r5sdk/r5dev/mathlib/vector4d.h
Kawe Mazidjatari 34a06147d7 Fix spelling errors
Overall spelling improvements and cleanup..
2022-09-09 19:47:31 +02:00

773 lines
19 KiB
C++

//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR4D_H
#define VECTOR4D_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
#if !defined( PLATFORM_PPC ) && !defined( _PS3 )
#include <xmmintrin.h> // for sse
#endif
#include "tier0/basetypes.h" // For vec_t, put this somewhere else?
#include "tier0/dbg.h"
#include "mathlib/fbits.h"
#include "mathlib/math_pfns.h"
#include "mathlib/vector.h"
#include "vstdlib/random.h"
// forward declarations
class Vector2D;
class Vector3D;
//=========================================================
// 4D Vector4D
//=========================================================
class Vector4D
{
public:
// Members
vec_t x, y, z, w;
// Construction/destruction
Vector4D();
Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W);
explicit Vector4D(const float* pFloat);
// Initialization
void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f, vec_t iw = 0.0f);
void Init(const Vector3D& src, vec_t iw = 0.0f);
// Got any nasty NAN's?
bool IsValid() const;
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
inline vec_t* Base();
inline vec_t const* Base() const;
// Cast to Vector and Vector2D...
Vector3D& AsVector3D();
Vector3D const& AsVector3D() const;
Vector2D& AsVector2D();
Vector2D const& AsVector2D() const;
// Initialization methods
void Random(vec_t minVal, vec_t maxVal);
// equality
bool operator==(const Vector4D& v) const;
bool operator!=(const Vector4D& v) const;
// arithmetic operations
Vector4D& operator+=(const Vector4D& v);
Vector4D& operator-=(const Vector4D& v);
Vector4D& operator*=(const Vector4D& v);
Vector4D& operator*=(float s);
Vector4D& operator/=(const Vector4D& v);
Vector4D& operator/=(float s);
Vector4D operator-(void) const;
Vector4D operator*(float fl) const;
Vector4D operator/(float fl) const;
Vector4D operator*(const Vector4D& v) const;
Vector4D operator+(const Vector4D& v) const;
Vector4D operator-(const Vector4D& v) const;
// negate the Vector4D components
void Negate();
// Get the Vector4D's magnitude.
vec_t Length() const;
// Get the Vector4D's magnitude squared.
vec_t LengthSqr(void) const;
// return true if this vector is (0,0,0,0) within tolerance
bool IsZero(float tolerance = 0.01f) const
{
return (x > -tolerance && x < tolerance&&
y > -tolerance && y < tolerance&&
z > -tolerance && z < tolerance&&
w > -tolerance && w < tolerance);
}
// Get the distance from this Vector4D to the other one.
vec_t DistTo(const Vector4D& vOther) const;
// Get the distance from this Vector4D to the other one squared.
vec_t DistToSqr(const Vector4D& vOther) const;
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual Vector4D equation (because it's done per-component
// rather than per-Vector4D).
void MulAdd(Vector4D const& a, Vector4D const& b, float scalar);
// Dot product.
vec_t Dot(Vector4D const& vOther) const;
// No copy constructors allowed if we're in optimal mode
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
#else
public:
#endif
Vector4D(Vector4D const& vOther);
// No assignment operators either...
Vector4D& operator=(Vector4D const& src);
};
const Vector4D vec4_origin(0.0f, 0.0f, 0.0f, 0.0f);
const Vector4D vec4_invalid(FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX);
//-----------------------------------------------------------------------------
// SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 Vector4DAligned : public Vector4D
{
public:
Vector4DAligned(void) {}
Vector4DAligned(vec_t X, vec_t Y, vec_t Z, vec_t W);
inline void Set(vec_t X, vec_t Y, vec_t Z, vec_t W);
inline void InitZero(void);
inline __m128& AsM128() { return *(__m128*) & x; }
inline const __m128& AsM128() const { return *(const __m128*) & x; }
private:
// No copy constructors allowed if we're in optimal mode
Vector4DAligned(Vector4DAligned const& vOther);
// No assignment operators either...
