Kawe Mazidjatari b3a68ed095 Add EABase, EAThread and DirtySDK to R5sdk
DirtySDK (EA's Dirty Sockets library) will be used for the LiveAPI implementation, and depends on: EABase, EAThread.
2024-04-05 18:29:03 +02:00

1008 lines
33 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
///////////////////////////////////////////////////////////////////////////////
#include "TestThread.h"
#include <EATest/EATest.h>
#include <eathread/eathread_atomic.h>
#include <eathread/eathread_thread.h>
EA_DISABLE_VC_WARNING(4265 4365 4836 4571 4625 4626 4628 4193 4127 4548)
#include <string.h>
EA_RESTORE_VC_WARNING()
#if defined(_MSC_VER)
#pragma warning(disable: 4996) // This function or variable may be unsafe / deprecated.
#endif
#include <EASTL/numeric_limits.h>
using namespace EA::Thread;
#if EA_THREADS_AVAILABLE
const int kMaxConcurrentThreadCount = EATHREAD_MAX_CONCURRENT_THREAD_COUNT;
struct AWorkData32
{
volatile bool mbShouldQuit;
AtomicInt32 mnAtomicInteger1;
AtomicInt32 mnAtomicInteger2;
AtomicInt32 mnErrorCount;
AWorkData32() : mbShouldQuit(false),
mnAtomicInteger1(0), mnAtomicInteger2(0),
mnErrorCount(0) {}
};
static intptr_t Atomic32TestThreadFunction1(void* pvWorkData)
{
int nErrorCount = 0;
AWorkData32* pWorkData = (AWorkData32*)pvWorkData;
const ThreadId threadId = GetThreadId();
EA::UnitTest::ReportVerbosity(1, "Atomic test function 1 created, thread id %s\n", EAThreadThreadIdToString(threadId));
// Do a series of operations, the final result of which is zero.
while(!pWorkData->mbShouldQuit)
{
++pWorkData->mnAtomicInteger1;
++pWorkData->mnAtomicInteger2;
--pWorkData->mnAtomicInteger1;
--pWorkData->mnAtomicInteger2;
pWorkData->mnAtomicInteger1 += 5;
pWorkData->mnAtomicInteger2 += 5;
pWorkData->mnAtomicInteger1 -= 5;
pWorkData->mnAtomicInteger2 -= 5;
pWorkData->mnAtomicInteger1++;
pWorkData->mnAtomicInteger2++;
pWorkData->mnAtomicInteger1--;
pWorkData->mnAtomicInteger2--;
ThreadCooperativeYield();
}
pWorkData->mnErrorCount += nErrorCount;
EA::UnitTest::ReportVerbosity(1, "Atomic test function 1 exiting, thread id %s\n", EAThreadThreadIdToString(threadId));
return 0;
}
static intptr_t Atomic32TestThreadFunction2(void* pvWorkData)
{
int nErrorCount = 0;
AWorkData32* pWorkData = (AWorkData32*)pvWorkData;
const ThreadId threadId = GetThreadId();
ThreadUniqueId threadUniqueId;
EAThreadGetUniqueId(threadUniqueId);
int32_t threadUniqueId32 = (int32_t)threadUniqueId;
EA::UnitTest::ReportVerbosity(1, "Atomic test function 2 created, thread id %s\n", EAThreadThreadIdToString(threadId));
// Test the SetValueConditional function. We basically create a spinlock here.
while(!pWorkData->mbShouldQuit)
{
if(pWorkData->mnAtomicInteger1.SetValueConditional(threadUniqueId32, 0x11223344))
{
EATEST_VERIFY_MSG(pWorkData->mnAtomicInteger1 == threadUniqueId32, "AtomicInt SetValueConditional failure.");
pWorkData->mnAtomicInteger1 = 0x11223344;
}
ThreadCooperativeYield();
}
pWorkData->mnErrorCount += nErrorCount;
EA::UnitTest::ReportVerbosity(1, "Atomic test function 2 exiting, thread id %s\n", EAThreadThreadIdToString(threadId));
return 0;
}
struct AWorkData64
{
volatile bool mbShouldQuit;
AtomicInt64 mnAtomicInteger1;
AtomicInt64 mnAtomicInteger2;
AtomicInt64 mnErrorCount;
AWorkData64() : mbShouldQuit(false),
mnAtomicInteger1(0), mnAtomicInteger2(0),
mnErrorCount(0) {}
};
static intptr_t Atomic64TestThreadFunction1(void* pvWorkData)
{
int nErrorCount = 0;
AWorkData64* pWorkData = (AWorkData64*)pvWorkData;
const ThreadId threadId = GetThreadId();
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 1 created, thread id %s\n", EAThreadThreadIdToString(threadId));
// Do a series of operations, the final result of which is zero.
