r5sdk/r5dev/tier1/utlrbtree.h
Kawe Mazidjatari 4cc0d085d4 Add generichash, utlfixedmemory and utlrbtree
Generichash for future reversing of CCvar.
2022-08-12 15:53:58 +02:00

1582 lines
40 KiB
C++

//========= Copyright (c) 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLRBTREE_H
#define UTLRBTREE_H
#include "tier1/utlmemory.h"
#include "tier1/utlfixedmemory.h"
#include "tier1/utlblockmemory.h"
// This is a useful macro to iterate from start to end in order in a map
#define FOR_EACH_UTLRBTREE( treeName, iteratorName ) \
for ( int iteratorName = treeName.FirstInorder(); iteratorName != treeName.InvalidIndex(); iteratorName = treeName.NextInorder( iteratorName ) )
//-----------------------------------------------------------------------------
// Tool to generate a default compare function for any type that implements
// operator<, including all simple types
//-----------------------------------------------------------------------------
template <typename T >
class CDefOps
{
public:
static bool LessFunc(const T& lhs, const T& rhs) { return (lhs < rhs); }
};
#define DefLessFunc( type ) CDefOps< type >::LessFunc
//-------------------------------------
inline bool StringLessThan(const char* const& lhs, const char* const& rhs) {
if (!lhs) return false;
if (!rhs) return true;
return (strcmp(lhs, rhs) < 0);
}
inline bool CaselessStringLessThan(const char* const& lhs, const char* const& rhs) {
if (!lhs) return false;
if (!rhs) return true;
return (_stricmp(lhs, rhs) < 0);
}
// Same as CaselessStringLessThan, but it ignores differences in / and \.
inline bool CaselessStringLessThanIgnoreSlashes(const char* const& lhs, const char* const& rhs)
{
const char* pa = lhs;
const char* pb = rhs;
while (*pa && *pb)
{
char a = *pa;
char b = *pb;
// Check for dir slashes.
if (a == '/' || a == '\\')
{
if (b != '/' && b != '\\')
return ('/' < b);
}
else
{
if (a >= 'a' && a <= 'z')
a = 'A' + (a - 'a');
if (b >= 'a' && b <= 'z')
b = 'A' + (b - 'a');
if (a > b)
return false;
else if (a < b)
return true;
}
++pa;
++pb;
}
// Filenames also must be the same length.
if (*pa != *pb)
{
// If pa shorter than pb then it's "less"
return (!*pa);
}
return false;
}
//-------------------------------------
// inline these two templates to stop multiple definitions of the same code
template <> inline bool CDefOps<const char*>::LessFunc(const char* const& lhs, const char* const& rhs) { return StringLessThan(lhs, rhs); }
template <> inline bool CDefOps<char*>::LessFunc(char* const& lhs, char* const& rhs) { return StringLessThan(lhs, rhs); }
//-------------------------------------
template <typename RBTREE_T>
void SetDefLessFunc(RBTREE_T& RBTree)
{
RBTree.SetLessFunc(DefLessFunc(typename RBTREE_T::KeyType_t));
}
//-----------------------------------------------------------------------------
// A red-black binary search tree
//-----------------------------------------------------------------------------
template < class I >
struct UtlRBTreeLinks_t
{
I m_Left;
I m_Right;
I m_Parent;
I m_Tag;
};
template < class T, class I >
struct UtlRBTreeNode_t : public UtlRBTreeLinks_t< I >
{
T m_Data;
};
template < class T, class I = unsigned short, typename L = bool (*)(const T&, const T&), class M = CUtlMemory< UtlRBTreeNode_t< T, I >, I > >
class CUtlRBTree
{
public:
typedef T KeyType_t;
typedef T ElemType_t;
typedef I IndexType_t;
// Less func typedef
// Returns true if the first parameter is "less" than the second
typedef L LessFunc_t;
// constructor, destructor
// Left at growSize = 0, the memory will first allocate 1 element and double in size
// at each increment.
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
CUtlRBTree(int growSize = 0, int initSize = 0, const LessFunc_t& lessfunc = 0);
CUtlRBTree(const LessFunc_t& lessfunc);
~CUtlRBTree();
void EnsureCapacity(int num);
// NOTE: CopyFrom is fast but dangerous! It just memcpy's all nodes - it does NOT run copy constructors, so
// it is not a true deep copy (i.e 'T' must be POD for this to work - e.g CUtlString will not work).
void CopyFrom(const CUtlRBTree<T, I, L, M>& other);
// gets particular elements
T& Element(I i);
T const& Element(I i) const;
T& operator[](I i);
T const& operator[](I i) const;
// Gets the root
I Root() const;
// Num elements
unsigned int Count() const;
// Max "size" of the vector
// it's not generally safe to iterate from index 0 to MaxElement()-1 (you could do this as a potential
// iteration optimization, IF CUtlMemory is the allocator, and IF IsValidIndex() is tested for each element...
