Fixed-point conversion and save as SIGNED INTS.
|
|
// pDest->x = Int (vSrc.x)
|
|
// note: some architectures have means of doing
|
|
// fixed point conversion when the fix depth is
|
|
// specified as an immediate.. but there is no way
|
|
// to guarantee an immediate as a parameter to function
|
|
// like this.
|
|
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4* RESTRICT pDest, const fltx4& vSrc)
|
|
{
|
|
(*pDest)[0] = SubFloat(vSrc, 0);
|
|
(*pDest)[1] = SubFloat(vSrc, 1);
|
|
(*pDest)[2] = SubFloat(vSrc, 2);
|
|
(*pDest)[3] = SubFloat(vSrc, 3);
|
|
}
|
|
|
|
// ------------------------------------
|
|
// INTEGER SIMD OPERATIONS.
|
|
// ------------------------------------
|
|
// splat all components of a vector to a signed immediate int number.
|
|
FORCEINLINE fltx4 IntSetImmediateSIMD(int nValue)
|
|
{
|
|
fltx4 retval;
|
|
SubInt(retval, 0) = SubInt(retval, 1) = SubInt(retval, 2) = SubInt(retval, 3) = nValue;
|
|
return retval;
|
|
}
|
|
|
|
// Load 4 aligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadAlignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const i32x4*> (pSIMD));
|
|
}
|
|
|
|
// Load 4 unaligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadUnalignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const i32x4*> (pSIMD));
|
|
}
|
|
|
|
// save into four words, 16-byte aligned
|
|
FORCEINLINE void StoreAlignedIntSIMD(int32* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<i32x4*> (pSIMD)) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreAlignedIntSIMD(intx4& pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<i32x4*> (pSIMD.Base())) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedIntSIMD(int32* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<i32x4*> (pSIMD)) = a;
|
|
}
|
|
|
|
// Take a fltx4 containing fixed-point uints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD(const u32x4& vSrcA)
|
|
{
|
|
Assert(0); /* pc has no such operation */
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = ((float)SubInt(retval, 0));
|
|
SubFloat(retval, 1) = ((float)SubInt(retval, 1));
|
|
SubFloat(retval, 2) = ((float)SubInt(retval, 2));
|
|
SubFloat(retval, 3) = ((float)SubInt(retval, 3));
|
|
return retval;
|
|
}
|
|
|
|
|
|
#if 0 /* pc has no such op */
|
|
// Take a fltx4 containing fixed-point sints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 SignedIntConvertToFltSIMD(const i32x4& vSrcA)
|
|
{
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = ((float)(reinterpret_cast<int32*>(&vSrcA.m128_s32[0])));
|
|
SubFloat(retval, 1) = ((float)(reinterpret_cast<int32*>(&vSrcA.m128_s32[1])));
|
|
SubFloat(retval, 2) = ((float)(reinterpret_cast<int32*>(&vSrcA.m128_s32[2])));
|
|
SubFloat(retval, 3) = ((float)(reinterpret_cast<int32*>(&vSrcA.m128_s32[3])));
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*
|
|
works on fltx4's as if they are four uints.
|
|
the first parameter contains the words to be shifted,
|
|
the second contains the amount to shift by AS INTS
|
|
|
|
for i = 0 to 3
|
|
shift = vSrcB_i*32:(i*32)+4
|
|
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
|
|
*/
|
|
FORCEINLINE i32x4 IntShiftLeftWordSIMD(const i32x4& vSrcA, const i32x4& vSrcB)
|
|
{
|
|
i32x4 retval;
|
|
SubInt(retval, 0) = SubInt(vSrcA, 0) << SubInt(vSrcB, 0);
|
|
SubInt(retval, 1) = SubInt(vSrcA, 1) << SubInt(vSrcB, 1);
|
|
SubInt(retval, 2) = SubInt(vSrcA, 2) << SubInt(vSrcB, 2);
|
|
SubInt(retval, 3) = SubInt(vSrcA, 3) << SubInt(vSrcB, 3);
|
|
|
|
|
|
return retval;
|
|
}
|
|
#endif
|
|
|
|
#elif ( defined( _X360 ) )
|
|
|
|
//---------------------------------------------------------------------
|
|
// X360 implementation
|
|
//---------------------------------------------------------------------
|
|
|
|
FORCEINLINE float& FloatSIMD(fltx4& a, int idx)
|
|
{
|
|
fltx4_union& a_union = (fltx4_union&)a;
|
|
return a_union.m128_f32[idx];
|
|
}
|
|
|
|
FORCEINLINE unsigned int& UIntSIMD(fltx4& a, int idx)
|
|
{
|
|
fltx4_union& a_union = (fltx4_union&)a;
|
|
return a_union.m128_u32[idx];
|
|
}
|
|
|
|
FORCEINLINE fltx4 AddSIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
return __vaddfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SubSIMD(const fltx4& a, const fltx4& b) // a-b
|
|
{
|
|
return __vsubfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MulSIMD(const fltx4& a, const fltx4& b) // a*b
|
|
{
|
|
return __vmulfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MaddSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // a*b + c
|
|
{
|
|
return __vmaddfp(a, b, c);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MsubSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // c - a*b
|
|
{
|
|
return __vnmsubfp(a, b, c);
|
|
};
|
|
|
|
FORCEINLINE fltx4 Dot3SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
return __vmsum3fp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 Dot4SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
return __vmsum4fp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SinSIMD(const fltx4& radians)
|
|
{
|
|
return XMVectorSin(radians);
|
|
}
|
|
|
|
FORCEINLINE void SinCos3SIMD(fltx4& sine, fltx4& cosine, const fltx4& radians)
|
|
{
|
|
XMVectorSinCos(&sine, &cosine, radians);
|
|
}
|
|
|
|
FORCEINLINE void SinCosSIMD(fltx4& sine, fltx4& cosine, const fltx4& radians)
|
|
{
|
|
XMVectorSinCos(&sine, &cosine, radians);
|
|
}
|
|
|
|
FORCEINLINE void CosSIMD(fltx4& cosine, const fltx4& radians)
|
|
{
|
|
cosine = XMVectorCos(radians);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ArcSinSIMD(const fltx4& sine)
|
|
{
|
|
return XMVectorASin(sine);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ArcCosSIMD(const fltx4& cs)
|
|
{
|
|
return XMVectorACos(cs);
|
|
}
|
|
|
|
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
|
|
FORCEINLINE fltx4 ArcTan2SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
return XMVectorATan2(a, b);
|
|
}
|
|
|
|
// DivSIMD defined further down, since it uses ReciprocalSIMD
|
|
|
|
FORCEINLINE fltx4 MaxSIMD(const fltx4& a, const fltx4& b) // max(a,b)
|
|
{
|
|
return __vmaxfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MinSIMD(const fltx4& a, const fltx4& b) // min(a,b)
|
|
{
|
|
return __vminfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndSIMD(const fltx4& a, const fltx4& b) // a & b
|
|
{
|
|
return __vand(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndNotSIMD(const fltx4& a, const fltx4& b) // ~a & b
|
|
{
|
|
// NOTE: a and b are swapped in the call: SSE complements the first argument, VMX the second
|
|
return __vandc(b, a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 XorSIMD(const fltx4& a, const fltx4& b) // a ^ b
|
|
{
|
|
return __vxor(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 OrSIMD(const fltx4& a, const fltx4& b) // a | b
|
|
{
|
|
return __vor(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 NegSIMD(const fltx4& a) // negate: -a
|
|
{
|
|
return XMVectorNegate(a);
|
|
}
|
|
|
|
FORCEINLINE bool IsAllZeros(const fltx4& a) // all floats of a zero?
|
|
{
|
|
unsigned int equalFlags = 0;
|
|
__vcmpeqfpR(a, Four_Zeros, &equalFlags);
|
|
return XMComparisonAllTrue(equalFlags);
|
|
}
|
|
|
|
FORCEINLINE bool IsAnyZeros(const fltx4& a) // any floats are zero?
|
|
{
|
|
unsigned int conditionregister;
|
|
XMVectorEqualR(&conditionregister, a, XMVectorZero());
|
|
return XMComparisonAnyTrue(conditionregister);
|
|
}
|
|
|
|
FORCEINLINE bool IsAnyXYZZero(const fltx4& a) // are any of x,y,z zero?
|
|
{
|
|
// copy a's x component into w, in case w was zero.
|
|
fltx4 temp = __vrlimi(a, a, 1, 1);
|
|
unsigned int conditionregister;
|
|
XMVectorEqualR(&conditionregister, temp, XMVectorZero());
|
|
return XMComparisonAnyTrue(conditionregister);
|
|
}
|
|
|
|
// for branching when a.xyzw > b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThan(const fltx4& a, const fltx4& b)
|
|
{
|
|
unsigned int cr;
|
|
XMVectorGreaterR(&cr, a, b);
|
|
return XMComparisonAllTrue(cr);
|
|
}
|
|
|
|
// for branching when a.xyzw >= b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThanOrEq(const fltx4& a, const fltx4& b)
|
|
{
|
|
unsigned int cr;
|
|
XMVectorGreaterOrEqualR(&cr, a, b);
|
|
return XMComparisonAllTrue(cr);
|
|
}
|
|
|
|
// For branching if all a.xyzw == b.xyzw
|
|
FORCEINLINE bool IsAllEqual(const fltx4& a, const fltx4& b)
|
|
{
|
|
unsigned int cr;
|
|
XMVectorEqualR(&cr, a, b);
|
|
return XMComparisonAllTrue(cr);
|
|
}
|
|
|
|
|
|
FORCEINLINE int TestSignSIMD(const fltx4& a) // mask of which floats have the high bit set
|
|
{
|
|
// NOTE: this maps to SSE way better than it does to VMX (most code uses IsAnyNegative(), though)
|
|
int nRet = 0;
|
|
|
|
const fltx4_union& a_union = (const fltx4_union&)a;
|
|
nRet |= (a_union.m128_u32[0] & 0x80000000) >> 31; // sign(x) -> bit 0
|
|
nRet |= (a_union.m128_u32[1] & 0x80000000) >> 30; // sign(y) -> bit 1
|
|
nRet |= (a_union.m128_u32[2] & 0x80000000) >> 29; // sign(z) -> bit 2
|
|
nRet |= (a_union.m128_u32[3] & 0x80000000) >> 28; // sign(w) -> bit 3
|
|
|
|
return nRet;
|
|
}
|
|
|
|
// Squelch the w component of a vector to +0.0.
