/* * SPIRVToMSLConverter.cpp * * Copyright (c) 2014-2019 The Brenwill Workshop Ltd. (http://www.brenwill.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SPIRVToMSLConverter.h" #include "MVKCommonEnvironment.h" #include "MVKStrings.h" #include "FileSupport.h" #include "SPIRVSupport.h" #include #include using namespace mvk; using namespace std; #pragma mark - #pragma mark SPIRVToMSLConverterContext // Returns whether the vector contains the value (using a matches(T&) comparison member function). */ template bool contains(const vector& vec, const T& val) { for (const T& vecVal : vec) { if (vecVal.matches(val)) { return true; } } return false; } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverterOptions::matches(const SPIRVToMSLConverterOptions& other) const { if (entryPointStage != other.entryPointStage) { return false; } if (mslVersion != other.mslVersion) { return false; } if (texelBufferTextureWidth != other.texelBufferTextureWidth) { return false; } if (swizzleBufferIndex != other.swizzleBufferIndex) { return false; } if (indirectParamsBufferIndex != other.indirectParamsBufferIndex) { return false; } if (outputBufferIndex != other.outputBufferIndex) { return false; } if (patchOutputBufferIndex != other.patchOutputBufferIndex) { return false; } if (tessLevelBufferIndex != other.tessLevelBufferIndex) { return false; } if (bufferSizeBufferIndex != other.bufferSizeBufferIndex) { return false; } if (inputThreadgroupMemIndex != other.inputThreadgroupMemIndex) { return false; } if (!!shouldFlipVertexY != !!other.shouldFlipVertexY) { return false; } if (!!isRenderingPoints != !!other.isRenderingPoints) { return false; } if (!!shouldSwizzleTextureSamples != !!other.shouldSwizzleTextureSamples) { return false; } if (!!shouldCaptureOutput != !!other.shouldCaptureOutput) { return false; } if (!!tessDomainOriginInLowerLeft != !!other.tessDomainOriginInLowerLeft) { return false; } if (tessPatchKind != other.tessPatchKind) { return false; } if (numTessControlPoints != other.numTessControlPoints) { return false; } if (entryPointName != other.entryPointName) { return false; } return true; } MVK_PUBLIC_SYMBOL std::string SPIRVToMSLConverterOptions::printMSLVersion(uint32_t mslVersion, bool includePatch) { string verStr; uint32_t major = mslVersion / 10000; verStr += to_string(major); uint32_t minor = (mslVersion - makeMSLVersion(major)) / 100; verStr += "."; verStr += to_string(minor); if (includePatch) { uint32_t patch = mslVersion - makeMSLVersion(major, minor); verStr += "."; verStr += to_string(patch); } return verStr; } MVK_PUBLIC_SYMBOL mvk::SPIRVToMSLConverterOptions::Platform SPIRVToMSLConverterOptions::getNativePlatform() { #if MVK_MACOS return SPIRVToMSLConverterOptions::macOS; #endif #if MVK_IOS return SPIRVToMSLConverterOptions::iOS; #endif } MVK_PUBLIC_SYMBOL bool MSLVertexAttribute::matches(const MSLVertexAttribute& other) const { if (location != other.location) { return false; } if (mslBuffer != other.mslBuffer) { return false; } if (mslOffset != other.mslOffset) { return false; } if (mslStride != other.mslStride) { return false; } if (format != other.format) { return false; } if (builtin != other.builtin) { return false; } if (!!isPerInstance != !!other.isPerInstance) { return false; } return true; } MVK_PUBLIC_SYMBOL bool MSLResourceBinding::matches(const MSLResourceBinding& other) const { if (stage != other.stage) { return false; } if (descriptorSet != other.descriptorSet) { return false; } if (binding != other.binding) { return false; } if (mslBuffer != other.mslBuffer) { return false; } if (mslTexture != other.mslTexture) { return false; } if (mslSampler != other.mslSampler) { return false; } return true; } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverterContext::stageSupportsVertexAttributes() const { return (options.entryPointStage == spv::ExecutionModelVertex || options.entryPointStage == spv::ExecutionModelTessellationControl || options.entryPointStage == spv::ExecutionModelTessellationEvaluation); } // Check them all in case inactive VA's duplicate locations used by active VA's. MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverterContext::isVertexAttributeLocationUsed(uint32_t location) const { for (auto& va : vertexAttributes) { if ((va.location == location) && va.isUsedByShader) { return true; } } return false; } // Check them all in case inactive VA's duplicate buffers used by active VA's. MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverterContext::isVertexBufferUsed(uint32_t mslBuffer) const { for (auto& va : vertexAttributes) { if ((va.mslBuffer == mslBuffer) && va.isUsedByShader) { return true; } } return false; } MVK_PUBLIC_SYMBOL void SPIRVToMSLConverterContext::markAllAttributesAndResourcesUsed() { if (stageSupportsVertexAttributes()) { for (auto& va : vertexAttributes) { va.isUsedByShader = true; } } for (auto& rb : resourceBindings) { rb.isUsedByShader = true; } } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverterContext::matches(const SPIRVToMSLConverterContext& other) const { if ( !options.matches(other.options) ) { return false; } if (stageSupportsVertexAttributes()) { for (const auto& va : vertexAttributes) { if (va.isUsedByShader && !contains(other.vertexAttributes, va)) { return false; } } } for (const auto& rb : resourceBindings) { if (rb.isUsedByShader && !contains(other.resourceBindings, rb)) { return false; } } return true; } MVK_PUBLIC_SYMBOL void SPIRVToMSLConverterContext::alignWith(const SPIRVToMSLConverterContext& srcContext) { options.isRasterizationDisabled = srcContext.options.isRasterizationDisabled; options.needsSwizzleBuffer = srcContext.options.needsSwizzleBuffer; options.needsOutputBuffer = srcContext.options.needsOutputBuffer; options.needsPatchOutputBuffer = srcContext.options.needsPatchOutputBuffer; options.needsBufferSizeBuffer = srcContext.options.needsBufferSizeBuffer; options.needsInputThreadgroupMem = srcContext.options.needsInputThreadgroupMem; if (stageSupportsVertexAttributes()) { for (auto& va : vertexAttributes) { va.isUsedByShader = false; for (auto& srcVA : srcContext.vertexAttributes) { if (va.matches(srcVA)) { va.isUsedByShader = srcVA.isUsedByShader; } } } } for (auto& rb : resourceBindings) { rb.isUsedByShader = false; for (auto& srcRB : srcContext.resourceBindings) { if (rb.matches(srcRB)) { rb.isUsedByShader = srcRB.isUsedByShader; } } } } #pragma mark - #pragma mark SPIRVToMSLConverter // Return the SPIRV-Cross platform enum corresponding to a SPIRVToMSLConverterOptions platform enum value. SPIRV_CROSS_NAMESPACE::CompilerMSL::Options::Platform getCompilerMSLPlatform(SPIRVToMSLConverterOptions::Platform platform); // Populates the entry point with info extracted from the SPRI-V compiler. void populateEntryPoint(SPIRVEntryPoint& entryPoint, SPIRV_CROSS_NAMESPACE::Compiler* pCompiler, SPIRVToMSLConverterOptions& options); MVK_PUBLIC_SYMBOL void SPIRVToMSLConverter::setSPIRV(const uint32_t* spirvCode, size_t length) { _spirv.clear(); // Clear