// but this should be implemented inside the CUtlRBTree iteration API, if anywhere)
I MaxElement() const;
// Gets the children
I Parent(I i) const;
I LeftChild(I i) const;
I RightChild(I i) const;
// Tests if a node is a left or right child
bool IsLeftChild(I i) const;
bool IsRightChild(I i) const;
// Tests if root or leaf
bool IsRoot(I i) const;
bool IsLeaf(I i) const;
// Checks if a node is valid and in the tree
bool IsValidIndex(I i) const;
// Checks if the tree as a whole is valid
bool IsValid() const;
// Invalid index
static I InvalidIndex();
// returns the tree depth (not a very fast operation)
int Depth(I node) const;
int Depth() const;
// Sets the less func
void SetLessFunc(const LessFunc_t& func);
// Allocation method
I NewNode();
// Insert method (inserts in order)
// NOTE: the returned 'index' will be valid as long as the element remains in the tree
// (other elements being added/removed will not affect it)
I Insert(T const& insert);
void Insert(const T* pArray, int nItems);
I InsertIfNotFound(T const& insert);
// Find method
I Find(T const& search) const;
// Remove methods
void RemoveAt(I i);
bool Remove(T const& remove);
void RemoveAll();
void Purge();
// Allocation, deletion
void FreeNode(I i);
// Iteration
I FirstInorder() const;
I NextInorder(I i) const;
I PrevInorder(I i) const;
I LastInorder() const;
I FirstPreorder() const;
I NextPreorder(I i) const;
I PrevPreorder(I i) const;
I LastPreorder() const;
I FirstPostorder() const;
I NextPostorder(I i) const;
// If you change the search key, this can be used to reinsert the
// element into the tree.
void Reinsert(I elem);
// swap in place
void Swap(CUtlRBTree< T, I, L >& that);
private:
// Can't copy the tree this way!
CUtlRBTree<T, I, L, M>& operator=(const CUtlRBTree<T, I, L, M>& other);
protected:
enum NodeColor_t
{
RED = 0,
BLACK
};
typedef UtlRBTreeNode_t< T, I > Node_t;
typedef UtlRBTreeLinks_t< I > Links_t;
// Sets the children
void SetParent(I i, I parent);
void SetLeftChild(I i, I child);
void SetRightChild(I i, I child);
void LinkToParent(I i, I parent, bool isLeft);
// Gets at the links
Links_t const& Links(I i) const;
Links_t& Links(I i);
// Checks if a link is red or black
bool IsRed(I i) const;
bool IsBlack(I i) const;
// Sets/gets node color
NodeColor_t Color(I i) const;
void SetColor(I i, NodeColor_t c);
// operations required to preserve tree balance
void RotateLeft(I i);
void RotateRight(I i);
void InsertRebalance(I i);
void RemoveRebalance(I i);
// Insertion, removal
I InsertAt(I parent, bool leftchild);
// copy constructors not allowed
CUtlRBTree(CUtlRBTree<T, I, L, M> const& tree);
// Inserts a node into the tree, doesn't copy the data in.
void FindInsertionPosition(T const& insert, I& parent, bool& leftchild);
// Remove and add back an element in the tree.
void Unlink(I elem);
void Link(I elem);
// Used for sorting.