|
|
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
|
|
FORCEINLINE fltx4 SetWToZeroSIMD(const fltx4& a)
|
|
{
|
|
return __vrlimi(a, __vzero(), 1, 0);
|
|
}
|
|
|
|
FORCEINLINE bool IsAnyNegative(const fltx4& a) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
|
|
{
|
|
// NOTE: this tests the top bits of each vector element using integer math
|
|
// (so it ignores NaNs - it will return true for "-NaN")
|
|
unsigned int equalFlags = 0;
|
|
fltx4 signMask = __vspltisw(-1); // 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF (low order 5 bits of each element = 31)
|
|
signMask = __vslw(signMask, signMask); // 0x80000000 0x80000000 0x80000000 0x80000000
|
|
__vcmpequwR(Four_Zeros, __vand(signMask, a), &equalFlags);
|
|
return !XMComparisonAllTrue(equalFlags);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpEqSIMD(const fltx4& a, const fltx4& b) // (a==b) ? ~0:0
|
|
{
|
|
return __vcmpeqfp(a, b);
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 CmpGtSIMD(const fltx4& a, const fltx4& b) // (a>b) ? ~0:0
|
|
{
|
|
return __vcmpgtfp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpGeSIMD(const fltx4& a, const fltx4& b) // (a>=b) ? ~0:0
|
|
{
|
|
return __vcmpgefp(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLtSIMD(const fltx4& a, const fltx4& b) // (a<b) ? ~0:0
|
|
{
|
|
return __vcmpgtfp(b, a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLeSIMD(const fltx4& a, const fltx4& b) // (a<=b) ? ~0:0
|
|
{
|
|
return __vcmpgefp(b, a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpInBoundsSIMD(const fltx4& a, const fltx4& b) // (a <= b && a >= -b) ? ~0 : 0
|
|
{
|
|
return XMVectorInBounds(a, b);
|
|
}
|
|
|
|
// returned[i] = ReplacementMask[i] == 0 ? OldValue : NewValue
|
|
FORCEINLINE fltx4 MaskedAssign(const fltx4& ReplacementMask, const fltx4& NewValue, const fltx4& OldValue)
|
|
{
|
|
return __vsel(OldValue, NewValue, ReplacementMask);
|
|
}
|
|
|
|
// AKA "Broadcast", "Splat"
|
|
FORCEINLINE fltx4 ReplicateX4(float flValue) // a,a,a,a
|
|
{
|
|
// NOTE: if flValue comes from a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
|
|
float* pValue = &flValue;
|
|
Assert(pValue);
|
|
Assert(((unsigned int)pValue & 3) == 0);
|
|
return __vspltw(__lvlx(pValue, 0), 0);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReplicateX4(const float* pValue) // a,a,a,a
|
|
{
|
|
Assert(pValue);
|
|
return __vspltw(__lvlx(pValue, 0), 0);
|
|
}
|
|
|
|
/// replicate a single 32 bit integer value to all 4 components of an m128
|
|
FORCEINLINE fltx4 ReplicateIX4(int nValue)
|
|
{
|
|
// NOTE: if nValue comes from a register, this causes a Load-Hit-Store stall (should not mix ints with fltx4s!)
|
|
int* pValue = &nValue;
|
|
Assert(pValue);
|
|
Assert(((unsigned int)pValue & 3) == 0);
|
|
return __vspltw(__lvlx(pValue, 0), 0);
|
|
}
|
|
|
|
// Round towards positive infinity
|
|
FORCEINLINE fltx4 CeilSIMD(const fltx4& a)
|
|
{
|
|
return __vrfip(a);
|
|
}
|
|
|
|
// Round towards nearest integer
|
|
FORCEINLINE fltx4 RoundSIMD(const fltx4& a)
|
|
{
|
|
return __vrfin(a);
|
|
}
|
|
|
|
// Round towards negative infinity
|
|
FORCEINLINE fltx4 FloorSIMD(const fltx4& a)
|
|
{
|
|
return __vrfim(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtEstSIMD(const fltx4& a) // sqrt(a), more or less
|
|
{
|
|
// This is emulated from rsqrt
|
|
return XMVectorSqrtEst(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtSIMD(const fltx4& a) // sqrt(a)
|
|
{
|
|
// This is emulated from rsqrt
|
|
return XMVectorSqrt(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD(const fltx4& a) // 1/sqrt(a), more or less
|
|
{
|
|
return __vrsqrtefp(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
// Convert zeros to epsilons
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 a_safe = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
return ReciprocalSqrtEstSIMD(a_safe);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtSIMD(const fltx4& a) // 1/sqrt(a)
|
|
{
|
|
// This uses Newton-Raphson to improve the HW result
|
|
return XMVectorReciprocalSqrt(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalEstSIMD(const fltx4& a) // 1/a, more or less
|
|
{
|
|
return __vrefp(a);
|
|
}
|
|
|
|
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
|
|
/// No error checking!
|
|
FORCEINLINE fltx4 ReciprocalSIMD(const fltx4& a) // 1/a
|
|
{
|
|
// This uses Newton-Raphson to improve the HW result
|
|
return XMVectorReciprocal(a);
|
|
}
|
|
|
|
// FIXME: on 360, this is very slow, since it uses ReciprocalSIMD (do we need DivEstSIMD?)
|
|
FORCEINLINE fltx4 DivSIMD(const fltx4& a, const fltx4& b) // a/b
|
|
{
|
|
return MulSIMD(ReciprocalSIMD(b), a);
|
|
}
|
|
|
|
/// 1/x for all 4 values.
|
|
/// 1/0 will result in a big but NOT infinite result
|
|
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
// Convert zeros to epsilons
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 a_safe = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
return ReciprocalEstSIMD(a_safe);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSaturateSIMD(const fltx4& a)
|
|
{
|
|
// Convert zeros to epsilons
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 a_safe = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
return ReciprocalSIMD(a_safe);
|
|
|
|
// FIXME: This could be faster (BUT: it doesn't preserve the sign of -0.0, whereas the above does)
|
|
// fltx4 zeroMask = CmpEqSIMD( Four_Zeros, a );
|
|
// fltx4 a_safe = XMVectorSelect( a, Four_Epsilons, zeroMask );
|
|
// return ReciprocalSIMD( a_safe );
|
|
}
|
|
|
|
// CHRISG: is it worth doing integer bitfiddling for this?
|
|
// 2^x for all values (the antilog)
|
|
FORCEINLINE fltx4 ExpSIMD(const fltx4& toPower)
|
|
{
|
|
return XMVectorExp(toPower);
|
|
}
|
|
|
|
// Clamps the components of a vector to a specified minimum and maximum range.
|
|
FORCEINLINE fltx4 ClampVectorSIMD(FLTX4 in, FLTX4 min, FLTX4 max)
|
|
{
|
|
return XMVectorClamp(in, min, max);
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadUnalignedSIMD(const void* pSIMD)
|
|
{
|
|
return XMLoadVector4(pSIMD);
|
|
}
|
|
|
|
// load a 3-vector (as opposed to LoadUnalignedSIMD, which loads a 4-vec).
|
|
FORCEINLINE fltx4 LoadUnaligned3SIMD(const void* pSIMD)
|
|
{
|
|
return XMLoadVector3(pSIMD);
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const void* pSIMD)
|
|
{
|
|
return *(reinterpret_cast<const fltx4*> (pSIMD));
|
|
}
|
|
|
|
// for the transitional class -- load a 3-by VectorAligned and squash its w component
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const VectorAligned& pSIMD)
|
|
{
|
|
fltx4 out = XMLoadVector3A(pSIMD.Base());
|
|
// squelch w
|
|
return __vrlimi(out, __vzero(), 1, 0);
|
|
}
|
|
|
|
// for the transitional class -- load a 3-by VectorAligned and squash its w component
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const VectorAligned* RESTRICT pSIMD)
|
|
{
|
|
fltx4 out = XMLoadVector3A(pSIMD);
|
|
// squelch w
|
|
return __vrlimi(out, __vzero(), 1, 0);
|
|
}
|
|
|
|
FORCEINLINE void StoreAlignedSIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<fltx4*> (pSIMD)) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedSIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
XMStoreVector4(pSIMD, a);
|
|
}
|
|
|
|
FORCEINLINE void StoreUnaligned3SIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
XMStoreVector3(pSIMD, a);
|
|
}
|
|
|
|
|
|
// strongly typed -- for typechecking as we transition to SIMD
|
|
FORCEINLINE void StoreAligned3SIMD(VectorAligned* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
XMStoreVector3A(pSIMD->Base(), a);
|
|
}
|
|
|
|
|
|
// Fixed-point conversion and save as SIGNED INTS.
|
|
// pDest->x = Int (vSrc.x)
|
|
// note: some architectures have means of doing
|
|
// fixed point conversion when the fix depth is
|
|
// specified as an immediate.. but there is no way
|
|
// to guarantee an immediate as a parameter to function
|
|
// like this.
|
|
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4* RESTRICT pDest, const fltx4& vSrc)
|
|
{
|
|
fltx4 asInt = __vctsxs(vSrc, 0);
|
|
XMStoreVector4A(pDest->Base(), asInt);
|
|
}
|
|
|
|
FORCEINLINE void TransposeSIMD(fltx4& x, fltx4& y, fltx4& z, fltx4& w)
|
|
{
|
|
XMMATRIX xyzwMatrix = _XMMATRIX(x, y, z, w);
|
|
xyzwMatrix = XMMatrixTranspose(xyzwMatrix);
|
|
x = xyzwMatrix.r[0];
|
|
y = xyzwMatrix.r[1];
|
|
z = xyzwMatrix.r[2];
|
|
w = xyzwMatrix.r[3];
|
|
}
|
|
|
|
// Return one in the fastest way -- faster even than loading.
|
|
FORCEINLINE fltx4 LoadZeroSIMD(void)
|
|
{
|
|
return XMVectorZero();
|
|
}
|
|
|
|
// Return one in the fastest way -- faster even than loading.
|
|
FORCEINLINE fltx4 LoadOneSIMD(void)
|
|
{
|
|
return XMVectorSplatOne();
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatXSIMD(fltx4 a)
|
|
{
|
|
return XMVectorSplatX(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatYSIMD(fltx4 a)
|
|
{
|
|
return XMVectorSplatY(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatZSIMD(fltx4 a)
|
|
{
|
|
return XMVectorSplatZ(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatWSIMD(fltx4 a)
|
|
{
|
|
return XMVectorSplatW(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetXSIMD(const fltx4& a, const fltx4& x)
|
|
{
|
|
fltx4 result = __vrlimi(a, x, 8, 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetYSIMD(const fltx4& a, const fltx4& y)
|
|
{
|
|
fltx4 result = __vrlimi(a, y, 4, 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetZSIMD(const fltx4& a, const fltx4& z)
|
|
{
|
|
fltx4 result = __vrlimi(a, z, 2, 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetWSIMD(const fltx4& a, const fltx4& w)
|
|
{
|
|
fltx4 result = __vrlimi(a, w, 1, 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetComponentSIMD(const fltx4& a, int nComponent, float flValue)
|
|
{
|
|
static int s_nVrlimiMask[4] = { 8, 4, 2, 1 };
|
|
fltx4 val = ReplicateX4(flValue);
|
|
fltx4 result = __vrlimi(a, val, s_nVrlimiMask[nComponent], 0);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 RotateLeft(const fltx4& a)
|
|
{
|
|
fltx4 compareOne = a;
|
|
return __vrlimi(compareOne, a, 8 | 4 | 2 | 1, 1);
|
|
}
|
|
|
|
FORCEINLINE fltx4 RotateLeft2(const fltx4& a)
|
|
{
|
|
fltx4 compareOne = a;
|
|
return __vrlimi(compareOne, a, 8 | 4 | 2 | 1, 2);
|
|
}
|
|
|
|
|
|
|
|
// find the lowest component of a.x, a.y, a.z,
|
|
// and replicate it to the whole return value.
|
|
// ignores a.w.
|
|
// Though this is only five instructions long,
|
|
// they are all dependent, making this stall city.
|
|
// Forcing this inline should hopefully help with scheduling.