Vector4DAligned& operator=(Vector4DAligned const& src);
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector4D related operations
//-----------------------------------------------------------------------------
// Vector4D clear
void Vector4DClear(Vector4D& a);
// Copy
void Vector4DCopy(Vector4D const& src, Vector4D& dst);
// Vector4D arithmetic
void Vector4DAdd(Vector4D const& a, Vector4D const& b, Vector4D& result);
void Vector4DSubtract(Vector4D const& a, Vector4D const& b, Vector4D& result);
void Vector4DMultiply(Vector4D const& a, vec_t b, Vector4D& result);
void Vector4DMultiply(Vector4D const& a, Vector4D const& b, Vector4D& result);
void Vector4DDivide(Vector4D const& a, vec_t b, Vector4D& result);
void Vector4DDivide(Vector4D const& a, Vector4D const& b, Vector4D& result);
void Vector4DMA(Vector4D const& start, float s, Vector4D const& dir, Vector4D& result);
// Vector4DAligned arithmetic
void Vector4DMultiplyAligned(Vector4DAligned const& a, vec_t b, Vector4DAligned& result);
#define Vector4DExpand( v ) (v).x, (v).y, (v).z, (v).w
// Normalization
vec_t Vector4DNormalize(Vector4D& v);
// Length
vec_t Vector4DLength(Vector4D const& v);
// Dot Product
vec_t DotProduct4D(Vector4D const& a, Vector4D const& b);
// Linearly interpolate between two vectors
void Vector4DLerp(Vector4D const& src1, Vector4D const& src2, vec_t t, Vector4D& dest);
//-----------------------------------------------------------------------------
//
// Inlined Vector4D methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D()
{
#ifdef _DEBUG
// Initialize to NAN to catch errors
x = y = z = w = VEC_T_NAN;
#endif
}
inline Vector4D::Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W)
{
x = X; y = Y; z = Z; w = W;
Assert(IsValid());
}
inline Vector4D::Vector4D(const float* pFloat)
{
Assert(pFloat);
x = pFloat[0]; y = pFloat[1]; z = pFloat[2]; w = pFloat[3];
Assert(IsValid());
}
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D(const Vector4D& vOther)
{
Assert(vOther.IsValid());
x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w;
}
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector4D::Init(vec_t ix, vec_t iy, vec_t iz, vec_t iw)
{
x = ix; y = iy; z = iz; w = iw;
Assert(IsValid());
}
inline void Vector4D::Init(const Vector3D& src, vec_t iw)
{
x = src.x; y = src.y; z = src.z; w = iw;
Assert(IsValid());
}
#if !defined(__SPU__)
inline void Vector4D::Random(vec_t minVal, vec_t maxVal)
{
x = RandomFloat(minVal, maxVal);
y = RandomFloat(minVal, maxVal);
z = RandomFloat(minVal, maxVal);
w = RandomFloat(minVal, maxVal);
}
#endif
inline void Vector4DClear(Vector4D& a)
{
a.x = a.y = a.z = a.w = 0.0f;
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector4D& Vector4D::operator=(const Vector4D& vOther)
{
Assert(vOther.IsValid());
x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector4D::operator[](int i)
{
Assert((i >= 0) && (i < 4));
return ((vec_t*)this)[i];
}
inline vec_t Vector4D::operator[](int i) const
{
Assert((i >= 0) && (i < 4));
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Cast to Vector and Vector2D...
//-----------------------------------------------------------------------------
inline Vector3D& Vector4D::AsVector3D()
{
return *(Vector3D*)this;
}
inline Vector3D const& Vector4D::AsVector3D() const
{
return *(Vector3D const*)this;
}
inline Vector2D& Vector4D::AsVector2D()
{
return *(Vector2D*)this;
}
inline Vector2D const& Vector4D::AsVector2D() const
{
return *(Vector2D const*)this;
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector4D::Base()
{
return (vec_t*)this;
}
inline vec_t const* Vector4D::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector4D::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w);
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector4D::operator==(Vector4D const& src) const
{
Assert(src.IsValid() && IsValid());
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool Vector4D::operator!=(Vector4D const& src) const
{
Assert(src.IsValid() && IsValid());
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void Vector4DCopy(Vector4D const& src, Vector4D& dst)
{
Assert(src.IsValid());