LessFunc_t m_LessFunc;
M m_Elements;
I m_Root;
I m_NumElements;
I m_FirstFree;
typename M::Iterator_t m_LastAlloc; // the last index allocated
Node_t* m_pElements;
FORCEINLINE M const& Elements(void) const
{
return m_Elements;
}
void ResetDbgInfo()
{
m_pElements = (Node_t*)m_Elements.Base();
}
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T, class I = int, typename L = bool (*)(const T&, const T&) >
class CUtlFixedRBTree : public CUtlRBTree< T, I, L, CUtlFixedMemory< UtlRBTreeNode_t< T, I > > >
{
public:
typedef L LessFunc_t;
CUtlFixedRBTree(int growSize = 0, int initSize = 0, const LessFunc_t& lessfunc = 0)
: CUtlRBTree< T, I, L, CUtlFixedMemory< UtlRBTreeNode_t< T, I > > >(growSize, initSize, lessfunc) {}
CUtlFixedRBTree(const LessFunc_t& lessfunc)
: CUtlRBTree< T, I, L, CUtlFixedMemory< UtlRBTreeNode_t< T, I > > >(lessfunc) {}
typedef CUtlRBTree< T, I, L, CUtlFixedMemory< UtlRBTreeNode_t< T, I > > > BaseClass;
bool IsValidIndex(I i) const
{
if (!BaseClass::Elements().IsIdxValid(i))
return false;
#ifdef _DEBUG // it's safe to skip this here, since the only way to get indices after m_LastAlloc is to use MaxElement()
if (BaseClass::Elements().IsIdxAfter(i, this->m_LastAlloc))
{
Assert(0);
return false; // don't read values that have been allocated, but not constructed
}
#endif
return LeftChild(i) != i;
}
protected:
void ResetDbgInfo() {}
private:
// this doesn't make sense for fixed rbtrees, since there's no useful max pointer, and the index space isn't contiguous anyways
I MaxElement() const;
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T, class I = unsigned short, typename L = bool (*)(const T&, const T&) >
class CUtlBlockRBTree : public CUtlRBTree< T, I, L, CUtlBlockMemory< UtlRBTreeNode_t< T, I >, I > >
{
public:
typedef L LessFunc_t;
CUtlBlockRBTree(int growSize = 0, int initSize = 0, const LessFunc_t& lessfunc = 0)
: CUtlRBTree< T, I, L, CUtlBlockMemory< UtlRBTreeNode_t< T, I >, I > >(growSize, initSize, lessfunc) {}
CUtlBlockRBTree(const LessFunc_t& lessfunc)
: CUtlRBTree< T, I, L, CUtlBlockMemory< UtlRBTreeNode_t< T, I >, I > >(lessfunc) {}
protected:
void ResetDbgInfo() {}
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline CUtlRBTree<T, I, L, M>::CUtlRBTree(int growSize, int initSize, const LessFunc_t& lessfunc) :
m_LessFunc(lessfunc),
m_Elements(growSize, initSize),
m_Root(InvalidIndex()),
m_NumElements(0),
m_FirstFree(InvalidIndex()),
m_LastAlloc(m_Elements.InvalidIterator())
{
ResetDbgInfo();
}
template < class T, class I, typename L, class M >
inline CUtlRBTree<T, I, L, M>::CUtlRBTree(const LessFunc_t& lessfunc) :
m_Elements(0, 0),
m_LessFunc(lessfunc),
m_Root(InvalidIndex()),
m_NumElements(0),
m_FirstFree(InvalidIndex()),
m_LastAlloc(m_Elements.InvalidIterator())
{
ResetDbgInfo();
}
template < class T, class I, typename L, class M >
inline CUtlRBTree<T, I, L, M>::~CUtlRBTree()
{
Purge();
}
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::EnsureCapacity(int num)
{
m_Elements.EnsureCapacity(num);
}
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::CopyFrom(const CUtlRBTree<T, I, L, M>& other)
{
Purge();
m_Elements.EnsureCapacity(other.m_Elements.Count());
memcpy(m_Elements.Base(), other.m_Elements.Base(), other.m_Elements.Count() * sizeof(UtlRBTreeNode_t< T, I >));
m_LessFunc = other.m_LessFunc;
m_Root = other.m_Root;
m_NumElements = other.m_NumElements;
m_FirstFree = other.m_FirstFree;
m_LastAlloc = other.m_LastAlloc;
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// gets particular elements
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline T& CUtlRBTree<T, I, L, M>::Element(I i)
{
return m_Elements[i].m_Data;
}
template < class T, class I, typename L, class M >
inline T const& CUtlRBTree<T, I, L, M>::Element(I i) const
{
return m_Elements[i].m_Data;
}
template < class T, class I, typename L, class M >
inline T& CUtlRBTree<T, I, L, M>::operator[](I i)
{
return Element(i);
}
template < class T, class I, typename L, class M >
inline T const& CUtlRBTree<T, I, L, M>::operator[](I i) const
{
return Element(i);
}
//-----------------------------------------------------------------------------
//
// various accessors
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Gets the root
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::Root() const
{
return m_Root;
}
//-----------------------------------------------------------------------------
// Num elements
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline unsigned int CUtlRBTree<T, I, L, M>::Count() const
{
return (unsigned int)m_NumElements;
}
//-----------------------------------------------------------------------------
// Max "size" of the vector
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::MaxElement() const
{
return (I)m_Elements.NumAllocated();
}
//-----------------------------------------------------------------------------
// Gets the children