|
|
FORCEINLINE fltx4 FindLowestSIMD3(const fltx4& a)
|
|
{
|
|
// a is [x,y,z,G] (where G is garbage)
|
|
// rotate left by one
|
|
fltx4 compareOne = a;
|
|
compareOne = __vrlimi(compareOne, a, 8 | 4, 1);
|
|
// compareOne is [y,z,G,G]
|
|
fltx4 retval = MinSIMD(a, compareOne);
|
|
// retVal is [min(x,y), min(y,z), G, G]
|
|
compareOne = __vrlimi(compareOne, a, 8, 2);
|
|
// compareOne is [z, G, G, G]
|
|
retval = MinSIMD(retval, compareOne);
|
|
// retVal = [ min(min(x,y),z), G, G, G ]
|
|
|
|
// splat the x component out to the whole vector and return
|
|
return SplatXSIMD(retval);
|
|
}
|
|
|
|
// find the highest component of a.x, a.y, a.z,
|
|
// and replicate it to the whole return value.
|
|
// ignores a.w.
|
|
// Though this is only five instructions long,
|
|
// they are all dependent, making this stall city.
|
|
// Forcing this inline should hopefully help with scheduling.
|
|
FORCEINLINE fltx4 FindHighestSIMD3(const fltx4& a)
|
|
{
|
|
// a is [x,y,z,G] (where G is garbage)
|
|
// rotate left by one
|
|
fltx4 compareOne = a;
|
|
compareOne = __vrlimi(compareOne, a, 8 | 4, 1);
|
|
// compareOne is [y,z,G,G]
|
|
fltx4 retval = MaxSIMD(a, compareOne);
|
|
// retVal is [max(x,y), max(y,z), G, G]
|
|
compareOne = __vrlimi(compareOne, a, 8, 2);
|
|
// compareOne is [z, G, G, G]
|
|
retval = MaxSIMD(retval, compareOne);
|
|
// retVal = [ max(max(x,y),z), G, G, G ]
|
|
|
|
// splat the x component out to the whole vector and return
|
|
return SplatXSIMD(retval);
|
|
}
|
|
|
|
|
|
// Transform many (horizontal) points in-place by a 3x4 matrix,
|
|
// here already loaded onto three fltx4 registers.
|
|
// The points must be stored as 16-byte aligned. They are points
|
|
// and not vectors because we assume the w-component to be 1.
|
|
// To spare yourself the annoyance of loading the matrix yourself,
|
|
// use one of the overloads below.
|
|
void TransformManyPointsBy(VectorAligned* RESTRICT pVectors, unsigned int numVectors, FLTX4 mRow1, FLTX4 mRow2, FLTX4 mRow3);
|
|
|
|
// Transform many (horizontal) points in-place by a 3x4 matrix.
|
|
// The points must be stored as 16-byte aligned. They are points
|
|
// and not vectors because we assume the w-component to be 1.
|
|
// In this function, the matrix need not be aligned.
|
|
FORCEINLINE void TransformManyPointsBy(VectorAligned* RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& pMatrix)
|
|
{
|
|
return TransformManyPointsBy(pVectors, numVectors,
|
|
LoadUnalignedSIMD(pMatrix[0]), LoadUnalignedSIMD(pMatrix[1]), LoadUnalignedSIMD(pMatrix[2]));
|
|
}
|
|
|
|
// Transform many (horizontal) points in-place by a 3x4 matrix.
|
|
// The points must be stored as 16-byte aligned. They are points
|
|
// and not vectors because we assume the w-component to be 1.
|
|
// In this function, the matrix must itself be aligned on a 16-byte
|
|
// boundary.
|
|
FORCEINLINE void TransformManyPointsByA(VectorAligned* RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& pMatrix)
|
|
{
|
|
return TransformManyPointsBy(pVectors, numVectors,
|
|
LoadAlignedSIMD(pMatrix[0]), LoadAlignedSIMD(pMatrix[1]), LoadAlignedSIMD(pMatrix[2]));
|
|
}
|
|
|
|
// ------------------------------------
|
|
// INTEGER SIMD OPERATIONS.
|
|
// ------------------------------------
|
|
|
|
// Load 4 aligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadAlignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return XMLoadVector4A(pSIMD);
|
|
}
|
|
|
|
// Load 4 unaligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadUnalignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return XMLoadVector4(pSIMD);
|
|
}
|
|
|
|
// save into four words, 16-byte aligned
|
|
FORCEINLINE void StoreAlignedIntSIMD(int32* pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<i32x4*> (pSIMD)) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreAlignedIntSIMD(intx4& pSIMD, const fltx4& a)
|
|
{
|
|
*(reinterpret_cast<i32x4*> (pSIMD.Base())) = a;
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedIntSIMD(int32* pSIMD, const fltx4& a)
|
|
{
|
|
XMStoreVector4(pSIMD, a);
|
|
}
|
|
|
|
|
|
// Take a fltx4 containing fixed-point uints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD(const i32x4& vSrcA)
|
|
{
|
|
return __vcfux(vSrcA, 0);
|
|
}
|
|
|
|
|
|
// Take a fltx4 containing fixed-point sints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 SignedIntConvertToFltSIMD(const i32x4& vSrcA)
|
|
{
|
|
return __vcfsx(vSrcA, 0);
|
|
}
|
|
|
|
// Take a fltx4 containing fixed-point uints and
|
|
// return them as single precision floats. Each uint
|
|
// will be divided by 2^immed after conversion
|
|
// (eg, this is fixed point math).
|
|
/* as if:
|
|
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD( const i32x4 &vSrcA, unsigned int uImmed )
|
|
{
|
|
return __vcfux( vSrcA, uImmed );
|
|
}
|
|
*/
|
|
#define UnsignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfux( (vSrcA), (uImmed) ))
|
|
|
|
// Take a fltx4 containing fixed-point sints and
|
|
// return them as single precision floats. Each int
|
|
// will be divided by 2^immed (eg, this is fixed point
|
|
// math).
|
|
/* as if:
|
|
FORCEINLINE fltx4 SignedIntConvertToFltSIMD( const i32x4 &vSrcA, unsigned int uImmed )
|
|
{
|
|
return __vcfsx( vSrcA, uImmed );
|
|
}
|
|
*/
|
|
#define SignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfsx( (vSrcA), (uImmed) ))
|
|
|
|
// set all components of a vector to a signed immediate int number.
|
|
/* as if:
|
|
FORCEINLINE fltx4 IntSetImmediateSIMD(int toImmediate)
|
|
{
|
|
return __vspltisw( toImmediate );
|
|
}
|
|
*/
|
|
#define IntSetImmediateSIMD(x) (__vspltisw(x))
|
|
|
|
/*
|
|
works on fltx4's as if they are four uints.
|
|
the first parameter contains the words to be shifted,
|
|
the second contains the amount to shift by AS INTS
|
|
|
|
for i = 0 to 3
|
|
shift = vSrcB_i*32:(i*32)+4
|
|
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
|
|
*/
|
|
FORCEINLINE fltx4 IntShiftLeftWordSIMD(fltx4 vSrcA, fltx4 vSrcB)
|
|
{
|
|
return __vslw(vSrcA, vSrcB);
|
|
}
|
|
|
|
FORCEINLINE float SubFloat(const fltx4& a, int idx)
|
|
{
|
|
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
|
|
const fltx4_union& a_union = (const fltx4_union&)a;
|
|
return a_union.m128_f32[idx];
|
|
}
|
|
|
|
FORCEINLINE float& SubFloat(fltx4& a, int idx)
|
|
{
|
|
fltx4_union& a_union = (fltx4_union&)a;
|
|
return a_union.m128_f32[idx];
|
|
}
|
|
|
|
FORCEINLINE uint32 SubFloatConvertToInt(const fltx4& a, int idx)
|
|
{
|
|
fltx4 t = __vctuxs(a, 0);
|
|
const fltx4_union& a_union = (const fltx4_union&)t;
|
|
return a_union.m128_u32[idx];
|
|
}
|
|
|
|
|
|
FORCEINLINE uint32 SubInt(const fltx4& a, int idx)
|
|
{
|
|
const fltx4_union& a_union = (const fltx4_union&)a;
|
|
return a_union.m128_u32[idx];
|
|
}
|
|
|
|
FORCEINLINE uint32& SubInt(fltx4& a, int idx)
|
|
{
|
|
fltx4_union& a_union = (fltx4_union&)a;
|
|
return a_union.m128_u32[idx];
|
|
}
|
|
|
|
#else
|
|
|
|
//---------------------------------------------------------------------
|
|
// Intel/SSE implementation
|
|
//---------------------------------------------------------------------
|
|
|
|
FORCEINLINE void StoreAlignedSIMD(float* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
_mm_store_ps(pSIMD, a);
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedSIMD(float* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
_mm_storeu_ps(pSIMD, a);
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 RotateLeft(const fltx4& a);
|
|
FORCEINLINE fltx4 RotateLeft2(const fltx4& a);
|
|
|
|
FORCEINLINE void StoreUnaligned3SIMD(float* pSIMD, const fltx4& a)
|
|
{
|
|
_mm_store_ss(pSIMD, a);
|
|
_mm_store_ss(pSIMD + 1, RotateLeft(a));
|
|
_mm_store_ss(pSIMD + 2, RotateLeft2(a));
|
|
}
|
|
|
|
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
|
|
FORCEINLINE void StoreAligned3SIMD(VectorAligned* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
StoreAlignedSIMD(pSIMD->Base(), a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const void* pSIMD)
|
|
{
|
|
return _mm_load_ps(reinterpret_cast<const float*> (pSIMD));
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndSIMD(const fltx4& a, const fltx4& b) // a & b
|
|
{
|
|
return _mm_and_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 AndNotSIMD(const fltx4& a, const fltx4& b) // ~a & b
|
|
{
|
|
return _mm_andnot_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 XorSIMD(const fltx4& a, const fltx4& b) // a ^ b
|
|
{
|
|
return _mm_xor_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 OrSIMD(const fltx4& a, const fltx4& b) // a | b
|
|
{
|
|
return _mm_or_ps(a, b);
|
|
}
|
|
|
|
// Squelch the w component of a vector to +0.0.
|
|
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
|
|
FORCEINLINE fltx4 SetWToZeroSIMD(const fltx4& a)
|
|
{
|
|
return AndSIMD(a, LoadAlignedSIMD(g_SIMD_clear_wmask));
|
|
}
|
|
|
|
// for the transitional class -- load a 3-by VectorAligned and squash its w component
|
|
FORCEINLINE fltx4 LoadAlignedSIMD(const VectorAligned& pSIMD)
|
|
{
|
|
return SetWToZeroSIMD(LoadAlignedSIMD(pSIMD.Base()));
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadUnalignedSIMD(const void* pSIMD)
|
|
{
|
|
return _mm_loadu_ps(reinterpret_cast<const float*>(pSIMD));
|
|
}
|
|
|
|
FORCEINLINE fltx4 LoadUnaligned3SIMD(const void* pSIMD)
|
|
{
|
|
return _mm_loadu_ps(reinterpret_cast<const float*>(pSIMD));
|
|
}
|
|
|
|
/// replicate a single 32 bit integer value to all 4 components of an m128
|
|
FORCEINLINE fltx4 ReplicateIX4(int i)
|
|
{
|
|
fltx4 value = _mm_set_ss(*((float*)&i));;
|
|
return _mm_shuffle_ps(value, value, 0);
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 ReplicateX4(float flValue)
|
|
{
|
|
__m128 value = _mm_set_ss(flValue);
|
|
return _mm_shuffle_ps(value, value, 0);
|
|
}
|
|
|
|
|
|
FORCEINLINE float SubFloat(const fltx4& a, int idx)
|
|
{
|
|
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
|
|
#ifndef POSIX
|
|
return a.m128_f32[idx];
|
|
#else
|
|
return (reinterpret_cast<float const*>(&a))[idx];
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE float& SubFloat(fltx4& a, int idx)
|
|
{
|
|
#ifndef POSIX
|
|
return a.m128_f32[idx];
|
|
#else
|
|
return (reinterpret_cast<float*>(&a))[idx];
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE uint32 SubFloatConvertToInt(const fltx4& a, int idx)
|
|
{
|
|
return (uint32)SubFloat(a, idx);
|
|
}
|
|
|
|
FORCEINLINE uint32 SubInt(const fltx4& a, int idx)
|
|
{
|
|
#ifndef POSIX
|
|
return a.m128_u32[idx];
|
|
#else
|
|
return (reinterpret_cast<uint32 const*>(&a))[idx];
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE uint32& SubInt(fltx4& a, int idx)
|
|
{
|
|
#ifndef POSIX
|
|
return a.m128_u32[idx];
|
|
#else
|
|
return (reinterpret_cast<uint32*>(&a))[idx];
|
|
#endif
|
|
}
|
|
|
|
// Return one in the fastest way -- on the x360, faster even than loading.
