mirror of
https://github.com/Mauler125/r5sdk.git
synced 2025-02-09 19:15:03 +01:00
415 lines
13 KiB
C++
415 lines
13 KiB
C++
// File: polar_codes.cpp
|
|
// See Copyright Notice and license at the end of include/lzham.h
|
|
//
|
|
// Andrew Polar's prefix code algorithm:
|
|
// http://ezcodesample.com/prefixer/prefixer_article.html
|
|
//
|
|
// Also implements Fyffe's approximate codelength generation method, which is
|
|
// very similar but operates directly on codelengths vs. symbol frequencies:
|
|
// Fyffe Codes for Fast Codelength Approximation, Graham Fyffe, 1999
|
|
// http://code.google.com/p/lzham/wiki/FyffeCodes
|
|
#include "include/lzham_core.h"
|
|
#include "include/lzham_polar_codes.h"
|
|
|
|
#define LZHAM_USE_SHANNON_FANO_CODES 0
|
|
#define LZHAM_USE_FYFFE_CODES 0
|
|
|
|
namespace lzham
|
|
{
|
|
struct sym_freq
|
|
{
|
|
uint16 m_freq;
|
|
uint16 m_sym;
|
|
};
|
|
|
|
static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* syms0, sym_freq* syms1)
|
|
{
|
|
const uint cMaxPasses = 2;
|
|
uint hist[256 * cMaxPasses];
|
|
|
|
memset(hist, 0, sizeof(hist[0]) * 256 * cMaxPasses);
|
|
|
|
{
|
|
sym_freq* p = syms0;
|
|
sym_freq* q = syms0 + (num_syms >> 1) * 2;
|
|
|
|
for ( ; p != q; p += 2)
|
|
{
|
|
const uint freq0 = p[0].m_freq;
|
|
const uint freq1 = p[1].m_freq;
|
|
|
|
hist[ freq0 & 0xFF]++;
|
|
hist[256 + ((freq0 >> 8) & 0xFF)]++;
|
|
|
|
hist[ freq1 & 0xFF]++;
|
|
hist[256 + ((freq1 >> 8) & 0xFF)]++;
|
|
}
|
|
|
|
if (num_syms & 1)
|
|
{
|
|
const uint freq = p->m_freq;
|
|
|
|
hist[ freq & 0xFF]++;
|
|
hist[256 + ((freq >> 8) & 0xFF)]++;
|
|
}
|
|
}
|
|
|
|
sym_freq* pCur_syms = syms0;
|
|
sym_freq* pNew_syms = syms1;
|
|
|
|
const uint total_passes = (hist[256] == num_syms) ? 1 : cMaxPasses;
|
|
|
|
for (uint pass = 0; pass < total_passes; pass++)
|
|
{
|
|
const uint* pHist = &hist[pass << 8];
|
|
|
|
uint offsets[256];
|
|
|
|
uint cur_ofs = 0;
|
|
for (uint i = 0; i < 256; i += 2)
|
|
{
|
|
offsets[i] = cur_ofs;
|
|
cur_ofs += pHist[i];
|
|
|
|
offsets[i+1] = cur_ofs;
|
|
cur_ofs += pHist[i+1];
|
|
}
|
|
|
|
const uint pass_shift = pass << 3;
|
|
|
|
sym_freq* p = pCur_syms;
|
|
sym_freq* q = pCur_syms + (num_syms >> 1) * 2;
|
|
|
|
for ( ; p != q; p += 2)
|
|
{
|
|
uint c0 = p[0].m_freq;
|
|
uint c1 = p[1].m_freq;
|
|
|
|
if (pass)
|
|
{
|
|
c0 >>= 8;
|
|
c1 >>= 8;
|
|
}
|
|
|
|
c0 &= 0xFF;
|
|
c1 &= 0xFF;
|
|
|
|
// Cut down on LHS's on console platforms by processing two at a time.