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::Parent(I i) const
{
return Links(i).m_Parent;
}
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::LeftChild(I i) const
{
return Links(i).m_Left;
}
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::RightChild(I i) const
{
return Links(i).m_Right;
}
//-----------------------------------------------------------------------------
// Tests if a node is a left or right child
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsLeftChild(I i) const
{
return LeftChild(Parent(i)) == i;
}
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsRightChild(I i) const
{
return RightChild(Parent(i)) == i;
}
//-----------------------------------------------------------------------------
// Tests if root or leaf
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsRoot(I i) const
{
return i == m_Root;
}
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsLeaf(I i) const
{
return (LeftChild(i) == InvalidIndex()) && (RightChild(i) == InvalidIndex());
}
//-----------------------------------------------------------------------------
// Checks if a node is valid and in the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsValidIndex(I i) const
{
if (!m_Elements.IsIdxValid(i))
return false;
if (m_Elements.IsIdxAfter(i, m_LastAlloc))
return false; // don't read values that have been allocated, but not constructed
return LeftChild(i) != i;
}
//-----------------------------------------------------------------------------
// Invalid index
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline I CUtlRBTree<T, I, L, M>::InvalidIndex()
{
return (I)M::InvalidIndex();
}
//-----------------------------------------------------------------------------
// returns the tree depth (not a very fast operation)
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline int CUtlRBTree<T, I, L, M>::Depth() const
{
return Depth(Root());
}
//-----------------------------------------------------------------------------
// Sets the children
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::SetParent(I i, I parent)
{
Links(i).m_Parent = parent;
}
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::SetLeftChild(I i, I child)
{
Links(i).m_Left = child;
}
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::SetRightChild(I i, I child)
{
Links(i).m_Right = child;
}
//-----------------------------------------------------------------------------
// Gets at the links
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline typename CUtlRBTree<T, I, L, M>::Links_t const& CUtlRBTree<T, I, L, M>::Links(I i) const
{
// Sentinel node, makes life easier
static Links_t s_Sentinel =
{
InvalidIndex(), InvalidIndex(), InvalidIndex(), CUtlRBTree<T, I, L, M>::BLACK
};
return (i != InvalidIndex()) ? *(Links_t*)&m_Elements[i] : *(Links_t*)&s_Sentinel;
}
template < class T, class I, typename L, class M >
inline typename CUtlRBTree<T, I, L, M>::Links_t& CUtlRBTree<T, I, L, M>::Links(I i)
{
Assert(i != InvalidIndex());
return *(Links_t*)&m_Elements[i];
}
//-----------------------------------------------------------------------------
// Checks if a link is red or black
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsRed(I i) const
{
return (Links(i).m_Tag == RED);
}
template < class T, class I, typename L, class M >
inline bool CUtlRBTree<T, I, L, M>::IsBlack(I i) const
{
return (Links(i).m_Tag == BLACK);
}
//-----------------------------------------------------------------------------
// Sets/gets node color
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
inline typename CUtlRBTree<T, I, L, M>::NodeColor_t CUtlRBTree<T, I, L, M>::Color(I i) const
{
return (NodeColor_t)Links(i).m_Tag;
}
template < class T, class I, typename L, class M >
inline void CUtlRBTree<T, I, L, M>::SetColor(I i, typename CUtlRBTree<T, I, L, M>::NodeColor_t c)
{
Links(i).m_Tag = (I)c;
}
//-----------------------------------------------------------------------------
// Allocates/ deallocates nodes
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable:4389) // '==' : signed/unsigned mismatch
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::NewNode()
{
I elem;
// Nothing in the free list; add.
if (m_FirstFree == InvalidIndex())
{
Assert(m_Elements.IsValidIterator(m_LastAlloc) || m_NumElements == 0);
typename M::Iterator_t it = m_Elements.IsValidIterator(m_LastAlloc) ? m_Elements.Next(m_LastAlloc) : m_Elements.First();
if (!m_Elements.IsValidIterator(it))
{
MEM_ALLOC_CREDIT_CLASS();
m_Elements.Grow();
it = m_Elements.IsValidIterator(m_LastAlloc) ? m_Elements.Next(m_LastAlloc) : m_Elements.First();
Assert(m_Elements.IsValidIterator(it));
if (!m_Elements.IsValidIterator(it))
{
Error(eDLL_T::ENGINE, "CUtlRBTree overflow!\n");
}
}
m_LastAlloc = it;
elem = m_Elements.GetIndex(m_LastAlloc);
Assert(m_Elements.IsValidIterator(m_LastAlloc));
}
else
{
elem = m_FirstFree;
m_FirstFree = Links(m_FirstFree).m_Right;
}
#ifdef _DEBUG
// reset links to invalid....