while(!pWorkData->mbShouldQuit)
{
++pWorkData->mnAtomicInteger1;
++pWorkData->mnAtomicInteger2;
--pWorkData->mnAtomicInteger1;
--pWorkData->mnAtomicInteger2;
pWorkData->mnAtomicInteger1 += UINT64_C(0x0000000fffffffff);
pWorkData->mnAtomicInteger2 += UINT64_C(0x0000000ffffffffe);
pWorkData->mnAtomicInteger1 -= UINT64_C(0x0000000fffffffff);
pWorkData->mnAtomicInteger2 -= UINT64_C(0x0000000ffffffffe);
pWorkData->mnAtomicInteger1++;
pWorkData->mnAtomicInteger2++;
pWorkData->mnAtomicInteger1--;
pWorkData->mnAtomicInteger2--;
ThreadCooperativeYield();
}
pWorkData->mnErrorCount += nErrorCount;
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 1 exiting, thread id %s\n", EAThreadThreadIdToString(threadId));
return 0;
}
static intptr_t Atomic64TestThreadFunction2(void* pvWorkData)
{
int nErrorCount = 0;
AWorkData64* pWorkData = (AWorkData64*)pvWorkData;
const ThreadId threadId = GetThreadId();
ThreadUniqueId threadUniqueId;
EAThreadGetUniqueId(threadUniqueId);
uint64_t threadUnqueId64 = (uint64_t)threadUniqueId | UINT64_C(0xeeeeddddffffffff);
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 2 created, thread id %s\n", EAThreadThreadIdToString(threadId));
// Test the SetValueConditional function. We basically create a spinlock here.
while(!pWorkData->mbShouldQuit)
{
if(pWorkData->mnAtomicInteger1.SetValueConditional(threadUnqueId64, 0x1122334455667788))
{
EATEST_VERIFY_MSG(pWorkData->mnAtomicInteger1 == static_cast<int64_t>(threadUnqueId64), "AtomicInt64 SetValueConditional failure.");
pWorkData->mnAtomicInteger1.SetValue(0x1122334455667788);
}
ThreadCooperativeYield();
}
pWorkData->mnErrorCount += nErrorCount;
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 2 exiting, thread id %s\n", EAThreadThreadIdToString(threadId));
return 0;
}
static intptr_t Atomic64TestThreadFunction3(void* pvWorkData)
{
int nErrorCount = 0;
AWorkData64* pWorkData = (AWorkData64*)pvWorkData;
const ThreadId threadId = GetThreadId();
const uint64_t value0 = UINT64_C(0x0000000000000000);
const uint64_t value1 = UINT64_C(0xffffffffffffffff);
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 2 created, thread id %s\n", EAThreadThreadIdToString(threadId));
// Test the SetValueConditional function.
while(!pWorkData->mbShouldQuit)
{
pWorkData->mnAtomicInteger1.SetValueConditional(value0, value1);
uint64_t currentValue = pWorkData->mnAtomicInteger1.GetValue();
EATEST_VERIFY_MSG((currentValue == value0) || (currentValue == value1), "AtomicInt64 SetValueConditional failure.");
pWorkData->mnAtomicInteger1.SetValueConditional(value1, value0);
currentValue = pWorkData->mnAtomicInteger1.GetValue();
EATEST_VERIFY_MSG((currentValue == value0) || (currentValue == value1), "AtomicInt64 SetValueConditional failure.");
ThreadCooperativeYield();
}
pWorkData->mnErrorCount += nErrorCount;
EA::UnitTest::ReportVerbosity(1, "Atomic64 test function 2 exiting, thread id %s\n", EAThreadThreadIdToString(threadId));
return 0;
}
template<typename T>
int TestSimpleAtomicOps()
{
int nErrorCount = 0;
bool result = false;
alignas(16) T value = 0;
alignas(16) T dest = 0;
alignas(16) T conditionFail = 4;
alignas(16) T conditionSucceed = 0;
// AtomicGetValue
dest = 3;
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 3, "AtomicGetValue failure\n");
// AtomicSetValue
value = AtomicSetValue(&dest, 4);
EATEST_VERIFY_MSG(value == 3, "AtomicSetValue failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicSetValue failure\n");
// AtomicFetchIncrement
value = AtomicFetchIncrement(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicFetchIncrement failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicFetchIncrement failure\n");
// AtomicFetchDecrement
value = AtomicFetchDecrement(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicFetchDecrement failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicFetchDecrement failure\n");
// AtomicFetchAdd
value = AtomicFetchAdd(&dest, 3);
EATEST_VERIFY_MSG(value == 4, "AtomicFetchAdd failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 7, "AtomicFetchAdd failure\n");
// AtomicFetchSub
value = AtomicFetchSub(&dest, 3);
EATEST_VERIFY_MSG(value == 7, "AtomicFetchSub failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicFetchSub failure\n");
value = AtomicFetchSub(&dest, T(-3));
EATEST_VERIFY_MSG(value == 4, "AtomicFetchSub failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 7, "AtomicFetchSub failure\n");
// AtomicFetchOr
value = AtomicFetchOr(&dest, 8);
EATEST_VERIFY_MSG(value == 7, "AtomicFetchOr failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 15, "AtomicFetchOr failure\n");
// AtomicFetchAnd
value = AtomicFetchAnd(&dest, 3);