|
|
if (c0 == c1)
|
|
{
|
|
uint dst_offset0 = offsets[c0];
|
|
|
|
offsets[c0] = dst_offset0 + 2;
|
|
|
|
pNew_syms[dst_offset0] = p[0];
|
|
pNew_syms[dst_offset0 + 1] = p[1];
|
|
}
|
|
else
|
|
{
|
|
uint dst_offset0 = offsets[c0]++;
|
|
uint dst_offset1 = offsets[c1]++;
|
|
|
|
pNew_syms[dst_offset0] = p[0];
|
|
pNew_syms[dst_offset1] = p[1];
|
|
}
|
|
}
|
|
|
|
if (num_syms & 1)
|
|
{
|
|
uint c = ((p->m_freq) >> pass_shift) & 0xFF;
|
|
|
|
uint dst_offset = offsets[c];
|
|
offsets[c] = dst_offset + 1;
|
|
|
|
pNew_syms[dst_offset] = *p;
|
|
}
|
|
|
|
sym_freq* t = pCur_syms;
|
|
pCur_syms = pNew_syms;
|
|
pNew_syms = t;
|
|
}
|
|
|
|
#if LZHAM_ASSERTS_ENABLED
|
|
uint prev_freq = 0;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
LZHAM_ASSERT(!(pCur_syms[i].m_freq < prev_freq));
|
|
prev_freq = pCur_syms[i].m_freq;
|
|
}
|
|
#endif
|
|
|
|
return pCur_syms;
|
|
}
|
|
|
|
struct polar_work_tables
|
|
{
|
|
sym_freq syms0[cPolarMaxSupportedSyms];
|
|
sym_freq syms1[cPolarMaxSupportedSyms];
|
|
};
|
|
|
|
uint get_generate_polar_codes_table_size()
|
|
{
|
|
return sizeof(polar_work_tables);
|
|
}
|
|
|
|
void generate_polar_codes(uint num_syms, sym_freq* pSF, uint8* pCodesizes, uint& max_code_size_ret)
|
|
{
|
|
int tmp_freq[cPolarMaxSupportedSyms];
|
|
|
|
uint orig_total_freq = 0;
|
|
uint cur_total = 0;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint sym_freq = pSF[num_syms - 1 - i].m_freq;
|
|
orig_total_freq += sym_freq;
|
|
|
|
uint sym_len = math::total_bits(sym_freq);
|
|
uint adjusted_sym_freq = 1 << (sym_len - 1);
|
|
tmp_freq[i] = adjusted_sym_freq;
|
|
cur_total += adjusted_sym_freq;
|
|
}
|
|
|
|
uint tree_total = 1 << (math::total_bits(orig_total_freq) - 1);
|
|
if (tree_total < orig_total_freq)
|
|
tree_total <<= 1;
|
|
|
|
uint start_index = 0;
|
|
while ((cur_total < tree_total) && (start_index < num_syms))
|
|
{
|
|
for (uint i = start_index; i < num_syms; i++)
|
|
{
|
|
uint freq = tmp_freq[i];
|
|
if ((cur_total + freq) <= tree_total)
|
|
{
|
|
tmp_freq[i] += freq;
|
|
if ((cur_total += freq) == tree_total)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
start_index = i + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
LZHAM_ASSERT(cur_total == tree_total);
|
|
|
|
uint max_code_size = 0;
|
|
const uint tree_total_bits = math::total_bits(tree_total);
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint codesize = (tree_total_bits - math::total_bits(tmp_freq[i]));
|
|
max_code_size = LZHAM_MAX(codesize, max_code_size);
|
|
pCodesizes[pSF[num_syms-1-i].m_sym] = static_cast<uint8>(codesize);
|
|
}
|
|
max_code_size_ret = max_code_size;
|
|
}
|
|
|
|
#if LZHAM_USE_FYFFE_CODES
|
|
void generate_fyffe_codes(uint num_syms, sym_freq* pSF, uint8* pCodesizes, uint& max_code_size_ret)
|
|
{
|
|
int tmp_codesizes[cPolarMaxSupportedSyms];
|
|
|
|
uint cur_total = 0;
|
|
uint orig_total = 0;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint sym_freq = pSF[i].m_freq;
|
|
orig_total += sym_freq;
|
|
|
|
// Compute the nearest power of 2 lower or equal to the symbol's frequency.