Links_t& node = Links(elem);
node.m_Left = node.m_Right = node.m_Parent = InvalidIndex();
#endif
Construct(&Element(elem));
ResetDbgInfo();
return elem;
}
#pragma warning(pop)
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::FreeNode(I i)
{
Assert(IsValidIndex(i) && (i != InvalidIndex()));
Destruct(&Element(i));
SetLeftChild(i, i); // indicates it's in not in the tree
SetRightChild(i, m_FirstFree);
m_FirstFree = i;
}
//-----------------------------------------------------------------------------
// Rotates node i to the left
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::RotateLeft(I elem)
{
I rightchild = RightChild(elem);
SetRightChild(elem, LeftChild(rightchild));
if (LeftChild(rightchild) != InvalidIndex())
SetParent(LeftChild(rightchild), elem);
if (rightchild != InvalidIndex())
SetParent(rightchild, Parent(elem));
if (!IsRoot(elem))
{
if (IsLeftChild(elem))
SetLeftChild(Parent(elem), rightchild);
else
SetRightChild(Parent(elem), rightchild);
}
else
m_Root = rightchild;
SetLeftChild(rightchild, elem);
if (elem != InvalidIndex())
SetParent(elem, rightchild);
}
//-----------------------------------------------------------------------------
// Rotates node i to the right
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::RotateRight(I elem)
{
I leftchild = LeftChild(elem);
SetLeftChild(elem, RightChild(leftchild));
if (RightChild(leftchild) != InvalidIndex())
SetParent(RightChild(leftchild), elem);
if (leftchild != InvalidIndex())
SetParent(leftchild, Parent(elem));
if (!IsRoot(elem))
{
if (IsRightChild(elem))
SetRightChild(Parent(elem), leftchild);
else
SetLeftChild(Parent(elem), leftchild);
}
else
m_Root = leftchild;
SetRightChild(leftchild, elem);
if (elem != InvalidIndex())
SetParent(elem, leftchild);
}
//-----------------------------------------------------------------------------
// Rebalances the tree after an insertion
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::InsertRebalance(I elem)
{
while (!IsRoot(elem) && (Color(Parent(elem)) == RED))
{
I parent = Parent(elem);
I grandparent = Parent(parent);
/* we have a violation */
if (IsLeftChild(parent))
{
I uncle = RightChild(grandparent);
if (IsRed(uncle))
{
/* uncle is RED */
SetColor(parent, BLACK);
SetColor(uncle, BLACK);
SetColor(grandparent, RED);
elem = grandparent;
}
else
{
/* uncle is BLACK */
if (IsRightChild(elem))
{
/* make x a left child, will change parent and grandparent */
elem = parent;
RotateLeft(elem);
parent = Parent(elem);
grandparent = Parent(parent);
}
/* recolor and rotate */
SetColor(parent, BLACK);
SetColor(grandparent, RED);
RotateRight(grandparent);
}
}
else
{
/* mirror image of above code */
I uncle = LeftChild(grandparent);
if (IsRed(uncle))
{
/* uncle is RED */
SetColor(parent, BLACK);
SetColor(uncle, BLACK);
SetColor(grandparent, RED);
elem = grandparent;
}
else
{
/* uncle is BLACK */
if (IsLeftChild(elem))
{
/* make x a right child, will change parent and grandparent */
elem = parent;
RotateRight(parent);
parent = Parent(elem);
grandparent = Parent(parent);
}
/* recolor and rotate */
SetColor(parent, BLACK);
SetColor(grandparent, RED);
RotateLeft(grandparent);
}
}
}
SetColor(m_Root, BLACK);
}
//-----------------------------------------------------------------------------
// Insert a node into the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::InsertAt(I parent, bool leftchild)
{
I i = NewNode();
LinkToParent(i, parent, leftchild);
++m_NumElements;
Assert(IsValid());
return i;
}
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::LinkToParent(I i, I parent, bool isLeft)
{
Links_t& elem = Links(i);
elem.m_Parent = parent;
elem.m_Left = elem.m_Right = InvalidIndex();
elem.m_Tag = RED;
/* insert node in tree */
if (parent != InvalidIndex())
{
if (isLeft)
Links(parent).m_Left = i;
else
Links(parent).m_Right = i;
}
else
{
m_Root = i;
}
InsertRebalance(i);
}
//-----------------------------------------------------------------------------
// Rebalance the tree after a deletion
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::RemoveRebalance(I elem)
{
while (elem != m_Root && IsBlack(elem))
{
I parent = Parent(elem);