EATEST_VERIFY_MSG(value == 15, "AtomicFetchAnd failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 3, "AtomicFetchAnd failure\n");
// AtomicFetchXor
value = AtomicFetchXor(&dest, dest);
EATEST_VERIFY_MSG(value == 3, "AtomicFetchXor failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 0, "AtomicFetchXor failure\n");
// AtomicFetchSwap
value = AtomicFetchSwap(&dest, 5);
EATEST_VERIFY_MSG(value == 0, "AtomicFetchSwap failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicFetchSwap failure\n");
// AtomicSetValueConditional
dest = 0;
value = 1;
conditionFail = 4;
conditionSucceed = 0;
// Try to do conditional fetch swap which should fail
value = EA::Thread::AtomicFetchSwapConditional(&dest, 1, conditionFail);
EATEST_VERIFY_MSG(value != conditionFail, "AtomicFetchSwapConditional failure 0\n");
EATEST_VERIFY_MSG(dest == 0, "AtomicFetchSwapConditional failure 1\n");
// Try to do conditional fetch swap which should succeed
value = EA::Thread::AtomicFetchSwapConditional(&dest, 1, conditionSucceed);
EATEST_VERIFY_MSG(value == conditionSucceed, "AtomicFetchSwapConditional failure 2\n");
EATEST_VERIFY_MSG(dest == 1, "AtomicFetchSwapConditional failure 3\n");
// reset before the next test
dest = 0;
value = 1;
// Try to do an update which should fail.
result = EA::Thread::AtomicSetValueConditional(&dest, value, conditionFail);
EATEST_VERIFY_MSG(!result, "AtomicSetValueConditional failure 0\n");
EATEST_VERIFY_MSG(dest == 0, "AtomicSetValueConditional failure 1\n");
// Try to do an update which should succeed.
result = EA::Thread::AtomicSetValueConditional(&dest, value, conditionSucceed);
EATEST_VERIFY_MSG(result, "AtomicSetValueConditional failure 2\n");
EATEST_VERIFY_MSG(dest == 1, "AtomicSetValueConditional failure 3\n");
return nErrorCount;
}
template<typename T>
inline int TestAtomicsSizeBoundaries()
{
static_assert(eastl::is_floating_point<T>::value == false, "atomic floats not supported");
int nErrorCount = 0;
bool result = false;
alignas(16) T value = 0, dest = 0;
T max = eastl::numeric_limits<T>::max();
T lowest = eastl::numeric_limits<T>::lowest();
/// Test the max boundary
///
value = AtomicSetValue(&dest, max);
EATEST_VERIFY_MSG(value == 0, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == max, "max failure\n");
value = AtomicFetchIncrement(&dest);
EATEST_VERIFY_MSG(value == max, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicFetchDecrement(&dest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == max, "max failure\n");
value = AtomicFetchAdd(&dest, 1);
EATEST_VERIFY_MSG(value == max, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicFetchAnd(&dest, lowest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicFetchXor(&dest, lowest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 0, "max failure\n");
value = AtomicFetchSwap(&dest, lowest);
EATEST_VERIFY_MSG(value == 0, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == lowest, "max failure\n");
// reset to zero
result = AtomicSetValueConditional(&dest, 0, lowest);
EATEST_VERIFY_MSG(result, "max failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 0, "max failure\n");
/// Test the lowest boundary
///
value = AtomicSetValue(&dest, lowest);
EATEST_VERIFY_MSG(value == 0, "lowest failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == lowest, "lowest failure\n");
// decrement the lowest to ensure we rollover to the highest value
value = AtomicFetchDecrement(&dest);
EATEST_VERIFY_MSG(value == lowest, "lowest failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == max, "lowest failure\n");
return nErrorCount;
}
template<typename T>
inline int TestAtomicsConstFetch()
{
int nErrorCount = 0;
{
alignas(16) const T value = 13;
auto r = AtomicGetValue(&value);
EATEST_VERIFY_MSG(r == value, "failure\n");
}
{
struct Foo
{
Foo(uint32_t n) : baz(n) {}
uint32_t getBaz() const { return AtomicGetValue(&this->baz); }
uint32_t baz;
};
Foo foo(42);
auto r = foo.getBaz();
EATEST_VERIFY_MSG(r == 42, "failure\n");
}
return nErrorCount;
}
template<typename T>
int TestAtomicIntT()
{
int nErrorCount = 0;
AtomicInt<T> atomicInt = 0;
++atomicInt;
--atomicInt;
atomicInt += 5;
atomicInt -= 5;
atomicInt++;
atomicInt--;
EATEST_VERIFY(atomicInt == 0);
return nErrorCount;
}
template<typename T>
int TestNonMemberAtomics()
{
int nErrorCount = 0;
nErrorCount += TestSimpleAtomicOps<T>();
nErrorCount += TestAtomicsSizeBoundaries<T>();
nErrorCount += TestAtomicsConstFetch<T>();
return nErrorCount;
}
#endif // #if EA_THREADS_AVAILABLE
int TestThreadAtomic()
{
int nErrorCount(0);
{ // Initial tests of 128 bit atomics
#if EATHREAD_ATOMIC_128_SUPPORTED // This will be true only for 64+ bit platforms.