for reuse _spirv.reserve(length); for (size_t i = 0; i < length; i++) { _spirv.push_back(spirvCode[i]); } } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverter::convert(SPIRVToMSLConverterContext& context, bool shouldLogSPIRV, bool shouldLogMSL, bool shouldLogGLSL) { // Uncomment to write SPIR-V to file as a debugging aid // ofstream spvFile("spirv.spv", ios::binary); // spvFile.write((char*)_spirv.data(), _spirv.size() << 2); // spvFile.close(); _wasConverted = true; _resultLog.clear(); _msl.clear(); if (shouldLogSPIRV) { logSPIRV("Converting"); } SPIRV_CROSS_NAMESPACE::CompilerMSL* pMSLCompiler = nullptr; #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS try { #endif pMSLCompiler = new SPIRV_CROSS_NAMESPACE::CompilerMSL(_spirv); if (context.options.hasEntryPoint()) { pMSLCompiler->set_entry_point(context.options.entryPointName, context.options.entryPointStage); } // Set up tessellation parameters if needed. if (context.options.entryPointStage == spv::ExecutionModelTessellationControl || context.options.entryPointStage == spv::ExecutionModelTessellationEvaluation) { if (context.options.tessPatchKind != spv::ExecutionModeMax) { pMSLCompiler->set_execution_mode(context.options.tessPatchKind); } if (context.options.numTessControlPoints != 0) { pMSLCompiler->set_execution_mode(spv::ExecutionModeOutputVertices, context.options.numTessControlPoints); } } // Establish the MSL options for the compiler // This needs to be done in two steps...for CompilerMSL and its superclass. auto mslOpts = pMSLCompiler->get_msl_options(); mslOpts.platform = getCompilerMSLPlatform(context.options.platform); mslOpts.msl_version = context.options.mslVersion; mslOpts.texel_buffer_texture_width = context.options.texelBufferTextureWidth; mslOpts.swizzle_buffer_index = context.options.swizzleBufferIndex; mslOpts.indirect_params_buffer_index = context.options.indirectParamsBufferIndex; mslOpts.shader_output_buffer_index = context.options.outputBufferIndex; mslOpts.shader_patch_output_buffer_index = context.options.patchOutputBufferIndex; mslOpts.shader_tess_factor_buffer_index = context.options.tessLevelBufferIndex; mslOpts.buffer_size_buffer_index = context.options.bufferSizeBufferIndex; mslOpts.shader_input_wg_index = context.options.inputThreadgroupMemIndex; mslOpts.enable_point_size_builtin = context.options.isRenderingPoints; mslOpts.disable_rasterization = context.options.isRasterizationDisabled; mslOpts.swizzle_texture_samples = context.options.shouldSwizzleTextureSamples; mslOpts.capture_output_to_buffer = context.options.shouldCaptureOutput; mslOpts.tess_domain_origin_lower_left = context.options.tessDomainOriginInLowerLeft; mslOpts.pad_fragment_output_components = true; pMSLCompiler->set_msl_options(mslOpts); auto scOpts = pMSLCompiler->get_common_options(); scOpts.vertex.flip_vert_y = context.options.shouldFlipVertexY; pMSLCompiler->set_common_options(scOpts); // Add vertex attributes if (context.stageSupportsVertexAttributes()) { SPIRV_CROSS_NAMESPACE::MSLVertexAttr va; for (auto& ctxVA : context.vertexAttributes) { va.location = ctxVA.location; va.builtin = ctxVA.builtin; va.msl_buffer = ctxVA.mslBuffer; va.msl_offset = ctxVA.mslOffset; va.msl_stride = ctxVA.mslStride; va.per_instance = ctxVA.isPerInstance; switch (ctxVA.format) { case MSLVertexFormat::Other: va.format = SPIRV_CROSS_NAMESPACE::MSL_VERTEX_FORMAT_OTHER; break; case MSLVertexFormat::UInt8: va.format = SPIRV_CROSS_NAMESPACE::MSL_VERTEX_FORMAT_UINT8; break; case