// If elem is the left child of the parent
if (elem == LeftChild(parent))
{
// Get our sibling
I sibling = RightChild(parent);
if (IsRed(sibling))
{
SetColor(sibling, BLACK);
SetColor(parent, RED);
RotateLeft(parent);
// We may have a new parent now
parent = Parent(elem);
sibling = RightChild(parent);
}
if ((IsBlack(LeftChild(sibling))) && (IsBlack(RightChild(sibling))))
{
if (sibling != InvalidIndex())
SetColor(sibling, RED);
elem = parent;
}
else
{
if (IsBlack(RightChild(sibling)))
{
SetColor(LeftChild(sibling), BLACK);
SetColor(sibling, RED);
RotateRight(sibling);
// rotation may have changed this
parent = Parent(elem);
sibling = RightChild(parent);
}
SetColor(sibling, Color(parent));
SetColor(parent, BLACK);
SetColor(RightChild(sibling), BLACK);
RotateLeft(parent);
elem = m_Root;
}
}
else
{
// Elem is the right child of the parent
I sibling = LeftChild(parent);
if (IsRed(sibling))
{
SetColor(sibling, BLACK);
SetColor(parent, RED);
RotateRight(parent);
// We may have a new parent now
parent = Parent(elem);
sibling = LeftChild(parent);
}
if ((IsBlack(RightChild(sibling))) && (IsBlack(LeftChild(sibling))))
{
if (sibling != InvalidIndex())
SetColor(sibling, RED);
elem = parent;
}
else
{
if (IsBlack(LeftChild(sibling)))
{
SetColor(RightChild(sibling), BLACK);
SetColor(sibling, RED);
RotateLeft(sibling);
// rotation may have changed this
parent = Parent(elem);
sibling = LeftChild(parent);
}
SetColor(sibling, Color(parent));
SetColor(parent, BLACK);
SetColor(LeftChild(sibling), BLACK);
RotateRight(parent);
elem = m_Root;
}
}
}
SetColor(elem, BLACK);
}
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Unlink(I elem)
{
if (elem != InvalidIndex())
{
I x, y;
if ((LeftChild(elem) == InvalidIndex()) ||
(RightChild(elem) == InvalidIndex()))
{
/* y has a NIL node as a child */
y = elem;
}
else
{
/* find tree successor with a NIL node as a child */
y = RightChild(elem);
while (LeftChild(y) != InvalidIndex())
y = LeftChild(y);
}
/* x is y's only child */
if (LeftChild(y) != InvalidIndex())
x = LeftChild(y);
else
x = RightChild(y);
/* remove y from the parent chain */
if (x != InvalidIndex())
SetParent(x, Parent(y));
if (!IsRoot(y))
{
if (IsLeftChild(y))
SetLeftChild(Parent(y), x);
else
SetRightChild(Parent(y), x);
}
else
m_Root = x;
// need to store this off now, we'll be resetting y's color
NodeColor_t ycolor = Color(y);
if (y != elem)
{
// Standard implementations copy the data around, we cannot here.
// Hook in y to link to the same stuff elem used to.
SetParent(y, Parent(elem));
SetRightChild(y, RightChild(elem));
SetLeftChild(y, LeftChild(elem));
if (!IsRoot(elem))
if (IsLeftChild(elem))
SetLeftChild(Parent(elem), y);
else
SetRightChild(Parent(elem), y);
else
m_Root = y;
if (LeftChild(y) != InvalidIndex())
SetParent(LeftChild(y), y);
if (RightChild(y) != InvalidIndex())
SetParent(RightChild(y), y);
SetColor(y, Color(elem));
}
if ((x != InvalidIndex()) && (ycolor == BLACK))
RemoveRebalance(x);
}
}
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Link(I elem)
{
if (elem != InvalidIndex())
{
I parent = InvalidIndex();
bool leftchild = false;
FindInsertionPosition(Element(elem), parent, leftchild);
LinkToParent(elem, parent, leftchild);
Assert(IsValid());
}
}
//-----------------------------------------------------------------------------
// Delete a node from the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::RemoveAt(I elem)
{
if (elem != InvalidIndex())
{
Unlink(elem);
FreeNode(elem);
--m_NumElements;
Assert(IsValid());
}
}
//-----------------------------------------------------------------------------
// remove a node in the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M > bool CUtlRBTree<T, I, L, M>::Remove(T const& search)
{
I node = Find(search);
if (node != InvalidIndex())
{
RemoveAt(node);
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Removes all nodes from the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::RemoveAll()
{
// Have to do some convoluted stuff to invoke the destructor on all
// valid elements for the multilist case (since we don't have all elements
// connected to each other in a list).