|
|
FORCEINLINE fltx4 LoadZeroSIMD(void)
|
|
{
|
|
return Four_Zeros;
|
|
}
|
|
|
|
// Return one in the fastest way -- on the x360, faster even than loading.
|
|
FORCEINLINE fltx4 LoadOneSIMD(void)
|
|
{
|
|
return Four_Ones;
|
|
}
|
|
|
|
FORCEINLINE fltx4 MaskedAssign(const fltx4& ReplacementMask, const fltx4& NewValue, const fltx4& OldValue)
|
|
{
|
|
return OrSIMD(
|
|
AndSIMD(ReplacementMask, NewValue),
|
|
AndNotSIMD(ReplacementMask, OldValue));
|
|
}
|
|
|
|
// remember, the SSE numbers its words 3 2 1 0
|
|
// The way we want to specify shuffles is backwards from the default
|
|
// MM_SHUFFLE_REV is in array index order (default is reversed)
|
|
#define MM_SHUFFLE_REV(a,b,c,d) _MM_SHUFFLE(d,c,b,a)
|
|
|
|
FORCEINLINE fltx4 SplatXSIMD(fltx4 const& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, MM_SHUFFLE_REV(0, 0, 0, 0));
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatYSIMD(fltx4 const& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, MM_SHUFFLE_REV(1, 1, 1, 1));
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatZSIMD(fltx4 const& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, MM_SHUFFLE_REV(2, 2, 2, 2));
|
|
}
|
|
|
|
FORCEINLINE fltx4 SplatWSIMD(fltx4 const& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3));
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetXSIMD(const fltx4& a, const fltx4& x)
|
|
{
|
|
fltx4 result = MaskedAssign(LoadAlignedSIMD(g_SIMD_ComponentMask[0]), x, a);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetYSIMD(const fltx4& a, const fltx4& y)
|
|
{
|
|
fltx4 result = MaskedAssign(LoadAlignedSIMD(g_SIMD_ComponentMask[1]), y, a);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetZSIMD(const fltx4& a, const fltx4& z)
|
|
{
|
|
fltx4 result = MaskedAssign(LoadAlignedSIMD(g_SIMD_ComponentMask[2]), z, a);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetWSIMD(const fltx4& a, const fltx4& w)
|
|
{
|
|
fltx4 result = MaskedAssign(LoadAlignedSIMD(g_SIMD_ComponentMask[3]), w, a);
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SetComponentSIMD(const fltx4& a, int nComponent, float flValue)
|
|
{
|
|
fltx4 val = ReplicateX4(flValue);
|
|
fltx4 result = MaskedAssign(LoadAlignedSIMD(g_SIMD_ComponentMask[nComponent]), val, a);
|
|
return result;
|
|
}
|
|
|
|
// a b c d -> b c d a
|
|
FORCEINLINE fltx4 RotateLeft(const fltx4& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, MM_SHUFFLE_REV(1, 2, 3, 0));
|
|
}
|
|
|
|
// a b c d -> c d a b
|
|
FORCEINLINE fltx4 RotateLeft2(const fltx4& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, MM_SHUFFLE_REV(2, 3, 0, 1));
|
|
}
|
|
|
|
// a b c d -> d a b c
|
|
FORCEINLINE fltx4 RotateRight(const fltx4& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 3, 2, 1));
|
|
}
|
|
|
|
// a b c d -> c d a b
|
|
FORCEINLINE fltx4 RotateRight2(const fltx4& a)
|
|
{
|
|
return _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2));
|
|
}
|
|
|
|
|
|
FORCEINLINE fltx4 AddSIMD(const fltx4& a, const fltx4& b) // a+b
|
|
{
|
|
return _mm_add_ps(a, b);
|
|
};
|
|
|
|
FORCEINLINE fltx4 SubSIMD(const fltx4& a, const fltx4& b) // a-b
|
|
{
|
|
return _mm_sub_ps(a, b);
|
|
};
|
|
|
|
FORCEINLINE fltx4 MulSIMD(const fltx4& a, const fltx4& b) // a*b
|
|
{
|
|
return _mm_mul_ps(a, b);
|
|
};
|
|
|
|
FORCEINLINE fltx4 DivSIMD(const fltx4& a, const fltx4& b) // a/b
|
|
{
|
|
return _mm_div_ps(a, b);
|
|
};
|
|
|
|
FORCEINLINE fltx4 MaddSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // a*b + c
|
|
{
|
|
return AddSIMD(MulSIMD(a, b), c);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MsubSIMD(const fltx4& a, const fltx4& b, const fltx4& c) // c - a*b
|
|
{
|
|
return SubSIMD(c, MulSIMD(a, b));
|
|
};
|
|
|
|
FORCEINLINE fltx4 Dot3SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
fltx4 m = MulSIMD(a, b);
|
|
float flDot = SubFloat(m, 0) + SubFloat(m, 1) + SubFloat(m, 2);
|
|
return ReplicateX4(flDot);
|
|
}
|
|
|
|
FORCEINLINE fltx4 Dot4SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
fltx4 m = MulSIMD(a, b);
|
|
float flDot = SubFloat(m, 0) + SubFloat(m, 1) + SubFloat(m, 2) + SubFloat(m, 3);
|
|
return ReplicateX4(flDot);
|
|
}
|
|
|
|
//TODO: implement as four-way Taylor series (see xbox implementation)
|
|
FORCEINLINE fltx4 SinSIMD(const fltx4& radians)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = sin(SubFloat(radians, 0));
|
|
SubFloat(result, 1) = sin(SubFloat(radians, 1));
|
|
SubFloat(result, 2) = sin(SubFloat(radians, 2));
|
|
SubFloat(result, 3) = sin(SubFloat(radians, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE void SinCos3SIMD(fltx4& sine, fltx4& cosine, const fltx4& radians)
|
|
{
|
|
// FIXME: Make a fast SSE version
|
|
SinCos(SubFloat(radians, 0), &SubFloat(sine, 0), &SubFloat(cosine, 0));
|
|
SinCos(SubFloat(radians, 1), &SubFloat(sine, 1), &SubFloat(cosine, 1));
|
|
SinCos(SubFloat(radians, 2), &SubFloat(sine, 2), &SubFloat(cosine, 2));
|
|
}
|
|
|
|
FORCEINLINE void SinCosSIMD(fltx4& sine, fltx4& cosine, const fltx4& radians) // a*b + c
|
|
{
|
|
// FIXME: Make a fast SSE version
|
|
SinCos(SubFloat(radians, 0), &SubFloat(sine, 0), &SubFloat(cosine, 0));
|
|
SinCos(SubFloat(radians, 1), &SubFloat(sine, 1), &SubFloat(cosine, 1));
|
|
SinCos(SubFloat(radians, 2), &SubFloat(sine, 2), &SubFloat(cosine, 2));
|
|
SinCos(SubFloat(radians, 3), &SubFloat(sine, 3), &SubFloat(cosine, 3));
|
|
}
|
|
|
|
//TODO: implement as four-way Taylor series (see xbox implementation)
|
|
FORCEINLINE fltx4 ArcSinSIMD(const fltx4& sine)
|
|
{
|
|
// FIXME: Make a fast SSE version
|
|
fltx4 result;
|
|
SubFloat(result, 0) = asin(SubFloat(sine, 0));
|
|
SubFloat(result, 1) = asin(SubFloat(sine, 1));
|
|
SubFloat(result, 2) = asin(SubFloat(sine, 2));
|
|
SubFloat(result, 3) = asin(SubFloat(sine, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ArcCosSIMD(const fltx4& cs)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = acos(SubFloat(cs, 0));
|
|
SubFloat(result, 1) = acos(SubFloat(cs, 1));
|
|
SubFloat(result, 2) = acos(SubFloat(cs, 2));
|
|
SubFloat(result, 3) = acos(SubFloat(cs, 3));
|
|
return result;
|
|
}
|
|
|
|
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
|
|
FORCEINLINE fltx4 ArcTan2SIMD(const fltx4& a, const fltx4& b)
|
|
{
|
|
fltx4 result;
|
|
SubFloat(result, 0) = atan2(SubFloat(a, 0), SubFloat(b, 0));
|
|
SubFloat(result, 1) = atan2(SubFloat(a, 1), SubFloat(b, 1));
|
|
SubFloat(result, 2) = atan2(SubFloat(a, 2), SubFloat(b, 2));
|
|
SubFloat(result, 3) = atan2(SubFloat(a, 3), SubFloat(b, 3));
|
|
return result;
|
|
}
|
|
|
|
FORCEINLINE fltx4 NegSIMD(const fltx4& a) // negate: -a
|
|
{
|
|
return SubSIMD(LoadZeroSIMD(), a);
|
|
}
|
|
|
|
FORCEINLINE int TestSignSIMD(const fltx4& a) // mask of which floats have the high bit set
|
|
{
|
|
return _mm_movemask_ps(a);
|
|
}
|
|
|
|
FORCEINLINE bool IsAnyNegative(const fltx4& a) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
|
|
{
|
|
return (0 != TestSignSIMD(a));
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpEqSIMD(const fltx4& a, const fltx4& b) // (a==b) ? ~0:0
|
|
{
|
|
return _mm_cmpeq_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpGtSIMD(const fltx4& a, const fltx4& b) // (a>b) ? ~0:0
|
|
{
|
|
return _mm_cmpgt_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpGeSIMD(const fltx4& a, const fltx4& b) // (a>=b) ? ~0:0
|
|
{
|
|
return _mm_cmpge_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLtSIMD(const fltx4& a, const fltx4& b) // (a<b) ? ~0:0
|
|
{
|
|
return _mm_cmplt_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpLeSIMD(const fltx4& a, const fltx4& b) // (a<=b) ? ~0:0
|
|
{
|
|
return _mm_cmple_ps(a, b);
|
|
}
|
|
|
|
// for branching when a.xyzw > b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThan(const fltx4& a, const fltx4& b)
|
|
{
|
|
return TestSignSIMD(CmpLeSIMD(a, b)) == 0;
|
|
}
|
|
|
|
// for branching when a.xyzw >= b.xyzw
|
|
FORCEINLINE bool IsAllGreaterThanOrEq(const fltx4& a, const fltx4& b)
|
|
{
|
|
return TestSignSIMD(CmpLtSIMD(a, b)) == 0;
|
|
}
|
|
|
|
// For branching if all a.xyzw == b.xyzw
|
|
FORCEINLINE bool IsAllEqual(const fltx4& a, const fltx4& b)
|
|
{
|
|
return TestSignSIMD(CmpEqSIMD(a, b)) == 0xf;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CmpInBoundsSIMD(const fltx4& a, const fltx4& b) // (a <= b && a >= -b) ? ~0 : 0
|
|
{
|
|
return AndSIMD(CmpLeSIMD(a, b), CmpGeSIMD(a, NegSIMD(b)));
|
|
}
|
|
|
|
FORCEINLINE fltx4 MinSIMD(const fltx4& a, const fltx4& b) // min(a,b)
|
|
{
|
|
return _mm_min_ps(a, b);
|
|
}
|
|
|
|
FORCEINLINE fltx4 MaxSIMD(const fltx4& a, const fltx4& b) // max(a,b)
|
|
{
|
|
return _mm_max_ps(a, b);
|
|
}
|
|
|
|
|
|
|
|
// SSE lacks rounding operations.
