r5sdk/r5dev/public/tier1/utlmap.h
Kawe Mazidjatari c42ebe2cfc Tier1: use correct index types for template classes
This ensures that we can never allocate more memory than the maximum value that type could hold, without triggering a compile warning. There was a mention about shorts being slow on PowerPC platforms for utllinkedlist, but the index local type could be overridden (defaults to index storage type). In case it gets used for PowerPC, use 32bit ints as index local types; as the local type gets used for arithmetic operations while storage type is what's getting cached off in memory. This patch had no effect on generated output code, it was mostly implemented to avoid future problems.
2024-04-05 17:56:54 +02:00

296 lines
7.6 KiB
C++
Raw Blame History

//====== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. =======//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLMAP_H
#define UTLMAP_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/dbg.h"
#include "utlrbtree.h"
//-----------------------------------------------------------------------------
//
// Purpose: An associative container. Pretty much identical to std::map.
//
//-----------------------------------------------------------------------------
// This is a useful macro to iterate from start to end in order in a map
#define FOR_EACH_MAP( mapName, iteratorName ) \
for ( decltype(mapName)::IndexType_t iteratorName = (mapName).FirstInorder(); (mapName).IsUtlMap && iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).NextInorder( iteratorName ) )
// faster iteration, but in an unspecified order
#define FOR_EACH_MAP_FAST( mapName, iteratorName ) \
for ( decltype(mapName)::IndexType_t iteratorName = 0; (mapName).IsUtlMap && iteratorName < (mapName).MaxElement(); ++iteratorName ) if ( !(mapName).IsValidIndex( iteratorName ) ) continue; else
struct base_utlmap_t
{
public:
// This enum exists so that FOR_EACH_MAP and FOR_EACH_MAP_FAST cannot accidentally
// be used on a type that is not a CUtlMap. If the code compiles then all is well.
// The check for IsUtlMap being true should be free.
// Using an enum rather than a static const bool ensures that this trick works even
// with optimizations disabled on gcc.
enum { IsUtlMap = true };
};
template <typename K, typename T, typename I = unsigned short, typename LessFunc_t = bool (*)( const K &, const K & )>
class CUtlMap : public base_utlmap_t
{
public:
typedef K KeyType_t;
typedef T ElemType_t;
typedef I IndexType_t;
// constructor, destructor
// Left at growSize = 0, the memory will first allocate 1 element and double in size
// at each increment.
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
CUtlMap( IndexType_t growSize = 0, IndexType_t initSize = 0, const LessFunc_t &lessfunc = 0 )
: m_Tree( growSize, initSize, CKeyLess( lessfunc ) )
{
}
CUtlMap( LessFunc_t lessfunc )
: m_Tree( CKeyLess( lessfunc ) )
{
}
void EnsureCapacity( IndexType_t num ) { m_Tree.EnsureCapacity( num ); }
// gets particular elements
ElemType_t & Element( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & Element( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
ElemType_t & operator[]( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & operator[]( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
KeyType_t & Key( IndexType_t i ) { return m_Tree.Element( i ).key; }
const KeyType_t & Key( IndexType_t i ) const { return m_Tree.Element( i ).key; }
// Num elements
IndexType_t Count() const { return m_Tree.Count(); }
// Max "size" of the vector
IndexType_t MaxElement() const { return m_Tree.MaxElement(); }
// Checks if a node is valid and in the map
bool IsValidIndex( IndexType_t i ) const { return m_Tree.IsValidIndex( i ); }
// Checks if the map as a whole is valid
bool IsValid() const { return m_Tree.IsValid(); }
// Invalid index
static IndexType_t InvalidIndex() { return CTree::InvalidIndex(); }
// Sets the less func
void SetLessFunc( LessFunc_t func )
{
m_Tree.SetLessFunc( CKeyLess( func ) );
}
// Insert method (inserts in order)
IndexType_t Insert( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node );
}
IndexType_t Insert( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node );
}
// API to match src2 for Panorama
// Note in src2 straight Insert() calls will assert on duplicates
// Choosing not to take that change until discussed further
IndexType_t InsertWithDupes( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node );
}
IndexType_t InsertWithDupes( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node );
}
bool HasElement( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.HasElement( dummyNode );
}
// Find method
IndexType_t Find( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Find( dummyNode );
}
// FindFirst method
// This finds the first inorder occurrence of key
IndexType_t FindFirst( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindFirst( dummyNode );
}
const ElemType_t &FindElement( const KeyType_t &key, const ElemType_t &defaultValue ) const
{
IndexType_t i = Find( key );
if ( i == InvalidIndex() )
return defaultValue;
return Element( i );
}
// First element >= key
IndexType_t FindClosest( const KeyType_t &key, CompareOperands_t eFindCriteria ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindClosest( dummyNode, eFindCriteria );
}
// Remove methods
void RemoveAt( IndexType_t i ) { m_Tree.RemoveAt( i ); }
bool Remove( const KeyType_t &key )
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Remove( dummyNode );
}
void RemoveAll( ) { m_Tree.RemoveAll(); }
void Purge( ) { m_Tree.Purge(); }
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Iteration
IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); }
IndexType_t NextInorder( IndexType_t i ) const { return m_Tree.NextInorder( i ); }
IndexType_t PrevInorder( IndexType_t i ) const { return m_Tree.PrevInorder( i ); }
IndexType_t LastInorder() const { return m_Tree.LastInorder(); }
// API Matching src2 for Panorama
IndexType_t NextInorderSameKey( IndexType_t i ) const
{
IndexType_t iNext = NextInorder( i );
if ( !IsValidIndex( iNext ) )
return InvalidIndex();
if ( Key( iNext ) != Key( i ) )
return InvalidIndex();
return iNext;
}
// If you change the search key, this can be used to reinsert the
// element into the map.
void Reinsert( const KeyType_t &key, IndexType_t i )
{
m_Tree[i].key = key;
m_Tree.Reinsert(i);
}
IndexType_t InsertOrReplace( const KeyType_t &key, const ElemType_t &insert )
{
IndexType_t i = Find( key );
if ( i != InvalidIndex() )
{
Element( i ) = insert;
return i;
}
return Insert( key, insert );
}
void Swap( CUtlMap< K, T, I > &that )
{
m_Tree.Swap( that.m_Tree );
}
struct Node_t
{
Node_t()
{
}
Node_t( const Node_t &from )
: key( from.key ),
elem( from.elem )
{
}
KeyType_t key;
ElemType_t elem;
};
class CKeyLess
{
public:
CKeyLess( const LessFunc_t& lessFunc ) : m_LessFunc(lessFunc) {}
bool operator!() const
{
return !m_LessFunc;
}
bool operator()( const Node_t &left, const Node_t &right ) const
{
return m_LessFunc( left.key, right.key );
}
LessFunc_t m_LessFunc;
};
typedef CUtlRBTree<Node_t, I, CKeyLess> CTree;
CTree *AccessTree() { return &m_Tree; }
protected:
CTree m_Tree;
};
//-----------------------------------------------------------------------------
// Purges the list and calls delete on each element in it.
template< typename K, typename T, typename I, typename LessFunc_t >
inline void CUtlMap<K, T, I, LessFunc_t>::PurgeAndDeleteElements()
{
for ( I i = 0; i < MaxElement(); ++i )
{
if ( !IsValidIndex( i ) )
continue;
delete Element( i );
}
Purge();
}
#endif // UTLMAP_H