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
dst.w = src.w;
}
inline void Vector4D::CopyToArray(float* rgfl) const
{
Assert(IsValid());
Assert(rgfl);
rgfl[0] = x; rgfl[1] = y; rgfl[2] = z; rgfl[3] = w;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline void Vector4D::Negate()
{
Assert(IsValid());
x = -x; y = -y; z = -z; w = -w;
}
inline Vector4D& Vector4D::operator+=(const Vector4D& v)
{
Assert(IsValid() && v.IsValid());
x += v.x; y += v.y; z += v.z; w += v.w;
return *this;
}
inline Vector4D& Vector4D::operator-=(const Vector4D& v)
{
Assert(IsValid() && v.IsValid());
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
return *this;
}
inline Vector4D& Vector4D::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
w *= fl;
Assert(IsValid());
return *this;
}
inline Vector4D& Vector4D::operator*=(Vector4D const& v)
{
x *= v.x;
y *= v.y;
z *= v.z;
w *= v.w;
Assert(IsValid());
return *this;
}
inline Vector4D Vector4D::operator-(void) const
{
return Vector4D(-x, -y, -z, -w);
}
inline Vector4D Vector4D::operator+(const Vector4D& v) const
{
Vector4D res;
Vector4DAdd(*this, v, res);
return res;
}
inline Vector4D Vector4D::operator-(const Vector4D& v) const
{
Vector4D res;
Vector4DSubtract(*this, v, res);
return res;
}
inline Vector4D Vector4D::operator*(float fl) const
{
Vector4D res;
Vector4DMultiply(*this, fl, res);
return res;
}
inline Vector4D Vector4D::operator*(const Vector4D& v) const
{
Vector4D res;
Vector4DMultiply(*this, v, res);
return res;
}
inline Vector4D Vector4D::operator/(float fl) const
{
Vector4D res;
Vector4DDivide(*this, fl, res);
return res;
}
inline Vector4D operator*(float fl, const Vector4D& v)
{
return v * fl;
}
inline Vector4D& Vector4D::operator/=(float fl)
{
Assert(fl != 0.0f);
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
w *= oofl;
Assert(IsValid());
return *this;
}
inline Vector4D& Vector4D::operator/=(Vector4D const& v)
{
Assert(v.x != 0.0f && v.y != 0.0f && v.z != 0.0f && v.w != 0.0f);
x /= v.x;
y /= v.y;
z /= v.z;
w /= v.w;
Assert(IsValid());
return *this;
}
inline void Vector4DAdd(Vector4D const& a, Vector4D const& b, Vector4D& c)
{
Assert(a.IsValid() && b.IsValid());
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
c.w = a.w + b.w;
}
inline void Vector4DSubtract(Vector4D const& a, Vector4D const& b, Vector4D& c)
{
Assert(a.IsValid() && b.IsValid());
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
c.w = a.w - b.w;
}
inline void Vector4DMultiply(Vector4D const& a, vec_t b, Vector4D& c)
{
Assert(a.IsValid() && IsFinite(b));
c.x = a.x * b;
c.y = a.y * b;
c.z = a.z * b;
c.w = a.w * b;
}
inline void Vector4DMultiply(Vector4D const& a, Vector4D const& b, Vector4D& c)
{
Assert(a.IsValid() && b.IsValid());
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
}
inline void Vector4DDivide(Vector4D const& a, vec_t b, Vector4D& c)
{
Assert(a.IsValid());
Assert(b != 0.0f);
vec_t oob = 1.0f / b;
c.x = a.x * oob;
c.y = a.y * oob;
c.z = a.z * oob;
c.w = a.w * oob;
}
inline void Vector4DDivide(Vector4D const& a, Vector4D const& b, Vector4D& c)
{
Assert(a.IsValid());
Assert((b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) && (b.w != 0.0f));
c.x = a.x / b.x;
c.y = a.y / b.y;
c.z = a.z / b.z;
c.w = a.w / b.w;
}
inline void Vector4DMA(Vector4D const& start, float s, Vector4D const& dir, Vector4D& result)
{
Assert(start.IsValid() && IsFinite(s) && dir.IsValid());
result.x = start.x + s * dir.x;
result.y = start.y + s * dir.y;
result.z = start.z + s * dir.z;
result.w = start.w + s * dir.w;
}
// FIXME: Remove
// For backwards compatibility
inline void Vector4D::MulAdd(Vector4D const& a, Vector4D const& b, float scalar)
{
x = a.x + b.x * scalar;
y = a.y + b.y * scalar;
z = a.z + b.z * scalar;
w = a.w + b.w * scalar;
}
inline void Vector4DLerp(const Vector4D& src1, const Vector4D& src2, vec_t t, Vector4D& dest)
{
dest[0] = src1[0] + (src2[0] - src1[0]) * t;
dest[1] = src1[1] + (src2[1] - src1[1]) * t;
dest[2] = src1[2] + (src2[2] - src1[2]) * t;
dest[3] = src1[3] + (src2[3] - src1[3]) * t;
}
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
inline vec_t DotProduct4D(const Vector4D& a, const Vector4D& b)
{