|
|
// Really.
|
|
// You can emulate them by setting the rounding mode for the
|
|
// whole processor and then converting to int, and then back again.
|
|
// But every time you set the rounding mode, you clear out the
|
|
// entire pipeline. So, I can't do them per operation. You
|
|
// have to do it once, before the loop that would call these.
|
|
// Round towards positive infinity
|
|
FORCEINLINE fltx4 CeilSIMD(const fltx4& a)
|
|
{
|
|
fltx4 retVal;
|
|
SubFloat(retVal, 0) = ceil(SubFloat(a, 0));
|
|
SubFloat(retVal, 1) = ceil(SubFloat(a, 1));
|
|
SubFloat(retVal, 2) = ceil(SubFloat(a, 2));
|
|
SubFloat(retVal, 3) = ceil(SubFloat(a, 3));
|
|
return retVal;
|
|
|
|
}
|
|
|
|
fltx4 fabs(const fltx4& x);
|
|
// Round towards negative infinity
|
|
// This is the implementation that was here before; it assumes
|
|
// you are in round-to-floor mode, which I guess is usually the
|
|
// case for us vis-a-vis SSE. It's totally unnecessary on
|
|
// VMX, which has a native floor op.
|
|
FORCEINLINE fltx4 FloorSIMD(const fltx4& val)
|
|
{
|
|
fltx4 fl4Abs = fabs(val);
|
|
fltx4 ival = SubSIMD(AddSIMD(fl4Abs, Four_2ToThe23s), Four_2ToThe23s);
|
|
ival = MaskedAssign(CmpGtSIMD(ival, fl4Abs), SubSIMD(ival, Four_Ones), ival);
|
|
return XorSIMD(ival, XorSIMD(val, fl4Abs)); // restore sign bits
|
|
}
|
|
|
|
|
|
|
|
inline bool IsAllZeros(const fltx4& var)
|
|
{
|
|
return TestSignSIMD(CmpEqSIMD(var, Four_Zeros)) == 0xF;
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtEstSIMD(const fltx4& a) // sqrt(a), more or less
|
|
{
|
|
return _mm_sqrt_ps(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 SqrtSIMD(const fltx4& a) // sqrt(a)
|
|
{
|
|
return _mm_sqrt_ps(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD(const fltx4& a) // 1/sqrt(a), more or less
|
|
{
|
|
return _mm_rsqrt_ps(a);
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 ret = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
ret = ReciprocalSqrtEstSIMD(ret);
|
|
return ret;
|
|
}
|
|
|
|
/// uses newton iteration for higher precision results than ReciprocalSqrtEstSIMD
|
|
FORCEINLINE fltx4 ReciprocalSqrtSIMD(const fltx4& a) // 1/sqrt(a)
|
|
{
|
|
fltx4 guess = ReciprocalSqrtEstSIMD(a);
|
|
// newton iteration for 1/sqrt(a) : y(n+1) = 1/2 (y(n)*(3-a*y(n)^2));
|
|
guess = MulSIMD(guess, SubSIMD(Four_Threes, MulSIMD(a, MulSIMD(guess, guess))));
|
|
guess = MulSIMD(Four_PointFives, guess);
|
|
return guess;
|
|
}
|
|
|
|
FORCEINLINE fltx4 ReciprocalEstSIMD(const fltx4& a) // 1/a, more or less
|
|
{
|
|
return _mm_rcp_ps(a);
|
|
}
|
|
|
|
/// 1/x for all 4 values, more or less
|
|
/// 1/0 will result in a big but NOT infinite result
|
|
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 ret = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
ret = ReciprocalEstSIMD(ret);
|
|
return ret;
|
|
}
|
|
|
|
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
|
|
/// No error checking!
|
|
FORCEINLINE fltx4 ReciprocalSIMD(const fltx4& a) // 1/a
|
|
{
|
|
fltx4 ret = ReciprocalEstSIMD(a);
|
|
// newton iteration is: Y(n+1) = 2*Y(n)-a*Y(n)^2
|
|
ret = SubSIMD(AddSIMD(ret, ret), MulSIMD(a, MulSIMD(ret, ret)));
|
|
return ret;
|
|
}
|
|
|
|
/// 1/x for all 4 values.
|
|
/// 1/0 will result in a big but NOT infinite result
|
|
FORCEINLINE fltx4 ReciprocalSaturateSIMD(const fltx4& a)
|
|
{
|
|
fltx4 zero_mask = CmpEqSIMD(a, Four_Zeros);
|
|
fltx4 ret = OrSIMD(a, AndSIMD(Four_Epsilons, zero_mask));
|
|
ret = ReciprocalSIMD(ret);
|
|
return ret;
|
|
}
|
|
|
|
// CHRISG: is it worth doing integer bitfiddling for this?
|
|
// 2^x for all values (the antilog)
|
|
FORCEINLINE fltx4 ExpSIMD(const fltx4& toPower)
|
|
{
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = powf(2, SubFloat(toPower, 0));
|
|
SubFloat(retval, 1) = powf(2, SubFloat(toPower, 1));
|
|
SubFloat(retval, 2) = powf(2, SubFloat(toPower, 2));
|
|
SubFloat(retval, 3) = powf(2, SubFloat(toPower, 3));
|
|
|
|
return retval;
|
|
}
|
|
|
|
// Clamps the components of a vector to a specified minimum and maximum range.
|
|
FORCEINLINE fltx4 ClampVectorSIMD(FLTX4 in, FLTX4 min, FLTX4 max)
|
|
{
|
|
return MaxSIMD(min, MinSIMD(max, in));
|
|
}
|
|
|
|
FORCEINLINE void TransposeSIMD(fltx4& x, fltx4& y, fltx4& z, fltx4& w)
|
|
{
|
|
_MM_TRANSPOSE4_PS(x, y, z, w);
|
|
}
|
|
|
|
FORCEINLINE fltx4 FindLowestSIMD3(const fltx4& a)
|
|
{
|
|
// a is [x,y,z,G] (where G is garbage)
|
|
// rotate left by one
|
|
fltx4 compareOne = RotateLeft(a);
|
|
// compareOne is [y,z,G,x]
|
|
fltx4 retval = MinSIMD(a, compareOne);
|
|
// retVal is [min(x,y), ... ]
|
|
compareOne = RotateLeft2(a);
|
|
// compareOne is [z, G, x, y]
|
|
retval = MinSIMD(retval, compareOne);
|
|
// retVal = [ min(min(x,y),z)..]
|
|
// splat the x component out to the whole vector and return
|
|
return SplatXSIMD(retval);
|
|
|
|
}
|
|
|
|
FORCEINLINE fltx4 FindHighestSIMD3(const fltx4& a)
|
|
{
|
|
// a is [x,y,z,G] (where G is garbage)
|
|
// rotate left by one
|
|
fltx4 compareOne = RotateLeft(a);
|
|
// compareOne is [y,z,G,x]
|
|
fltx4 retval = MaxSIMD(a, compareOne);
|
|
// retVal is [max(x,y), ... ]
|
|
compareOne = RotateLeft2(a);
|
|
// compareOne is [z, G, x, y]
|
|
retval = MaxSIMD(retval, compareOne);
|
|
// retVal = [ max(max(x,y),z)..]
|
|
// splat the x component out to the whole vector and return
|
|
return SplatXSIMD(retval);
|
|
|
|
}
|
|
|
|
// ------------------------------------
|
|
// INTEGER SIMD OPERATIONS.
|
|
// ------------------------------------
|
|
|
|
|
|
#if 0 /* pc does not have these ops */
|
|
// splat all components of a vector to a signed immediate int number.
|
|
FORCEINLINE fltx4 IntSetImmediateSIMD(int to)
|
|
{
|
|
//CHRISG: SSE2 has this, but not SSE1. What to do?
|
|
fltx4 retval;
|
|
SubInt(retval, 0) = to;
|
|
SubInt(retval, 1) = to;
|
|
SubInt(retval, 2) = to;
|
|
SubInt(retval, 3) = to;
|
|
return retval;
|
|
}
|
|
#endif
|
|
|
|
// Load 4 aligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadAlignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return _mm_load_ps(reinterpret_cast<const float*>(pSIMD));
|
|
}
|
|
|
|
// Load 4 unaligned words into a SIMD register
|
|
FORCEINLINE i32x4 LoadUnalignedIntSIMD(const void* RESTRICT pSIMD)
|
|
{
|
|
return _mm_loadu_ps(reinterpret_cast<const float*>(pSIMD));
|
|
}
|
|
|
|
// save into four words, 16-byte aligned
|
|
FORCEINLINE void StoreAlignedIntSIMD(int32* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
_mm_store_ps(reinterpret_cast<float*>(pSIMD), a);
|
|
}
|
|
|
|
FORCEINLINE void StoreAlignedIntSIMD(intx4& pSIMD, const fltx4& a)
|
|
{
|
|
_mm_store_ps(reinterpret_cast<float*>(pSIMD.Base()), a);
|
|
}
|
|
|
|
FORCEINLINE void StoreUnalignedIntSIMD(int32* RESTRICT pSIMD, const fltx4& a)
|
|
{
|
|
_mm_storeu_ps(reinterpret_cast<float*>(pSIMD), a);
|
|
}
|
|
|
|
|
|
// CHRISG: the conversion functions all seem to operate on m64's only...
|
|
// how do we make them work here?
|
|
|
|
// Take a fltx4 containing fixed-point uints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD(const u32x4& vSrcA)
|
|
{
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = ((float)SubInt(retval, 0));
|
|
SubFloat(retval, 1) = ((float)SubInt(retval, 1));
|
|
SubFloat(retval, 2) = ((float)SubInt(retval, 2));
|
|
SubFloat(retval, 3) = ((float)SubInt(retval, 3));
|
|
return retval;
|
|
}
|
|
|
|
|
|
// Take a fltx4 containing fixed-point sints and
|
|
// return them as single precision floats. No
|
|
// fixed point conversion is done.
|
|
FORCEINLINE fltx4 SignedIntConvertToFltSIMD(const i32x4& vSrcA)
|
|
{
|
|
fltx4 retval;
|
|
SubFloat(retval, 0) = ((float)(reinterpret_cast<const int32*>(&vSrcA)[0]));
|
|
SubFloat(retval, 1) = ((float)(reinterpret_cast<const int32*>(&vSrcA)[1]));
|
|
SubFloat(retval, 2) = ((float)(reinterpret_cast<const int32*>(&vSrcA)[2]));
|
|
SubFloat(retval, 3) = ((float)(reinterpret_cast<const int32*>(&vSrcA)[3]));
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
works on fltx4's as if they are four uints.