// To consider: Use __int128_t on GCC for GCC >= 4.1
EA_ALIGN(128) int64_t dest128[2] = { 0, 0 };
EA_ALIGN(128) int64_t value128[2] = { 1, 2 };
EA_ALIGN(128) int64_t condition128Fail[2] = { 4, 5 };
EA_ALIGN(128) int64_t condition128Succeed[2] = { 0, 0 };
bool result;
// Try to do an update which should fail.
result = EA::Thread::AtomicSetValueConditionall28(dest128, value128, condition128Fail);
EATEST_VERIFY_MSG(!result, "AtomicSetValueConditional failure: result should have been false.\n");
EATEST_VERIFY_F((dest128[0] == 0) && (dest128[1] == 0), "AtomicSetValueConditional failure: dest128[0]:%I64d dest128[1]:%I64d\n", dest128[0], dest128[1]);
EATEST_VERIFY_F((value128[0] == 1) && (value128[1] == 2), "AtomicSetValueConditional failure: value128[0]:%I64d value128[1]:%I64d\n", value128[0], value128[1]);
EATEST_VERIFY_F((condition128Fail[0] == 4) && (condition128Fail[1] == 5), "AtomicSetValueConditional failure: condition128Fail[0]:%I64d condition128Fail[1]:%I64d\n", condition128Fail[0], condition128Fail[1]);
EATEST_VERIFY_F((condition128Succeed[0] == 0) && (condition128Succeed[1] == 0), "AtomicSetValueConditional failure: condition128Succeed[0]:%I64d condition128Succeed[1]:%I64d\n", condition128Succeed[0], condition128Succeed[1]);
// Try to do an update which should succeed.
// VC++ for VS2010 misgenerates the atomic code below in optimized builds, by passing what appears to be the wrong value for dest128 to AtomicSetValueConditional128.
// We added some diagnostic code and now the compiler does the right thing. I (Paul Pedriana) wonder if the problem is related to
// the alignment specification for dest, which must be 128 byte aligned for AtomicSetValueConditional128 (cmpxchg16b) to work.
// The dest address is indeed being aligned to 16 bytes, so that's not the problem.
EA::UnitTest::ReportVerbosity(1, "%p %p %p\n", dest128, value128, condition128Succeed);
result = EA::Thread::AtomicSetValueConditionall28(dest128, value128, condition128Succeed);
EATEST_VERIFY_MSG(result, "AtomicSetValueConditional failure: result should have been true.\n");
EATEST_VERIFY_F((dest128[0] == 1) && (dest128[1] == 2), "AtomicSetValueConditional failure: dest128:%p dest128[0]:%I64d dest128[1]:%I64d\n", dest128, dest128[0], dest128[1]);
EATEST_VERIFY_F((value128[0] == 1) && (value128[1] == 2), "AtomicSetValueConditional failure: value128:%p value128[0]:%I64d value128[1]:%I64d\n", value128, value128[0], value128[1]);
EATEST_VERIFY_F((condition128Fail[0] == 4) && (condition128Fail[1] == 5), "AtomicSetValueConditional failure: condition128Fail:%p condition128Fail[0]:%I64d condition128Fail[1]:%I64d\n", condition128Fail, condition128Fail[0], condition128Fail[1]);
EATEST_VERIFY_F((condition128Succeed[0] == 0) && (condition128Succeed[1] == 0), "AtomicSetValueConditional failure: condition128Succeed:%p condition128Succeed[0]:%I64d condition128Succeed[1]:%I64d\n", condition128Succeed, condition128Succeed[0], condition128Succeed[1]);
#if defined(EA_COMPILER_GNUC) // GCC defines __int128_t as a built-in type.