MSLVertexFormat::UInt16: va.format = SPIRV_CROSS_NAMESPACE::MSL_VERTEX_FORMAT_UINT16; break; } pMSLCompiler->add_msl_vertex_attribute(va); } } // Add resource bindings SPIRV_CROSS_NAMESPACE::MSLResourceBinding rb; for (auto& ctxRB : context.resourceBindings) { rb.desc_set = ctxRB.descriptorSet; rb.binding = ctxRB.binding; rb.stage = ctxRB.stage; rb.msl_buffer = ctxRB.mslBuffer; rb.msl_texture = ctxRB.mslTexture; rb.msl_sampler = ctxRB.mslSampler; pMSLCompiler->add_msl_resource_binding(rb); } _msl = pMSLCompiler->compile(); if (shouldLogMSL) { logSource(_msl, "MSL", "Converted"); } #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS } catch (SPIRV_CROSS_NAMESPACE::CompilerError& ex) { string errMsg("MSL conversion error: "); errMsg += ex.what(); logError(errMsg.data()); if (shouldLogMSL && pMSLCompiler) { _msl = pMSLCompiler->get_partial_source(); logSource(_msl, "MSL", "Partially converted"); } } #endif // Populate the shader context with info from the compilation run, including // which vertex attributes and resource bindings are used by the shader populateEntryPoint(_entryPoint, pMSLCompiler, context.options); context.options.isRasterizationDisabled = pMSLCompiler && pMSLCompiler->get_is_rasterization_disabled(); context.options.needsSwizzleBuffer = pMSLCompiler && pMSLCompiler->needs_swizzle_buffer(); context.options.needsOutputBuffer = pMSLCompiler && pMSLCompiler->needs_output_buffer(); context.options.needsPatchOutputBuffer = pMSLCompiler && pMSLCompiler->needs_patch_output_buffer(); context.options.needsBufferSizeBuffer = pMSLCompiler && pMSLCompiler->needs_buffer_size_buffer(); context.options.needsInputThreadgroupMem = pMSLCompiler && pMSLCompiler->needs_input_threadgroup_mem(); if (context.stageSupportsVertexAttributes()) { for (auto& ctxVA : context.vertexAttributes) { ctxVA.isUsedByShader = pMSLCompiler->is_msl_vertex_attribute_used(ctxVA.location); } } for (auto& ctxRB : context.resourceBindings) { ctxRB.isUsedByShader = pMSLCompiler->is_msl_resource_binding_used(ctxRB.stage, ctxRB.descriptorSet, ctxRB.binding); } delete pMSLCompiler; // To check GLSL conversion if (shouldLogGLSL) { SPIRV_CROSS_NAMESPACE::CompilerGLSL* pGLSLCompiler = nullptr; #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS try { #endif pGLSLCompiler = new SPIRV_CROSS_NAMESPACE::CompilerGLSL(_spirv); auto options = pGLSLCompiler->get_common_options(); options.vulkan_semantics = true; options.separate_shader_objects = true; pGLSLCompiler->set_common_options(options); string glsl = pGLSLCompiler->compile(); logSource(glsl, "GLSL", "Estimated original"); #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS } catch (SPIRV_CROSS_NAMESPACE::CompilerError& ex) { string errMsg("Original GLSL extraction error: "); errMsg += ex.what(); logMsg(errMsg.data()); if (pGLSLCompiler) { string glsl = pGLSLCompiler->get_partial_source(); logSource(glsl, "GLSL", "Partially converted"); } } #endif delete pGLSLCompiler; } return _wasConverted; } /** Appends the message text to the result log. */ void SPIRVToMSLConverter::logMsg(const char* logMsg) { string trimMsg = trim(logMsg); if ( !trimMsg.empty() ) { _resultLog += trimMsg; _resultLog += "\n\n"; } } /** Appends the error text to the result log, sets the wasConverted property to false, and returns it. */ bool SPIRVToMSLConverter::logError(const char* errMsg) { logMsg(errMsg); _wasConverted = false; return _wasConverted; } /** Appends the SPIR-V to the result log, indicating whether it is being converted or