|
|
the first parameter contains the words to be shifted,
|
|
the second contains the amount to shift by AS INTS
|
|
|
|
for i = 0 to 3
|
|
shift = vSrcB_i*32:(i*32)+4
|
|
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
|
|
*/
|
|
FORCEINLINE i32x4 IntShiftLeftWordSIMD(const i32x4& vSrcA, const i32x4& vSrcB)
|
|
{
|
|
i32x4 retval;
|
|
SubInt(retval, 0) = SubInt(vSrcA, 0) << SubInt(vSrcB, 0);
|
|
SubInt(retval, 1) = SubInt(vSrcA, 1) << SubInt(vSrcB, 1);
|
|
SubInt(retval, 2) = SubInt(vSrcA, 2) << SubInt(vSrcB, 2);
|
|
SubInt(retval, 3) = SubInt(vSrcA, 3) << SubInt(vSrcB, 3);
|
|
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
// Fixed-point conversion and save as SIGNED INTS.
|
|
// pDest->x = Int (vSrc.x)
|
|
// note: some architectures have means of doing
|
|
// fixed point conversion when the fix depth is
|
|
// specified as an immediate.. but there is no way
|
|
// to guarantee an immediate as a parameter to function
|
|
// like this.
|
|
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4* RESTRICT pDest, const fltx4& vSrc)
|
|
{
|
|
#if defined( COMPILER_MSVC64 )
|
|
|
|
(*pDest)[0] = SubFloat(vSrc, 0);
|
|
(*pDest)[1] = SubFloat(vSrc, 1);
|
|
(*pDest)[2] = SubFloat(vSrc, 2);
|
|
(*pDest)[3] = SubFloat(vSrc, 3);
|
|
|
|
#else
|
|
__m64 bottom = _mm_cvttps_pi32(vSrc);
|
|
__m64 top = _mm_cvttps_pi32(_mm_movehl_ps(vSrc, vSrc));
|
|
|
|
*reinterpret_cast<__m64*>(&(*pDest)[0]) = bottom;
|
|
*reinterpret_cast<__m64*>(&(*pDest)[2]) = top;
|
|
|
|
_mm_empty();
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/// class FourVectors stores 4 independent vectors for use in SIMD processing. These vectors are
|
|
/// stored in the format x x x x y y y y z z z z so that they can be efficiently SIMD-accelerated.
|
|
class ALIGN16 FourVectors
|
|
{
|
|
public:
|
|
fltx4 x, y, z;
|
|
|
|
FORCEINLINE void DuplicateVector(Vector3D const& v) //< set all 4 vectors to the same vector value
|
|
{
|
|
x = ReplicateX4(v.x);
|
|
y = ReplicateX4(v.y);
|
|
z = ReplicateX4(v.z);
|
|
}
|
|
|
|
FORCEINLINE fltx4 const& operator[](int idx) const
|
|
{
|
|
return *((&x) + idx);
|
|
}
|
|
|
|
FORCEINLINE fltx4& operator[](int idx)
|
|
{
|
|
return *((&x) + idx);
|
|
}
|
|
|
|
FORCEINLINE void operator+=(FourVectors const& b) //< add 4 vectors to another 4 vectors
|
|
{
|
|
x = AddSIMD(x, b.x);
|
|
y = AddSIMD(y, b.y);
|
|
z = AddSIMD(z, b.z);
|
|
}
|
|
|
|
FORCEINLINE void operator-=(FourVectors const& b) //< subtract 4 vectors from another 4
|
|
{
|
|
x = SubSIMD(x, b.x);
|
|
y = SubSIMD(y, b.y);
|
|
z = SubSIMD(z, b.z);
|
|
}
|
|
|
|
FORCEINLINE void operator*=(FourVectors const& b) //< scale all four vectors per component scale
|
|
{
|
|
x = MulSIMD(x, b.x);
|
|
y = MulSIMD(y, b.y);
|
|
z = MulSIMD(z, b.z);
|
|
}
|
|
|
|
FORCEINLINE void operator*=(const fltx4& scale) //< scale
|
|
{
|
|
x = MulSIMD(x, scale);
|
|
y = MulSIMD(y, scale);
|
|
z = MulSIMD(z, scale);
|
|
}
|
|
|
|
FORCEINLINE void operator*=(float scale) //< uniformly scale all 4 vectors
|
|
{
|
|
fltx4 scalepacked = ReplicateX4(scale);
|
|
*this *= scalepacked;
|
|
}
|
|
|
|
FORCEINLINE fltx4 operator*(FourVectors const& b) const //< 4 dot products
|
|
{
|
|
fltx4 dot = MulSIMD(x, b.x);
|
|
dot = MaddSIMD(y, b.y, dot);
|
|
dot = MaddSIMD(z, b.z, dot);
|
|
return dot;
|
|
}
|
|
|
|
FORCEINLINE fltx4 operator*(Vector3D const& b) const //< dot product all 4 vectors with 1 vector
|
|
{
|
|
fltx4 dot = MulSIMD(x, ReplicateX4(b.x));
|
|
dot = MaddSIMD(y, ReplicateX4(b.y), dot);
|
|
dot = MaddSIMD(z, ReplicateX4(b.z), dot);
|
|
return dot;
|
|
}
|
|
|
|
FORCEINLINE void VProduct(FourVectors const& b) //< component by component mul
|
|
{
|
|
x = MulSIMD(x, b.x);
|
|
y = MulSIMD(y, b.y);
|
|
z = MulSIMD(z, b.z);
|
|
}
|
|
FORCEINLINE void MakeReciprocal(void) //< (x,y,z)=(1/x,1/y,1/z)
|
|
{
|
|
x = ReciprocalSIMD(x);
|
|
y = ReciprocalSIMD(y);
|
|
z = ReciprocalSIMD(z);
|
|
}
|
|
|
|
FORCEINLINE void MakeReciprocalSaturate(void) //< (x,y,z)=(1/x,1/y,1/z), 1/0=1.0e23
|
|
{
|
|
x = ReciprocalSaturateSIMD(x);
|
|
y = ReciprocalSaturateSIMD(y);
|
|
z = ReciprocalSaturateSIMD(z);
|
|
}
|
|
|
|
// Assume the given matrix is a rotation, and rotate these vectors by it.
|
|
// If you have a long list of FourVectors structures that you all want
|
|
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
|
|
inline void RotateBy(const matrix3x4_t& matrix);
|
|
|
|
/// You can use this to rotate a long array of FourVectors all by the same
|
|
/// matrix. The first parameter is the head of the array. The second is the
|
|
/// number of vectors to rotate. The third is the matrix.
|
|
static void RotateManyBy(FourVectors* RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix);
|
|
|
|
/// Assume the vectors are points, and transform them in place by the matrix.
|
|
inline void TransformBy(const matrix3x4_t& matrix);
|
|
|
|
/// You can use this to Transform a long array of FourVectors all by the same
|
|
/// matrix. The first parameter is the head of the array. The second is the
|
|
/// number of vectors to rotate. The third is the matrix. The fourth is the
|
|
/// output buffer, which must not overlap the pVectors buffer. This is not
|
|
/// an in-place transformation.
|
|
static void TransformManyBy(FourVectors* RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors* RESTRICT pOut);
|
|
|
|
/// You can use this to Transform a long array of FourVectors all by the same
|
|
/// matrix. The first parameter is the head of the array. The second is the
|
|
/// number of vectors to rotate. The third is the matrix. The fourth is the
|
|
/// output buffer, which must not overlap the pVectors buffer.
|
|
/// This is an in-place transformation.
|
|
static void TransformManyBy(FourVectors* RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix);
|
|
|
|
// X(),Y(),Z() - get at the desired component of the i'th (0..3) vector.
|
|
FORCEINLINE const float& X(int idx) const
|
|
{
|
|
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
|
|
return SubFloat((fltx4&)x, idx);
|
|
}
|
|
|
|
FORCEINLINE const float& Y(int idx) const
|
|
{
|
|
return SubFloat((fltx4&)y, idx);
|
|
}
|
|
|
|
FORCEINLINE const float& Z(int idx) const
|
|
{
|
|
return SubFloat((fltx4&)z, idx);
|
|
}
|
|
|
|
FORCEINLINE float& X(int idx)
|
|
{
|
|
return SubFloat(x, idx);
|
|
}
|
|
|
|
FORCEINLINE float& Y(int idx)
|
|
{
|
|
return SubFloat(y, idx);
|
|
}
|
|
|
|
FORCEINLINE float& Z(int idx)
|
|
{
|
|
return SubFloat(z, idx);
|
|
}
|
|
|
|
FORCEINLINE Vector3D Vec(int idx) const //< unpack one of the vectors
|
|
{
|
|
return Vector3D(X(idx), Y(idx), Z(idx));
|
|
}
|
|
|
|
FourVectors(void)
|
|
{
|
|
}
|
|
|
|
FourVectors(FourVectors const& src)
|
|
{
|
|
x = src.x;
|
|
y = src.y;
|
|
z = src.z;
|
|
}
|
|
|
|
FORCEINLINE void operator=(FourVectors const& src)
|
|
{
|
|
x = src.x;
|
|
y = src.y;
|
|
z = src.z;
|
|
}
|
|
|
|
/// LoadAndSwizzle - load 4 Vectors into a FourVectors, performing transpose op
|
|
FORCEINLINE void LoadAndSwizzle(Vector3D const& a, Vector3D const& b, Vector3D const& c, Vector3D const& d)
|
|
{
|
|
// TransposeSIMD has large sub-expressions that the compiler can't eliminate on x360
|
|
// use an unfolded implementation here
|
|
#if _X360
|
|
fltx4 tx = LoadUnalignedSIMD(&a.x);
|
|
fltx4 ty = LoadUnalignedSIMD(&b.x);
|
|
fltx4 tz = LoadUnalignedSIMD(&c.x);
|
|
fltx4 tw = LoadUnalignedSIMD(&d.x);
|
|
fltx4 r0 = __vmrghw(tx, tz);
|
|
fltx4 r1 = __vmrghw(ty, tw);
|
|
fltx4 r2 = __vmrglw(tx, tz);
|
|
fltx4 r3 = __vmrglw(ty, tw);
|
|
|
|
x = __vmrghw(r0, r1);
|
|
y = __vmrglw(r0, r1);
|
|
z = __vmrghw(r2, r3);
|
|
#else
|
|
x = LoadUnalignedSIMD(&(a.x));
|
|
y = LoadUnalignedSIMD(&(b.x));
|
|
z = LoadUnalignedSIMD(&(c.x));
|
|
fltx4 w = LoadUnalignedSIMD(&(d.x));
|
|
// now, matrix is:
|
|
// x y z ?
|
|
// x y z ?
|
|
// x y z ?
|
|
// x y z ?
|
|
TransposeSIMD(x, y, z, w);
|
|
#endif
|
|
}
|
|
|
|
/// LoadAndSwizzleAligned - load 4 Vectors into a FourVectors, performing transpose op.
|
|
/// all 4 vectors must be 128 bit boundary
|
|
FORCEINLINE void LoadAndSwizzleAligned(const float* RESTRICT a, const float* RESTRICT b, const float* RESTRICT c, const float* RESTRICT d)
|
|
{
|
|
#if _X360
|
|
fltx4 tx = LoadAlignedSIMD(a);
|
|
fltx4 ty = LoadAlignedSIMD(b);
|
|
fltx4 tz = LoadAlignedSIMD(c);
|
|
fltx4 tw = LoadAlignedSIMD(d);
|
|
fltx4 r0 = __vmrghw(tx, tz);
|
|
fltx4 r1 = __vmrghw(ty, tw);
|
|
fltx4 r2 = __vmrglw(tx, tz);
|
|
fltx4 r3 = __vmrglw(ty, tw);
|
|
|
|
x = __vmrghw(r0, r1);
|
|
y = __vmrglw(r0, r1);
|
|
z = __vmrghw(r2, r3);
|
|
#else
|
|
x = LoadAlignedSIMD(a);
|
|
y = LoadAlignedSIMD(b);
|
|
z = LoadAlignedSIMD(c);
|
|
fltx4 w = LoadAlignedSIMD(d);
|
|
// now, matrix is:
|
|
// x y z ?