__int128_t dest;
__int128_t value;
__int128_t conditionFail;
__int128_t conditionSucceed;
// AtomicGetValue
dest = 3;
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 3, "AtomicGetValue[128] failure\n");
// AtomicSetValue
AtomicSetValue(&dest, 4);
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicSetValue[128] failure\n");
// AtomicIncrement
value = AtomicIncrement(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicIncrement[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicIncrement[128] failure\n");
// AtomicDecrement
value = AtomicDecrement(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicDecrement[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 4, "AtomicDecrement[128] failure\n");
// AtomicAdd
value = AtomicAdd(&dest, 3);
EATEST_VERIFY_MSG(value == 7, "AtomicAdd[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 7, "AtomicAdd[128] failure\n");
// AtomicOr
value = AtomicOr(&dest, 8);
EATEST_VERIFY_MSG(value == 15, "AtomicOr[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 15, "AtomicOr[128] failure\n");
// AtomicAnd
value = AtomicAnd(&dest, 3);
EATEST_VERIFY_MSG(value == 3, "AtomicAnd[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 3, "AtomicAnd[128] failure\n");
// AtomicXor
value = AtomicXor(&dest, dest);
EATEST_VERIFY_MSG(value == 0, "AtomicXor[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 0, "AtomicXor[128] failure\n");
// AtomicSwap
value = AtomicSwap(&dest, 5);
EATEST_VERIFY_MSG(value == 0, "AtomicSwap[128] failure\n");
value = AtomicGetValue(&dest);
EATEST_VERIFY_MSG(value == 5, "AtomicSwap[128] failure\n");
// AtomicSetValueConditional
dest = 0;
value = 1;
conditionFail = 4;
conditionSucceed = 0;
// Try to do an update which should fail.
result = EA::Thread::AtomicSetValueConditional(&dest, value, conditionFail);
EATEST_VERIFY_MSG(!result, "AtomicSetValueConditional failure 0\n");
EATEST_VERIFY_MSG(dest == 0, "AtomicSetValueConditional failure 1\n");
// Try to do an update which should succeed.
result = EA::Thread::AtomicSetValueConditional(&dest, value, conditionSucceed);
EATEST_VERIFY_MSG(result, "AtomicSetValueConditional failure 2\n");
EATEST_VERIFY_MSG(dest == 1, "AtomicSetValueConditional failure 3\n");
if(nErrorCount != 0)
return nErrorCount;
#endif
#endif
}
{ // Basic single-threaded Atomic test.
AtomicInt32 i32(1);
AtomicUint32 u32(1);
EATEST_VERIFY_MSG(i32.GetValue() == 1, "AtomicInt32 failure.");
EATEST_VERIFY_MSG(u32.GetValue() == 1, "AtomicUint32 failure.");
char buffer[64];
sprintf(buffer, "%d %u", (signed int)i32.GetValue(), (unsigned int)u32.GetValue());
EATEST_VERIFY_MSG(strcmp(buffer, "1 1") == 0, "AtomicInt32 failure.");
// Copy ctor/operator=.
AtomicInt32 i32CopyA(i32);
AtomicInt32 i32CopyB(i32CopyA);
i32CopyA = i32CopyB;
sprintf(buffer, "%d %d", (signed int)i32CopyA.GetValue(), (signed int)i32CopyB.GetValue());
EATEST_VERIFY_MSG(strcmp(buffer, "1 1") == 0, "AtomicInt32 failure.");
// Test platforms that support 64 bits..
AtomicInt64 i64(1);
AtomicUint64 u64(1);
sprintf(buffer, "%.0f %.0f", (double)i64.GetValue(), (double)u64.GetValue());
EATEST_VERIFY_MSG(strcmp(buffer, "1 1") == 0, "AtomicInt64 failure.");
// Copy ctor/operator=.
AtomicInt64 i64CopyA(i64);
AtomicInt64 i64CopyB(i64CopyA);
i64CopyA = i64CopyB;
sprintf(buffer, "%d %d", (signed int)i64CopyA.GetValue(), (signed int)i64CopyB.GetValue());
EATEST_VERIFY_MSG(strcmp(buffer, "1 1") == 0, "AtomicInt64 failure.");
bool result = i64.SetValueConditional(2, 99999); // This should not set the value to 2.
EATEST_VERIFY_MSG(!result && (i64.GetValue() == 1), "AtomicInt64 failure.");
i64.SetValueConditional(2, 1); // This should set the value to 2.
EATEST_VERIFY_MSG(!result && (i64.GetValue() == 2), "AtomicInt64 failure.");
}
{ // Basic single-threaded AtomicInt32 test.
AtomicInt32 i(0); // Note that this assignment goes through AtomicInt32 operator=().