if (m_LastAlloc == m_Elements.InvalidIterator())
{
Assert(m_Root == InvalidIndex());
Assert(m_FirstFree == InvalidIndex());
Assert(m_NumElements == 0);
return;
}
for (typename M::Iterator_t it = m_Elements.First(); it != m_Elements.InvalidIterator(); it = m_Elements.Next(it))
{
I i = m_Elements.GetIndex(it);
if (IsValidIndex(i)) // skip elements in the free list
{
Destruct(&Element(i));
SetRightChild(i, m_FirstFree);
SetLeftChild(i, i);
m_FirstFree = i;
}
if (it == m_LastAlloc)
break; // don't destruct elements that haven't ever been constucted
}
// Clear everything else out
m_Root = InvalidIndex();
m_NumElements = 0;
Assert(IsValid());
}
//-----------------------------------------------------------------------------
// Removes all nodes from the tree and purges memory
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Purge()
{
RemoveAll();
m_FirstFree = InvalidIndex();
m_Elements.Purge();
m_LastAlloc = m_Elements.InvalidIterator();
}
//-----------------------------------------------------------------------------
// iteration
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::FirstInorder() const
{
I i = m_Root;
while (LeftChild(i) != InvalidIndex())
i = LeftChild(i);
return i;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::NextInorder(I i) const
{
Assert(IsValidIndex(i));
if (RightChild(i) != InvalidIndex())
{
i = RightChild(i);
while (LeftChild(i) != InvalidIndex())
i = LeftChild(i);
return i;
}
I parent = Parent(i);
while (IsRightChild(i))
{
i = parent;
if (i == InvalidIndex()) break;
parent = Parent(i);
}
return parent;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::PrevInorder(I i) const
{
Assert(IsValidIndex(i));
if (LeftChild(i) != InvalidIndex())
{
i = LeftChild(i);
while (RightChild(i) != InvalidIndex())
i = RightChild(i);
return i;
}
I parent = Parent(i);
while (IsLeftChild(i))
{
i = parent;
if (i == InvalidIndex()) break;
parent = Parent(i);
}
return parent;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::LastInorder() const
{
I i = m_Root;
while (RightChild(i) != InvalidIndex())
i = RightChild(i);
return i;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::FirstPreorder() const
{
return m_Root;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::NextPreorder(I i) const
{
if (LeftChild(i) != InvalidIndex())
return LeftChild(i);
if (RightChild(i) != InvalidIndex())
return RightChild(i);
I parent = Parent(i);
while (parent != InvalidIndex())
{
if (IsLeftChild(i) && (RightChild(parent) != InvalidIndex()))
return RightChild(parent);
i = parent;
parent = Parent(parent);
}
return InvalidIndex();
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::PrevPreorder(I i) const
{
Assert(0); // not implemented yet
return InvalidIndex();
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::LastPreorder() const
{
I i = m_Root;
while (1)
{
while (RightChild(i) != InvalidIndex())
i = RightChild(i);
if (LeftChild(i) != InvalidIndex())
i = LeftChild(i);
else
break;
}
return i;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::FirstPostorder() const
{
I i = m_Root;
while (!IsLeaf(i))
{
if (LeftChild(i))
i = LeftChild(i);
else
i = RightChild(i);
}
return i;
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::NextPostorder(I i) const
{
I parent = Parent(i);
if (parent == InvalidIndex())
return InvalidIndex();
if (IsRightChild(i))
return parent;
if (RightChild(parent) == InvalidIndex())
return parent;
i = RightChild(parent);
while (!IsLeaf(i))
{
if (LeftChild(i))
i = LeftChild(i);
else
i = RightChild(i);
}
return i;
}
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Reinsert(I elem)
{
Unlink(elem);
Link(elem);
}
//-----------------------------------------------------------------------------
// returns the tree depth (not a very fast operation)
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
int CUtlRBTree<T, I, L, M>::Depth(I node) const
{
if (node == InvalidIndex())
return 0;
int depthright = Depth(RightChild(node));
int depthleft = Depth(LeftChild(node));
return MAX(depthright, depthleft) + 1;
}
//#define UTLTREE_PARANOID
//-----------------------------------------------------------------------------
// Makes sure the tree is valid after every operation
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
bool CUtlRBTree<T, I, L, M>::IsValid() const
{
if (!Count())
return true;
if (m_LastAlloc == m_Elements.InvalidIterator())
return false;
if (!m_Elements.IsIdxValid(Root()))
return false;
if (Parent(Root()) != InvalidIndex())
return false;
#ifdef UTLTREE_PARANOID
// First check to see that mNumEntries matches reality.