|
|
// x y z ?
|
|
// x y z ?
|
|
// x y z ?
|
|
TransposeSIMD(x, y, z, w);
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE void LoadAndSwizzleAligned(Vector3D const& a, Vector3D const& b, Vector3D const& c, Vector3D const& d)
|
|
{
|
|
LoadAndSwizzleAligned(&a.x, &b.x, &c.x, &d.x);
|
|
}
|
|
|
|
/// return the squared length of all 4 vectors
|
|
FORCEINLINE fltx4 length2(void) const
|
|
{
|
|
return (*this) * (*this);
|
|
}
|
|
|
|
/// return the approximate length of all 4 vectors. uses the sqrt approximation instruction
|
|
FORCEINLINE fltx4 length(void) const
|
|
{
|
|
return SqrtEstSIMD(length2());
|
|
}
|
|
|
|
/// normalize all 4 vectors in place. not mega-accurate (uses reciprocal approximation instruction)
|
|
FORCEINLINE void VectorNormalizeFast(void)
|
|
{
|
|
fltx4 mag_sq = (*this) * (*this); // length^2
|
|
(*this) *= ReciprocalSqrtEstSIMD(mag_sq); // *(1.0/sqrt(length^2))
|
|
}
|
|
|
|
/// normalize all 4 vectors in place.
|
|
FORCEINLINE void VectorNormalize(void)
|
|
{
|
|
fltx4 mag_sq = (*this) * (*this); // length^2
|
|
(*this) *= ReciprocalSqrtSIMD(mag_sq); // *(1.0/sqrt(length^2))
|
|
}
|
|
|
|
/// construct a FourVectors from 4 separate Vectors
|
|
FORCEINLINE FourVectors(Vector3D const& a, Vector3D const& b, Vector3D const& c, Vector3D const& d)
|
|
{
|
|
LoadAndSwizzle(a, b, c, d);
|
|
}
|
|
|
|
/// construct a FourVectors from 4 separate Vectors
|
|
FORCEINLINE FourVectors(VectorAligned const& a, VectorAligned const& b, VectorAligned const& c, VectorAligned const& d)
|
|
{
|
|
LoadAndSwizzleAligned(a, b, c, d);
|
|
}
|
|
|
|
FORCEINLINE fltx4 DistToSqr(FourVectors const& pnt)
|
|
{
|
|
fltx4 fl4dX = SubSIMD(pnt.x, x);
|
|
fltx4 fl4dY = SubSIMD(pnt.y, y);
|
|
fltx4 fl4dZ = SubSIMD(pnt.z, z);
|
|
return AddSIMD(MulSIMD(fl4dX, fl4dX), AddSIMD(MulSIMD(fl4dY, fl4dY), MulSIMD(fl4dZ, fl4dZ)));
|
|
|
|
}
|
|
|
|
FORCEINLINE fltx4 TValueOfClosestPointOnLine(FourVectors const& p0, FourVectors const& p1) const
|
|
{
|
|
FourVectors lineDelta = p1;
|
|
lineDelta -= p0;
|
|
fltx4 OOlineDirDotlineDir = ReciprocalSIMD(p1 * p1);
|
|
FourVectors v4OurPnt = *this;
|
|
v4OurPnt -= p0;
|
|
return MulSIMD(OOlineDirDotlineDir, v4OurPnt * lineDelta);
|
|
}
|
|
|
|
FORCEINLINE fltx4 DistSqrToLineSegment(FourVectors const& p0, FourVectors const& p1) const
|
|
{
|
|
FourVectors lineDelta = p1;
|
|
FourVectors v4OurPnt = *this;
|
|
v4OurPnt -= p0;
|
|
lineDelta -= p0;
|
|
|
|
fltx4 OOlineDirDotlineDir = ReciprocalSIMD(lineDelta * lineDelta);
|
|
|
|
fltx4 fl4T = MulSIMD(OOlineDirDotlineDir, v4OurPnt * lineDelta);
|
|
|
|
fl4T = MinSIMD(fl4T, Four_Ones);
|
|
fl4T = MaxSIMD(fl4T, Four_Zeros);
|
|
lineDelta *= fl4T;
|
|
return v4OurPnt.DistToSqr(lineDelta);
|
|
}
|
|
|
|
};
|
|
|
|
/// form 4 cross products
|
|
inline FourVectors operator ^(const FourVectors& a, const FourVectors& b)
|
|
{
|
|
FourVectors ret;
|
|
ret.x = SubSIMD(MulSIMD(a.y, b.z), MulSIMD(a.z, b.y));
|
|
ret.y = SubSIMD(MulSIMD(a.z, b.x), MulSIMD(a.x, b.z));
|
|
ret.z = SubSIMD(MulSIMD(a.x, b.y), MulSIMD(a.y, b.x));
|
|
return ret;
|
|
}
|
|
|
|
/// component-by-componentwise MAX operator
|
|
inline FourVectors maximum(const FourVectors& a, const FourVectors& b)
|
|
{
|
|
FourVectors ret;
|
|
ret.x = MaxSIMD(a.x, b.x);
|
|
ret.y = MaxSIMD(a.y, b.y);
|
|
ret.z = MaxSIMD(a.z, b.z);
|
|
return ret;
|
|
}
|
|
|
|
/// component-by-componentwise MIN operator
|
|
inline FourVectors minimum(const FourVectors& a, const FourVectors& b)
|
|
{
|
|
FourVectors ret;
|
|
ret.x = MinSIMD(a.x, b.x);
|
|
ret.y = MinSIMD(a.y, b.y);
|
|
ret.z = MinSIMD(a.z, b.z);
|
|
return ret;
|
|
}
|
|
|
|
/// calculate reflection vector. incident and normal dir assumed normalized
|
|
FORCEINLINE FourVectors VectorReflect(const FourVectors& incident, const FourVectors& normal)
|
|
{
|
|
FourVectors ret = incident;
|
|
fltx4 iDotNx2 = incident * normal;
|
|
iDotNx2 = AddSIMD(iDotNx2, iDotNx2);
|
|
FourVectors nPart = normal;
|
|
nPart *= iDotNx2;
|
|
ret -= nPart; // i-2(n*i)n
|
|
return ret;
|
|
}
|
|
|
|
/// calculate slide vector. removes all components of a vector which are perpendicular to a normal vector.
|
|
FORCEINLINE FourVectors VectorSlide(const FourVectors& incident, const FourVectors& normal)
|
|
{
|
|
FourVectors ret = incident;
|
|
fltx4 iDotN = incident * normal;
|
|
FourVectors nPart = normal;
|
|
nPart *= iDotN;
|
|
ret -= nPart; // i-(n*i)n
|
|
return ret;
|
|
}
|
|
|
|
|
|
// Assume the given matrix is a rotation, and rotate these vectors by it.
|
|
// If you have a long list of FourVectors structures that you all want
|
|
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
|
|
void FourVectors::RotateBy(const matrix3x4_t& matrix)
|
|
{
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02,
|
|
matSplat10, matSplat11, matSplat12,
|
|
matSplat20, matSplat21, matSplat22;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix, but we don't really care about that.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(matrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(matrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(matrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
}
|
|
|
|
// Trust in the compiler to schedule these operations correctly:
|
|
fltx4 outX, outY, outZ;
|
|
outX = AddSIMD(AddSIMD(MulSIMD(x, matSplat00), MulSIMD(y, matSplat01)), MulSIMD(z, matSplat02));
|
|
outY = AddSIMD(AddSIMD(MulSIMD(x, matSplat10), MulSIMD(y, matSplat11)), MulSIMD(z, matSplat12));
|
|
outZ = AddSIMD(AddSIMD(MulSIMD(x, matSplat20), MulSIMD(y, matSplat21)), MulSIMD(z, matSplat22));
|
|
|
|
x = outX;
|
|
y = outY;
|
|
z = outZ;
|
|
}
|
|
|
|
// Assume the given matrix is a rotation, and rotate these vectors by it.
|
|
// If you have a long list of FourVectors structures that you all want
|
|
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
|
|
void FourVectors::TransformBy(const matrix3x4_t& matrix)
|
|
{
|
|
// Splat out each of the entries in the matrix to a fltx4. Do this
|
|
// in the order that we will need them, to hide latency. I'm
|
|
// avoiding making an array of them, so that they'll remain in
|
|
// registers.
|
|
fltx4 matSplat00, matSplat01, matSplat02,
|
|
matSplat10, matSplat11, matSplat12,
|
|
matSplat20, matSplat21, matSplat22;
|
|
|
|
{
|
|
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
|
|
// often unaligned. The w components will be the tranpose row of
|
|
// the matrix, but we don't really care about that.
|
|
fltx4 matCol0 = LoadUnalignedSIMD(matrix[0]);
|
|
fltx4 matCol1 = LoadUnalignedSIMD(matrix[1]);
|
|
fltx4 matCol2 = LoadUnalignedSIMD(matrix[2]);
|
|
|
|
matSplat00 = SplatXSIMD(matCol0);
|
|
matSplat01 = SplatYSIMD(matCol0);
|
|
matSplat02 = SplatZSIMD(matCol0);
|
|
|
|
matSplat10 = SplatXSIMD(matCol1);
|
|
matSplat11 = SplatYSIMD(matCol1);
|
|
matSplat12 = SplatZSIMD(matCol1);
|
|
|
|
matSplat20 = SplatXSIMD(matCol2);
|
|
matSplat21 = SplatYSIMD(matCol2);
|
|
matSplat22 = SplatZSIMD(matCol2);
|
|
}
|
|
|
|
// Trust in the compiler to schedule these operations correctly:
|
|
fltx4 outX, outY, outZ;
|
|
|
|
outX = MaddSIMD(z, matSplat02, AddSIMD(MulSIMD(x, matSplat00), MulSIMD(y, matSplat01)));
|
|
outY = MaddSIMD(z, matSplat12, AddSIMD(MulSIMD(x, matSplat10), MulSIMD(y, matSplat11)));
|
|
outZ = MaddSIMD(z, matSplat22, AddSIMD(MulSIMD(x, matSplat20), MulSIMD(y, matSplat21)));
|
|
|
|
x = AddSIMD(outX, ReplicateX4(matrix[0][3]));
|
|
y = AddSIMD(outY, ReplicateX4(matrix[1][3]));
|
|
z = AddSIMD(outZ, ReplicateX4(matrix[2][3]));
|
|
}
|
|
|
|
|
|
|
|
/// quick, low quality perlin-style noise() function suitable for real time use.
|
|
/// return value is -1..1. Only reliable around +/- 1 million or so.