|
|
// This is equivalent to codesize=ceil(-log2(sym_prob)).
|
|
uint floor_sym_freq = sym_freq;
|
|
if (!math::is_power_of_2(floor_sym_freq))
|
|
{
|
|
uint sym_freq_bits = math::total_bits(sym_freq);
|
|
floor_sym_freq = 1 << (sym_freq_bits - 1);
|
|
}
|
|
|
|
// Compute preliminary codesizes. tmp_freq's will always be <= the input frequencies.
|
|
tmp_codesizes[i] = math::total_bits(floor_sym_freq);
|
|
cur_total += floor_sym_freq;
|
|
}
|
|
|
|
// Desired_total is a power of 2, and will always be >= the adjusted frequency total.
|
|
uint desired_total = cur_total;
|
|
if (!math::is_power_of_2(desired_total))
|
|
desired_total = math::next_pow2(desired_total);
|
|
|
|
LZHAM_ASSERT(cur_total <= desired_total);
|
|
|
|
// Compute residual and initial symbol codesizes.
|
|
uint desired_total_bits = math::total_bits(desired_total);
|
|
int r = desired_total;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint codesize = desired_total_bits - tmp_codesizes[i];
|
|
tmp_codesizes[i] = static_cast<uint8>(codesize);
|
|
r -= (desired_total >> codesize);
|
|
}
|
|
|
|
LZHAM_ASSERT(r >= 0);
|
|
|
|
int sym_freq_scale = (desired_total << 7) / orig_total;
|
|
|
|
// Promote codesizes from most probable to lowest, as needed.
|
|
bool force_unhappiness = false;
|
|
while (r > 0)
|
|
{
|
|
for (int i = num_syms - 1; i >= 0; i--)
|
|
{
|
|
uint codesize = tmp_codesizes[i];
|
|
if (codesize == 1)
|
|
continue;
|
|
|
|
int sym_freq = pSF[i].m_freq;
|
|
int f = desired_total >> codesize;
|
|
if (f > r)
|
|
continue;
|
|
|
|
// A code is "unhappy" when it is assigned more bits than -log2(sym_prob).
|
|
// It's too expensive to compute -log2(sym_freq/total_freq), so instead this directly compares the symbol's original
|
|
// frequency vs. the effective/adjusted frequency. sym_freq >= f is an approximation.
|
|
//bool unhappy = force_unhappiness || (sym_freq >= f);
|
|
|
|
// Compare the symbol's original probability vs. its effective probability at its current codelength.
|
|
//bool unhappy = force_unhappiness || ((sym_freq * ((float)desired_total / orig_total)) > f);
|
|
bool unhappy = force_unhappiness || ((sym_freq * sym_freq_scale) > (f << 7));
|
|
|
|
if (unhappy)
|
|
{
|
|
tmp_codesizes[i]--;
|
|
|
|
r -= f;
|
|
if (r <= 0)
|
|
break;
|
|
}
|
|
}
|
|
// Occasionally, a second pass is required to reduce the residual to 0.
|
|
// Subsequent passes ignore unhappiness. This is not discussed in Fyffe's original article.
|
|
force_unhappiness = true;
|
|
}
|
|
|
|
LZHAM_ASSERT(!r);
|
|
|
|
uint max_code_size = 0;
|
|
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint codesize = tmp_codesizes[i];
|
|
max_code_size = LZHAM_MAX(codesize, max_code_size);
|
|
pCodesizes[pSF[i].m_sym] = static_cast<uint8>(codesize);
|
|
}
|
|
max_code_size_ret = max_code_size;
|
|
}
|
|
#endif //LZHAM_USE_FYFFE_CODES
|
|
|
|
#if LZHAM_USE_SHANNON_FANO_CODES
|
|
// Straightforward recursive Shannon-Fano implementation, for comparison purposes.