AtomicInt32::ValueType x;
EATEST_VERIFY_MSG(i == 0, "AtomicInt32 failure.");
++i;
i++;
--i;
i--;
i += 7;
i -= 3;
EATEST_VERIFY_MSG(i == 4, "AtomicInt32 failure.");
i = 2;
x = i.GetValue();
EATEST_VERIFY_MSG(x == 2, "AtomicInt32 failure.");
i.Increment();
i.Decrement();
i.Add(5);
i.Add(-2);
EATEST_VERIFY_MSG(i == 5, "AtomicInt32 failure.");
i.SetValue(6);
EATEST_VERIFY_MSG(i == 6, "AtomicInt32 failure.");
bool bWasEqualTo10000 = i.SetValueConditional(3, 10000);
EATEST_VERIFY_MSG(!bWasEqualTo10000, "AtomicInt32 failure.");
bool bWasEqualTo6 = i.SetValueConditional(3, 6);
EATEST_VERIFY_MSG(bWasEqualTo6, "AtomicInt32 failure.");
}
{ // Verify pre-increment/post-increment works as intended.
AtomicInt32 i32(0);
AtomicInt32::ValueType x32;
// ValueType SetValue(ValueType n)
// Safely sets a new value. Returns the old value.
x32 = i32.SetValue(1);
EATEST_VERIFY_MSG(x32 == 0, "AtomicInt return value failure.");
// ValueType Increment()
// Safely increments the value. Returns the new value.
x32 = i32.Increment();
EATEST_VERIFY_MSG(x32 == 2, "AtomicInt return value failure.");
// ValueType Decrement()
// Safely decrements the value. Returns the new value.
x32 = i32.Decrement();
EATEST_VERIFY_MSG(x32 == 1, "AtomicInt return value failure.");
// ValueType Add(ValueType n)
// Safely adds a value, which can be negative. Returns the new value.
x32 = i32.Add(35);
EATEST_VERIFY_MSG(x32 == 36, "AtomicInt return value failure.");
// ValueType operator=(ValueType n)
// Safely assigns the value. Returns the new value.
x32 = (i32 = 17);
EATEST_VERIFY_MSG(x32 == 17, "AtomicInt return value failure.");
// ValueType operator+=(ValueType n)
// Safely adds a value, which can be negative. Returns the new value.
x32 = (i32 += 3);
EATEST_VERIFY_MSG(x32 == 20, "AtomicInt return value failure.");
// ValueType operator-=(ValueType n)
// Safely subtracts a value, which can be negative. Returns the new value.
x32 = (i32 -= 6);
EATEST_VERIFY_MSG(x32 == 14, "AtomicInt return value failure.");
// ValueType operator++()
// pre-increment operator++
x32 = ++i32;
EATEST_VERIFY_MSG(x32 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i32 == 15, "AtomicInt return value failure.");
// ValueType operator++(int)
// post-increment operator++
x32 = i32++;
EATEST_VERIFY_MSG(x32 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i32 == 16, "AtomicInt return value failure.");
// ValueType operator--()
// pre-increment operator--
x32 = --i32;
EATEST_VERIFY_MSG(x32 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i32 == 15, "AtomicInt return value failure.");
// ValueType operator--(int)
// post-increment operator--
x32 = i32--;
EATEST_VERIFY_MSG(x32 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i32 == 14, "AtomicInt return value failure.");
}
{ // Verify pre-increment/post-increment works as intended.
AtomicInt64 i64(0);
AtomicInt64::ValueType x64;
// ValueType SetValue(ValueType n)
// Safely sets a new value. Returns the old value.
x64 = i64.SetValue(1);
EATEST_VERIFY_MSG(x64 == 0, "AtomicInt return value failure.");
// ValueType Increment()
// Safely increments the value. Returns the new value.
x64 = i64.Increment();
EATEST_VERIFY_MSG(x64 == 2, "AtomicInt return value failure.");
// ValueType Decrement()
// Safely decrements the value. Returns the new value.
x64 = i64.Decrement();
EATEST_VERIFY_MSG(x64 == 1, "AtomicInt return value failure.");
// ValueType Add(ValueType n)
// Safely adds a value, which can be negative. Returns the new value.
x64 = i64.Add(35);
EATEST_VERIFY_MSG(x64 == 36, "AtomicInt return value failure.");
// ValueType operator=(ValueType n)
// Safely assigns the value. Returns the new value.
x64 = (i64 = 17);
EATEST_VERIFY_MSG(x64 == 17, "AtomicInt return value failure.");
// ValueType operator+=(ValueType n)
// Safely adds a value, which can be negative. Returns the new value.