|
|
fltx4 NoiseSIMD(const fltx4& x, const fltx4& y, const fltx4& z);
|
|
fltx4 NoiseSIMD(FourVectors const& v);
|
|
|
|
// vector valued noise direction
|
|
FourVectors DNoiseSIMD(FourVectors const& v);
|
|
|
|
// vector value "curl" noise function. see http://hyperphysics.phy-astr.gsu.edu/hbase/curl.html
|
|
FourVectors CurlNoiseSIMD(FourVectors const& v);
|
|
|
|
|
|
/// calculate the absolute value of a packed single
|
|
inline fltx4 fabs(const fltx4& x)
|
|
{
|
|
return AndSIMD(x, LoadAlignedSIMD(g_SIMD_clear_signmask));
|
|
}
|
|
|
|
/// negate all four components of a SIMD packed single
|
|
inline fltx4 fnegate(const fltx4& x)
|
|
{
|
|
return XorSIMD(x, LoadAlignedSIMD(g_SIMD_signmask));
|
|
}
|
|
|
|
|
|
fltx4 Pow_FixedPoint_Exponent_SIMD(const fltx4& x, int exponent);
|
|
|
|
// PowSIMD - raise a SIMD register to a power. This is analogous to the C pow() function, with some
|
|
// restictions: fractional exponents are only handled with 2 bits of precision. Basically,
|
|
// fractions of 0,.25,.5, and .75 are handled. PowSIMD(x,.30) will be the same as PowSIMD(x,.25).
|
|
// negative and fractional powers are handled by the SIMD reciprocal and square root approximation
|
|
// instructions and so are not especially accurate ----Note that this routine does not raise
|
|
// numeric exceptions because it uses SIMD--- This routine is O(log2(exponent)).
|
|
inline fltx4 PowSIMD(const fltx4& x, float exponent)
|
|
{
|
|
return Pow_FixedPoint_Exponent_SIMD(x, (int)(4.0 * exponent));
|
|
}
|
|
|
|
|
|
|
|
// random number generation - generate 4 random numbers quickly.
|
|
|
|
void SeedRandSIMD(uint32 seed); // seed the random # generator
|
|
fltx4 RandSIMD(int nContext = 0); // return 4 numbers in the 0..1 range
|
|
|
|
// for multithreaded, you need to use these and use the argument form of RandSIMD:
|
|
int GetSIMDRandContext(void);
|
|
void ReleaseSIMDRandContext(int nContext);
|
|
|
|
FORCEINLINE fltx4 RandSignedSIMD(void) // -1..1
|
|
{
|
|
return SubSIMD(MulSIMD(Four_Twos, RandSIMD()), Four_Ones);
|
|
}
|
|
|
|
|
|
// SIMD versions of mathlib simplespline functions
|
|
// hermite basis function for smooth interpolation
|
|
// Similar to Gain() above, but very cheap to call
|
|
// value should be between 0 & 1 inclusive
|
|
inline fltx4 SimpleSpline(const fltx4& value)
|
|
{
|
|
// Arranged to avoid a data dependency between these two MULs:
|
|
fltx4 valueDoubled = MulSIMD(value, Four_Twos);
|
|
fltx4 valueSquared = MulSIMD(value, value);
|
|
|
|
// Nice little ease-in, ease-out spline-like curve
|
|
return SubSIMD(
|
|
MulSIMD(Four_Threes, valueSquared),
|
|
MulSIMD(valueDoubled, valueSquared));
|
|
}
|
|
|
|
// remaps a value in [startInterval, startInterval+rangeInterval] from linear to
|
|
// spline using SimpleSpline
|
|
inline fltx4 SimpleSplineRemapValWithDeltas(const fltx4& val,
|
|
const fltx4& A, const fltx4& BMinusA,
|
|
const fltx4& OneOverBMinusA, const fltx4& C,
|
|
const fltx4& DMinusC)
|
|
{
|
|
// if ( A == B )
|
|
// return val >= B ? D : C;
|
|
fltx4 cVal = MulSIMD(SubSIMD(val, A), OneOverBMinusA);
|
|
return AddSIMD(C, MulSIMD(DMinusC, SimpleSpline(cVal)));
|
|
}
|
|
|
|
inline fltx4 SimpleSplineRemapValWithDeltasClamped(const fltx4& val,
|
|
const fltx4& A, const fltx4& BMinusA,
|
|
const fltx4& OneOverBMinusA, const fltx4& C,
|
|
const fltx4& DMinusC)
|
|
{
|
|
// if ( A == B )
|
|
// return val >= B ? D : C;
|
|
fltx4 cVal = MulSIMD(SubSIMD(val, A), OneOverBMinusA);
|
|
cVal = MinSIMD(Four_Ones, MaxSIMD(Four_Zeros, cVal));
|
|
return AddSIMD(C, MulSIMD(DMinusC, SimpleSpline(cVal)));
|
|
}
|
|
|
|
FORCEINLINE fltx4 FracSIMD(const fltx4& val)
|
|
{
|
|
fltx4 fl4Abs = fabs(val);
|
|
fltx4 ival = SubSIMD(AddSIMD(fl4Abs, Four_2ToThe23s), Four_2ToThe23s);
|
|
ival = MaskedAssign(CmpGtSIMD(ival, fl4Abs), SubSIMD(ival, Four_Ones), ival);
|
|
return XorSIMD(SubSIMD(fl4Abs, ival), XorSIMD(val, fl4Abs)); // restore sign bits
|
|
}
|
|
|
|
FORCEINLINE fltx4 Mod2SIMD(const fltx4& val)
|
|
{
|
|
fltx4 fl4Abs = fabs(val);
|
|
fltx4 ival = SubSIMD(AndSIMD(LoadAlignedSIMD((float*)g_SIMD_lsbmask), AddSIMD(fl4Abs, Four_2ToThe23s)), Four_2ToThe23s);
|
|
ival = MaskedAssign(CmpGtSIMD(ival, fl4Abs), SubSIMD(ival, Four_Twos), ival);
|
|
return XorSIMD(SubSIMD(fl4Abs, ival), XorSIMD(val, fl4Abs)); // restore sign bits
|
|
}
|
|
|
|
FORCEINLINE fltx4 Mod2SIMDPositiveInput(const fltx4& val)
|
|
{
|
|
fltx4 ival = SubSIMD(AndSIMD(LoadAlignedSIMD(g_SIMD_lsbmask), AddSIMD(val, Four_2ToThe23s)), Four_2ToThe23s);
|
|
ival = MaskedAssign(CmpGtSIMD(ival, val), SubSIMD(ival, Four_Twos), ival);
|
|
return SubSIMD(val, ival);
|
|
}
|
|
|
|
|
|
// approximate sin of an angle, with -1..1 representing the whole sin wave period instead of -pi..pi.
|
|
// no range reduction is done - for values outside of 0..1 you won't like the results
|
|
FORCEINLINE fltx4 _SinEst01SIMD(const fltx4& val)
|
|
{
|
|
// really rough approximation - x*(4-x*4) - a parabola. s(0) = 0, s(.5) = 1, s(1)=0, smooth in-between.
|
|
// sufficient for simple oscillation.
|
|
return MulSIMD(val, SubSIMD(Four_Fours, MulSIMD(val, Four_Fours)));
|
|
}
|
|
|
|
FORCEINLINE fltx4 _Sin01SIMD(const fltx4& val)
|
|
{
|
|
// not a bad approximation : parabola always over-estimates. Squared parabola always
|
|
// underestimates. So lets blend between them: goodsin = badsin + .225*( badsin^2-badsin)
|
|
fltx4 fl4BadEst = MulSIMD(val, SubSIMD(Four_Fours, MulSIMD(val, Four_Fours)));
|
|
return AddSIMD(MulSIMD(Four_Point225s, SubSIMD(MulSIMD(fl4BadEst, fl4BadEst), fl4BadEst)), fl4BadEst);
|
|
}
|
|
|
|
// full range useable implementations
|
|
FORCEINLINE fltx4 SinEst01SIMD(const fltx4& val)
|
|
{
|
|
fltx4 fl4Abs = fabs(val);
|
|
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput(fl4Abs);
|
|
fltx4 fl4OddMask = CmpGeSIMD(fl4Reduced2, Four_Ones);
|
|
fltx4 fl4val = SubSIMD(fl4Reduced2, AndSIMD(Four_Ones, fl4OddMask));
|
|
fltx4 fl4Sin = _SinEst01SIMD(fl4val);
|
|
fl4Sin = XorSIMD(fl4Sin, AndSIMD(LoadAlignedSIMD(g_SIMD_signmask), XorSIMD(val, fl4OddMask)));
|
|
return fl4Sin;
|
|
|
|
}
|
|
|
|
FORCEINLINE fltx4 Sin01SIMD(const fltx4& val)
|
|
{
|
|
fltx4 fl4Abs = fabs(val);
|
|
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput(fl4Abs);
|
|
fltx4 fl4OddMask = CmpGeSIMD(fl4Reduced2, Four_Ones);
|
|
fltx4 fl4val = SubSIMD(fl4Reduced2, AndSIMD(Four_Ones, fl4OddMask));
|
|
fltx4 fl4Sin = _Sin01SIMD(fl4val);
|
|
fl4Sin = XorSIMD(fl4Sin, AndSIMD(LoadAlignedSIMD(g_SIMD_signmask), XorSIMD(val, fl4OddMask)));
|
|
return fl4Sin;
|
|
|
|
}
|
|
|
|
// Schlick style Bias approximation see graphics gems 4 : bias(t,a)= t/( (1/a-2)*(1-t)+1)
|
|
|
|
FORCEINLINE fltx4 PreCalcBiasParameter(const fltx4& bias_parameter)
|
|
{
|
|
// convert perlin-style-bias parameter to the value right for the approximation
|
|
return SubSIMD(ReciprocalSIMD(bias_parameter), Four_Twos);
|
|
}
|
|
|
|
FORCEINLINE fltx4 BiasSIMD(const fltx4& val, const fltx4& precalc_param)
|
|
{
|
|
// similar to bias function except pass precalced bias value from calling PreCalcBiasParameter.
|
|
|
|
//!!speed!! use reciprocal est?
|
|
//!!speed!! could save one op by precalcing _2_ values
|
|
return DivSIMD(val, AddSIMD(MulSIMD(precalc_param, SubSIMD(Four_Ones, val)), Four_Ones));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Box/plane test
|
|
// NOTE: The w component of emins + emaxs must be 1 for this to work
|
|
//-----------------------------------------------------------------------------
|
|
FORCEINLINE int BoxOnPlaneSideSIMD(const fltx4& emins, const fltx4& emaxs, const cplane_t* p, float tolerance = 0.f)
|
|
{
|
|
fltx4 corners[2];
|
|
fltx4 normal = LoadUnalignedSIMD(p->normal.Base());
|
|
fltx4 dist = ReplicateX4(-p->dist);
|
|
normal = SetWSIMD(normal, dist);
|
|
fltx4 t4 = ReplicateX4(tolerance);
|
|
fltx4 negt4 = ReplicateX4(-tolerance);
|
|
fltx4 cmp = CmpGeSIMD(normal, Four_Zeros);
|
|
corners[0] = MaskedAssign(cmp, emaxs, emins);
|
|
corners[1] = MaskedAssign(cmp, emins, emaxs);
|
|
fltx4 dot1 = Dot4SIMD(normal, corners[0]);
|
|
fltx4 dot2 = Dot4SIMD(normal, corners[1]);
|
|
cmp = CmpGeSIMD(dot1, t4);
|
|
fltx4 cmp2 = CmpGtSIMD(negt4, dot2);
|
|
fltx4 result = MaskedAssign(cmp, Four_Ones, Four_Zeros);
|
|
fltx4 result2 = MaskedAssign(cmp2, Four_Twos, Four_Zeros);
|
|
result = AddSIMD(result, result2);
|
|
intx4 sides;
|
|
ConvertStoreAsIntsSIMD(&sides, result);
|
|
return sides[0];
|
|
}
|
|
|
|
#endif // _ssemath_h
|