Assert(a.IsValid() && b.IsValid());
return(a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w);
}
// for backwards compatibility
inline vec_t Vector4D::Dot(Vector4D const& vOther) const
{
return DotProduct4D(*this, vOther);
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t Vector4DLength(Vector4D const& v)
{
Assert(v.IsValid());
return (vec_t)FastSqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
}
inline vec_t Vector4D::LengthSqr(void) const
{
Assert(IsValid());
return (x * x + y * y + z * z + w * w);
}
inline vec_t Vector4D::Length(void) const
{
return Vector4DLength(*this);
}
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t Vector4DNormalize(Vector4D& v)
{
Assert(v.IsValid());
vec_t l = v.Length();
if (l != 0.0f)
{
v /= l;
}
else
{
v.x = v.y = v.z = v.w = 0.0f;
}
return l;
}
//-----------------------------------------------------------------------------
// Get the distance from this Vector4D to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector4D::DistTo(const Vector4D& vOther) const
{
Vector4D delta;
Vector4DSubtract(*this, vOther, delta);
return delta.Length();
}
inline vec_t Vector4D::DistToSqr(const Vector4D& vOther) const
{
Vector4D delta;
Vector4DSubtract(*this, vOther, delta);
return delta.LengthSqr();
}
//-----------------------------------------------------------------------------
// Vector4DAligned routines
//-----------------------------------------------------------------------------
inline Vector4DAligned::Vector4DAligned(vec_t X, vec_t Y, vec_t Z, vec_t W)
{
x = X; y = Y; z = Z; w = W;
Assert(IsValid());
}
inline void Vector4DAligned::Set(vec_t X, vec_t Y, vec_t Z, vec_t W)
{
x = X; y = Y; z = Z; w = W;
Assert(IsValid());
}
inline void Vector4DAligned::InitZero(void)
{
#if !defined( PLATFORM_PPC )
this->AsM128() = _mm_set1_ps(0.0f);
#elif defined(_PS3)
this->AsM128() = VMX_ZERO;
#else
this->AsM128() = __vspltisw(0);
#endif
Assert(IsValid());
}
inline void Vector4DMultiplyAligned(Vector4DAligned const& a, Vector4DAligned const& b, Vector4DAligned& c)
{
Assert(a.IsValid() && b.IsValid());
#if !defined( PLATFORM_PPC )
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
#elif defined(_PS3)
c.AsM128() = __vec_mul(a.AsM128(), b.AsM128());
#else
c.AsM128() = __vmulfp(a.AsM128(), b.AsM128());
#endif
}
inline void Vector4DWeightMAD(vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB)
{
Assert(vInA.IsValid() && vInB.IsValid() && IsFinite(w));
#if !defined( PLATFORM_PPC )
vOutA.x += vInA.x * w;
vOutA.y += vInA.y * w;
vOutA.z += vInA.z * w;
vOutA.w += vInA.w * w;
vOutB.x += vInB.x * w;
vOutB.y += vInB.y * w;
vOutB.z += vInB.z * w;
vOutB.w += vInB.w * w;
#elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp = vec_splats(w);
#else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp = __m128(w);
#endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd(vInA.AsM128(), temp, vOutA.AsM128());
vOutB.AsM128() = vec_madd(vInB.AsM128(), temp, vOutB.AsM128());
#else
__vector4 temp;
temp = __lvlx(&w, 0);
temp = __vspltw(temp, 0);
vOutA.AsM128() = __vmaddfp(vInA.AsM128(), temp, vOutA.AsM128());
vOutB.AsM128() = __vmaddfp(vInB.AsM128(), temp, vOutB.AsM128());
#endif
}
inline void Vector4DWeightMADSSE(vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB)
{
Assert(vInA.IsValid() && vInB.IsValid() && IsFinite(w));
#if !defined( PLATFORM_PPC )
// Replicate scalar float out to 4 components
__m128 packed = _mm_set1_ps(w);
// 4D SSE Vector MAD
vOutA.AsM128() = _mm_add_ps(vOutA.AsM128(), _mm_mul_ps(vInA.AsM128(), packed));
vOutB.AsM128() = _mm_add_ps(vOutB.AsM128(), _mm_mul_ps(vInB.AsM128(), packed));
#elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp = vec_splats(w);
#else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp = __m128(w);
#endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd(vInA.AsM128(), temp, vOutA.AsM128());
vOutB.AsM128() = vec_madd(vInB.AsM128(), temp, vOutB.AsM128());
#else
__vector4 temp;
temp = __lvlx(&w, 0);
temp = __vspltw(temp, 0);
vOutA.AsM128() = __vmaddfp(vInA.AsM128(), temp, vOutA.AsM128());
vOutB.AsM128() = __vmaddfp(vInB.AsM128(), temp, vOutB.AsM128());
#endif
}
#endif // VECTOR4D_H