|
|
static void generate_shannon_fano_codes_internal(uint num_syms, sym_freq* pSF, uint8* pCodesizes, int l, int h, uint total_freq)
|
|
{
|
|
LZHAM_ASSERT((h - l) >= 2);
|
|
|
|
uint left_total = total_freq;
|
|
uint right_total = 0;
|
|
int best_diff = INT_MAX;
|
|
int best_split_index = 0;
|
|
for (int i = h - 1; i > l; i--)
|
|
{
|
|
uint freq = pSF[i].m_freq;
|
|
uint next_left_total = left_total - freq;
|
|
uint next_right_total = right_total + freq;
|
|
LZHAM_ASSERT((next_left_total + next_right_total) == total_freq);
|
|
|
|
int diff = labs(next_left_total - next_right_total);
|
|
if (diff >= best_diff)
|
|
break;
|
|
|
|
left_total = next_left_total;
|
|
right_total = next_right_total;
|
|
best_split_index = i;
|
|
best_diff = diff;
|
|
if (!best_diff)
|
|
break;
|
|
}
|
|
|
|
for (int i = l; i < h; i++)
|
|
pCodesizes[i]++;
|
|
|
|
if ((best_split_index - l) > 1) generate_shannon_fano_codes_internal(num_syms, pSF, pCodesizes, l, best_split_index, left_total);
|
|
if ((h - best_split_index) > 1) generate_shannon_fano_codes_internal(num_syms, pSF, pCodesizes, best_split_index, h, right_total);
|
|
}
|
|
|
|
void generate_shannon_fano_codes(uint num_syms, sym_freq* pSF, uint total_freq, uint8* pCodesizes, uint& max_code_size_ret)
|
|
{
|
|
LZHAM_ASSERT(num_syms >= 2);
|
|
uint8 tmp_codesizes[cPolarMaxSupportedSyms];
|
|
memset(tmp_codesizes, 0, num_syms);
|
|
|
|
generate_shannon_fano_codes_internal(num_syms, pSF, tmp_codesizes, 0, num_syms, total_freq);
|
|
|
|
uint max_code_size = 0;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint codesize = tmp_codesizes[i];
|
|
max_code_size = LZHAM_MAX(codesize, max_code_size);
|
|
pCodesizes[pSF[i].m_sym] = static_cast<uint8>(codesize);
|
|
}
|
|
max_code_size_ret = max_code_size;
|
|
}
|
|
#endif // LZHAM_USE_SHANNON_FANO_CODES
|
|
|
|
bool generate_polar_codes(void* pContext, uint num_syms, const uint16* pFreq, uint8* pCodesizes, uint& max_code_size, uint& total_freq_ret)
|
|
{
|
|
if ((!num_syms) || (num_syms > cPolarMaxSupportedSyms))
|
|
return false;
|
|
|
|
polar_work_tables& state = *static_cast<polar_work_tables*>(pContext);
|
|
|
|
uint max_freq = 0;
|
|
uint total_freq = 0;
|
|
|
|
uint num_used_syms = 0;
|
|
for (uint i = 0; i < num_syms; i++)
|
|
{
|
|
uint freq = pFreq[i];
|
|
|
|
if (!freq)
|
|
pCodesizes[i] = 0;
|
|
else
|
|
{
|
|
total_freq += freq;
|
|
max_freq = math::maximum(max_freq, freq);
|
|
|
|
sym_freq& sf = state.syms0[num_used_syms];
|
|
sf.m_sym = static_cast<uint16>(i);
|
|
sf.m_freq = static_cast<uint16>(freq);
|
|
num_used_syms++;
|
|
}
|
|
}
|
|
|
|
total_freq_ret = total_freq;
|
|
|
|
if (num_used_syms == 1)
|
|
{
|
|
pCodesizes[state.syms0[0].m_sym] = 1;
|
|
}
|
|
else
|
|
{
|
|
sym_freq* syms = radix_sort_syms(num_used_syms, state.syms0, state.syms1);
|
|
|
|
#if LZHAM_USE_SHANNON_FANO_CODES
|
|
generate_shannon_fano_codes(num_syms, syms, total_freq, pCodesizes, max_code_size);
|
|
#elif LZHAM_USE_FYFFE_CODES
|
|
generate_fyffe_codes(num_syms, syms, pCodesizes, max_code_size);
|
|
#else
|
|
generate_polar_codes(num_syms, syms, pCodesizes, max_code_size);
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace lzham
|
|
|