x64 = (i64 += 3);
EATEST_VERIFY_MSG(x64 == 20, "AtomicInt return value failure.");
// ValueType operator-=(ValueType n)
// Safely subtracts a value, which can be negative. Returns the new value.
x64 = (i64 -= 6);
EATEST_VERIFY_MSG(x64 == 14, "AtomicInt return value failure.");
// ValueType operator++()
// pre-increment operator++
x64 = ++i64;
EATEST_VERIFY_MSG(x64 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i64 == 15, "AtomicInt return value failure.");
// ValueType operator++(int)
// post-increment operator++
x64 = i64++;
EATEST_VERIFY_MSG(x64 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i64 == 16, "AtomicInt return value failure.");
// ValueType operator--()
// pre-increment operator--
x64 = --i64;
EATEST_VERIFY_MSG(x64 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i64 == 15, "AtomicInt return value failure.");
// ValueType operator--(int)
// post-increment operator--
x64 = i64--;
EATEST_VERIFY_MSG(x64 == 15, "AtomicInt return value failure.");
EATEST_VERIFY_MSG(i64 == 14, "AtomicInt return value failure.");
}
{ // Basic single-threaded AtomicPointer test.
AtomicPointer p(NULL);
AtomicPointer::PointerValueType pTemp;
EATEST_VERIFY_MSG(p.GetValue() == NULL, "AtomicPointer failure.");
++p;
p++;
--p;
p--;
p += 7;
p -= 3;
EATEST_VERIFY_MSG(p == (void*)4, "AtomicPointer failure.");
p = (void*)2;
pTemp = p.GetValue();
EATEST_VERIFY_MSG((uintptr_t)pTemp == 2, "AtomicPointer failure.");
p.Increment();
p.Decrement();
p.Add(5);
p.Add(-2);
EATEST_VERIFY_MSG(p == (void*)5, "AtomicPointer failure.");
p.SetValue((void*)6);
EATEST_VERIFY_MSG(p == (void*)6, "AtomicPointer failure.");
bool bWasEqualTo10000 = p.SetValueConditional((void*)3, (void*)10000);
EATEST_VERIFY_MSG(!bWasEqualTo10000, "AtomicPointer failure.");
bool bWasEqualTo6 = p.SetValueConditional((void*)3, (void*)6);
EATEST_VERIFY_MSG(bWasEqualTo6, "AtomicPointer failure.");
}
{
AtomicInt32 gA, gB;
gA = gB = 0;
++gA;
++gB;
gA = gB = 0;
EATEST_VERIFY_MSG((gA == 0) && (gB == 0), "AtomicInt32 operator= failure.");
}
#if EA_THREADS_AVAILABLE
{ // Multithreaded test 1
AWorkData32 workData32;
const int kThreadCount(kMaxConcurrentThreadCount - 1);
Thread thread[kThreadCount];
Thread::Status status;
for(int i(0); i < kThreadCount; i++)
thread[i].Begin(Atomic32TestThreadFunction1, &workData32);
EA::UnitTest::ThreadSleepRandom(gTestLengthSeconds*1000, gTestLengthSeconds*1000);
workData32.mbShouldQuit = true;
for(int i(0); i < kThreadCount; i++)
{
status = thread[i].WaitForEnd(GetThreadTime() + 30000);
EATEST_VERIFY_MSG(status != EA::Thread::Thread::kStatusRunning, "Atomic/Thread failure.");
}
// In the end, the sum must be zero.
EATEST_VERIFY_MSG(workData32.mnAtomicInteger1 == 0, "Atomic/Thread failure.");
EATEST_VERIFY_MSG(workData32.mnAtomicInteger2 == 0, "Atomic/Thread failure.");
nErrorCount += (int)workData32.mnErrorCount;
}
{ // Multithreaded test 2
AWorkData32 workData32;
const int kThreadCount(kMaxConcurrentThreadCount - 1);
Thread thread[kThreadCount];
Thread::Status status;
for(int i(0); i < kThreadCount; i++)
thread[i].Begin(Atomic32TestThreadFunction2, &workData32);
EA::UnitTest::ThreadSleepRandom(gTestLengthSeconds*1000, gTestLengthSeconds*1000);
workData32.mbShouldQuit = true;
for(int i(0); i < kThreadCount; i++)
{
status = thread[i].WaitForEnd(GetThreadTime() + 30000);
EATEST_VERIFY_MSG(status != EA::Thread::Thread::kStatusRunning, "Atomic/Thread failure.");
}
nErrorCount += (int)workData32.mnErrorCount;
}
{ // Multithreaded test 1
AWorkData64 workData64;
const int kThreadCount(kMaxConcurrentThreadCount - 1);
Thread thread[kThreadCount];
Thread::Status status;
for(int i(0); i < kThreadCount; i++)
thread[i].Begin(Atomic64TestThreadFunction1, &workData64);
EA::UnitTest::ThreadSleepRandom(gTestLengthSeconds*1000, gTestLengthSeconds*1000);
workData64.mbShouldQuit = true;
for(int i(0); i < kThreadCount; i++)
{
status = thread[i].WaitForEnd(GetThreadTime() + 30000);
EATEST_VERIFY_MSG(status != EA::Thread::Thread::kStatusRunning, "Atomic/Thread failure.");
}
// In the end, the sum must be zero.