// count items on the free list
int numFree = 0;
for (int i = m_FirstFree; i != InvalidIndex(); i = RightChild(i))
{
++numFree;
if (!m_Elements.IsIdxValid(i))
return false;
}
// iterate over all elements, looking for validity
// based on the self pointers
int nElements = 0;
int numFree2 = 0;
for (M::Iterator_t it = m_Elements.First(); it != m_Elements.InvalidIterator(); it = m_Elements.Next(it))
{
I i = m_Elements.GetIndex(it);
if (!IsValidIndex(i))
{
++numFree2;
}
else
{
++nElements;
int right = RightChild(i);
int left = LeftChild(i);
if ((right == left) && (right != InvalidIndex()))
return false;
if (right != InvalidIndex())
{
if (!IsValidIndex(right))
return false;
if (Parent(right) != i)
return false;
if (IsRed(i) && IsRed(right))
return false;
}
if (left != InvalidIndex())
{
if (!IsValidIndex(left))
return false;
if (Parent(left) != i)
return false;
if (IsRed(i) && IsRed(left))
return false;
}
}
if (it == m_LastAlloc)
break;
}
if (numFree2 != numFree)
return false;
if (nElements != m_NumElements)
return false;
#endif // UTLTREE_PARANOID
return true;
}
//-----------------------------------------------------------------------------
// Sets the less func
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::SetLessFunc(const typename CUtlRBTree<T, I, L, M>::LessFunc_t& func)
{
if (!m_LessFunc)
{
m_LessFunc = func;
}
else if (Count() > 0)
{
// need to re-sort the tree here....
Assert(0);
}
}
//-----------------------------------------------------------------------------
// inserts a node into the tree
//-----------------------------------------------------------------------------
// Inserts a node into the tree, doesn't copy the data in.
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::FindInsertionPosition(T const& insert, I& parent, bool& leftchild)
{
Assert(!!m_LessFunc);
/* find where node belongs */
I current = m_Root;
parent = InvalidIndex();
leftchild = false;
while (current != InvalidIndex())
{
parent = current;
if (m_LessFunc(insert, Element(current)))
{
leftchild = true; current = LeftChild(current);
}
else
{
leftchild = false; current = RightChild(current);
}
}
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::Insert(T const& insert)
{
// use copy constructor to copy it in
I parent = InvalidIndex();
bool leftchild = false;
FindInsertionPosition(insert, parent, leftchild);
I newNode = InsertAt(parent, leftchild);
CopyConstruct(&Element(newNode), insert);
return newNode;
}
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Insert(const T* pArray, int nItems)
{
while (nItems--)
{
Insert(*pArray++);
}
}
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::InsertIfNotFound(T const& insert)
{
// use copy constructor to copy it in
I parent;
bool leftchild;
I current = m_Root;
parent = InvalidIndex();
leftchild = false;
while (current != InvalidIndex())
{
parent = current;
if (m_LessFunc(insert, Element(current)))
{
leftchild = true; current = LeftChild(current);
}
else if (m_LessFunc(Element(current), insert))
{
leftchild = false; current = RightChild(current);
}
else
// Match found, no insertion
return InvalidIndex();
}
I newNode = InsertAt(parent, leftchild);
CopyConstruct(&Element(newNode), insert);
return newNode;
}
//-----------------------------------------------------------------------------
// finds a node in the tree
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
I CUtlRBTree<T, I, L, M>::Find(T const& search) const
{
Assert(!!m_LessFunc);
I current = m_Root;
while (current != InvalidIndex())
{
if (m_LessFunc(search, Element(current)))
current = LeftChild(current);
else if (m_LessFunc(Element(current), search))
current = RightChild(current);
else
break;
}
return current;
}
//-----------------------------------------------------------------------------
// swap in place
//-----------------------------------------------------------------------------
template < class T, class I, typename L, class M >
void CUtlRBTree<T, I, L, M>::Swap(CUtlRBTree< T, I, L >& that)
{
m_Elements.Swap(that.m_Elements);
V_swap(m_LessFunc, that.m_LessFunc);
V_swap(m_Root, that.m_Root);
V_swap(m_NumElements, that.m_NumElements);
V_swap(m_FirstFree, that.m_FirstFree);
V_swap(m_pElements, that.m_pElements);
V_swap(m_LastAlloc, that.m_LastAlloc);
Assert(IsValid());
Assert(m_Elements.IsValidIterator(m_LastAlloc) || (m_NumElements == 0 && m_FirstFree == InvalidIndex()));
}
#endif // UTLRBTREE_H