was converted. */ void SPIRVToMSLConverter::logSPIRV(const char* opDesc) { string spvLog; mvk::logSPIRV(_spirv, spvLog); _resultLog += opDesc; _resultLog += " SPIR-V:\n"; _resultLog += spvLog; _resultLog += "\nEnd SPIR-V\n\n"; // Uncomment one or both of the following lines to get additional debugging and tracability capabilities. // The SPIR-V can be written in binary form to a file, and/or logged in human readable form to the console. // These can be helpful if errors occur during conversion of SPIR-V to MSL. // writeSPIRVToFile("spvout.spv"); // printf("\n%s\n", getResultLog().c_str()); } /** * Writes the SPIR-V code to a file. This can be useful for debugging * when the SPRIR-V did not originally come from a known file */ void SPIRVToMSLConverter::writeSPIRVToFile(string spvFilepath) { vector fileContents; spirvToBytes(_spirv, fileContents); string errMsg; if (writeFile(spvFilepath, fileContents, errMsg)) { _resultLog += "Saved SPIR-V to file: " + absolutePath(spvFilepath) + "\n\n"; } else { _resultLog += "Could not write SPIR-V file. " + errMsg + "\n\n"; } } /** Validates that the SPIR-V code will disassemble during logging. */ bool SPIRVToMSLConverter::validateSPIRV() { if (_spirv.size() < 5) { return false; } if (_spirv[0] != spv::MagicNumber) { return false; } if (_spirv[4] != 0) { return false; } return true; } /** Appends the source to the result log, prepending with the operation. */ void SPIRVToMSLConverter::logSource(string& src, const char* srcLang, const char* opDesc) { _resultLog += opDesc; _resultLog += " "; _resultLog += srcLang; _resultLog += ":\n"; _resultLog += src; _resultLog += "\nEnd "; _resultLog += srcLang; _resultLog += "\n\n"; } #pragma mark Support functions // Return the SPIRV-Cross platform enum corresponding to a SPIRVToMSLConverterOptions platform enum value. SPIRV_CROSS_NAMESPACE::CompilerMSL::Options::Platform getCompilerMSLPlatform(SPIRVToMSLConverterOptions::Platform platform) { switch (platform) { case SPIRVToMSLConverterOptions::macOS: return SPIRV_CROSS_NAMESPACE::CompilerMSL::Options::macOS; case SPIRVToMSLConverterOptions::iOS: return SPIRV_CROSS_NAMESPACE::CompilerMSL::Options::iOS; } } // Populate a workgroup size dimension. void populateWorkgroupDimension(SPIRVWorkgroupSizeDimension& wgDim, uint32_t size, SPIRV_CROSS_NAMESPACE::SpecializationConstant& spvSpecConst) { wgDim.size = max(size, 1u); wgDim.isSpecialized = (spvSpecConst.id != 0); wgDim.specializationID = spvSpecConst.constant_id; } void populateEntryPoint(SPIRVEntryPoint& entryPoint, SPIRV_CROSS_NAMESPACE::Compiler* pCompiler, SPIRVToMSLConverterOptions& options) { if ( !pCompiler ) { return; } SPIRV_CROSS_NAMESPACE::SPIREntryPoint spvEP; if (options.hasEntryPoint()) { spvEP = pCompiler->get_entry_point(options.entryPointName, options.entryPointStage); } else { const auto& entryPoints = pCompiler->get_entry_points_and_stages(); if ( !entryPoints.empty() ) { auto& ep = entryPoints[0]; spvEP = pCompiler->get_entry_point(ep.name, ep.execution_model); } } SPIRV_CROSS_NAMESPACE::SpecializationConstant widthSC, heightSC, depthSC; pCompiler->get_work_group_size_specialization_constants(widthSC, heightSC, depthSC); entryPoint.mtlFunctionName = spvEP.name; populateWorkgroupDimension(entryPoint.workgroupSize.width, spvEP.workgroup_size.x, widthSC); populateWorkgroupDimension(entryPoint.workgroupSize.height, spvEP.workgroup_size.y, heightSC); populateWorkgroupDimension(entryPoint.workgroupSize.depth, spvEP.workgroup_size.z, depthSC); }