EATEST_VERIFY_MSG(workData64.mnAtomicInteger1 == 0, "Atomic/Thread failure.");
EATEST_VERIFY_MSG(workData64.mnAtomicInteger2 == 0, "Atomic/Thread failure.");
nErrorCount += (int)workData64.mnErrorCount;
}
{ // Multithreaded test 2
AWorkData64 workData64;
const int kThreadCount(kMaxConcurrentThreadCount - 1);
Thread thread[kThreadCount];
Thread::Status status;
for(int i(0); i < kThreadCount; i++)
thread[i].Begin(Atomic64TestThreadFunction2, &workData64);
EA::UnitTest::ThreadSleepRandom(gTestLengthSeconds*1000, gTestLengthSeconds*1000);
workData64.mbShouldQuit = true;
for(int i(0); i < kThreadCount; i++)
{
status = thread[i].WaitForEnd(GetThreadTime() + 30000);
EATEST_VERIFY_MSG(status != EA::Thread::Thread::kStatusRunning, "Atomic/Thread failure.");
}
nErrorCount += (int)workData64.mnErrorCount;
}
{ // Multithreaded test 3
AWorkData64 workData64;
const int kThreadCount(kMaxConcurrentThreadCount - 1);
Thread thread[kThreadCount];
Thread::Status status;
for(int i(0); i < kThreadCount; i++)
thread[i].Begin(Atomic64TestThreadFunction3, &workData64);
EA::UnitTest::ThreadSleepRandom(gTestLengthSeconds*1000, gTestLengthSeconds*1000);
workData64.mbShouldQuit = true;
for(int i(0); i < kThreadCount; i++)
{
status = thread[i].WaitForEnd(GetThreadTime() + 30000);
EATEST_VERIFY_MSG(status != EA::Thread::Thread::kStatusRunning, "Atomic/Thread failure.");
}
nErrorCount += (int)workData64.mnErrorCount;
}
#endif
{
nErrorCount += TestAtomicIntT<short>();
nErrorCount += TestAtomicIntT<unsigned short>();
nErrorCount += TestAtomicIntT<int>();
nErrorCount += TestAtomicIntT<unsigned int>();
nErrorCount += TestAtomicIntT<long>();
nErrorCount += TestAtomicIntT<unsigned long>();
nErrorCount += TestAtomicIntT<intptr_t>();
nErrorCount += TestAtomicIntT<uintptr_t>();
nErrorCount += TestAtomicIntT<size_t>();
nErrorCount += TestAtomicIntT<int16_t>();
nErrorCount += TestAtomicIntT<uint16_t>();
nErrorCount += TestAtomicIntT<int32_t>();
nErrorCount += TestAtomicIntT<uint32_t>();
nErrorCount += TestAtomicIntT<char32_t>();
nErrorCount += TestAtomicIntT<long long>();
nErrorCount += TestAtomicIntT<unsigned long long>();
nErrorCount += TestAtomicIntT<int64_t>();
nErrorCount += TestAtomicIntT<uint64_t>();
}
// Non-Member Atomics Tests
{
nErrorCount += TestNonMemberAtomics<short>();
nErrorCount += TestNonMemberAtomics<unsigned short>();
nErrorCount += TestNonMemberAtomics<int>();
nErrorCount += TestNonMemberAtomics<unsigned int>();
nErrorCount += TestNonMemberAtomics<long>();
nErrorCount += TestNonMemberAtomics<unsigned long>();
nErrorCount += TestNonMemberAtomics<intptr_t>();
nErrorCount += TestNonMemberAtomics<uintptr_t>();
nErrorCount += TestNonMemberAtomics<size_t>();
nErrorCount += TestNonMemberAtomics<int16_t>();
nErrorCount += TestNonMemberAtomics<uint16_t>();
nErrorCount += TestNonMemberAtomics<int32_t>();
nErrorCount += TestNonMemberAtomics<uint32_t>();
nErrorCount += TestNonMemberAtomics<char32_t>();
nErrorCount += TestNonMemberAtomics<long long>();
nErrorCount += TestNonMemberAtomics<unsigned long long>();
nErrorCount += TestNonMemberAtomics<int64_t>();
nErrorCount += TestNonMemberAtomics<uint64_t>();
}
return nErrorCount;
}