/* * SPIRVToMSLConverter.cpp * * Copyright (c) 2015-2020 The Brenwill Workshop Ltd. (http://www.brenwill.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SPIRVToMSLConverter.h" #include "MVKCommonEnvironment.h" #include "MVKStrings.h" #include "FileSupport.h" #include "SPIRVSupport.h" #include using namespace mvk; using namespace std; using namespace SPIRV_CROSS_NAMESPACE; #pragma mark - #pragma mark SPIRVToMSLConversionConfiguration // Returns whether the vector contains the value (using a matches(T&) comparison member function). */ template bool containsMatching(const vector& vec, const T& val) { for (const T& vecVal : vec) { if (vecVal.matches(val)) { return true; } } return false; } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConversionOptions::matches(const SPIRVToMSLConversionOptions& other) const { if (entryPointStage != other.entryPointStage) { return false; } if (entryPointName != other.entryPointName) { return false; } if (tessPatchKind != other.tessPatchKind) { return false; } if (numTessControlPoints != other.numTessControlPoints) { return false; } if (shouldFlipVertexY != other.shouldFlipVertexY) { return false; } if (memcmp(&mslOptions, &other.mslOptions, sizeof(mslOptions)) != 0) { return false; } return true; } MVK_PUBLIC_SYMBOL std::string SPIRVToMSLConversionOptions::printMSLVersion(uint32_t mslVersion, bool includePatch) { string verStr; uint32_t major = mslVersion / 10000; verStr += to_string(major); uint32_t minor = (mslVersion - CompilerMSL::Options::make_msl_version(major)) / 100; verStr += "."; verStr += to_string(minor); if (includePatch) { uint32_t patch = mslVersion - CompilerMSL::Options::make_msl_version(major, minor); verStr += "."; verStr += to_string(patch); } return verStr; } MVK_PUBLIC_SYMBOL SPIRVToMSLConversionOptions::SPIRVToMSLConversionOptions() { // Explicitly set mslOptions to defaults over cleared memory to ensure all instances // have exactly the same memory layout when using memory comparison in matches(). memset(&mslOptions, 0, sizeof(mslOptions)); mslOptions = CompilerMSL::Options(); #if MVK_MACOS mslOptions.platform = CompilerMSL::Options::macOS; #endif #if MVK_IOS mslOptions.platform = CompilerMSL::Options::iOS; #endif #if MVK_TVOS mslOptions.platform = CompilerMSL::Options::iOS; #endif mslOptions.pad_fragment_output_components = true; } MVK_PUBLIC_SYMBOL bool mvk::MSLShaderInput::matches(const mvk::MSLShaderInput& other) const { if (shaderInput.location != other.shaderInput.location) { return false; } if (shaderInput.format != other.shaderInput.format) { return false; } if (shaderInput.builtin != other.shaderInput.builtin) { return false; } if (shaderInput.vecsize != other.shaderInput.vecsize) { return false; } if (binding != other.binding) { return false; } return true; } MVK_PUBLIC_SYMBOL bool mvk::MSLResourceBinding::matches(const MSLResourceBinding& other) const { if (resourceBinding.stage != other.resourceBinding.stage) { return false; } if (resourceBinding.desc_set != other.resourceBinding.desc_set) { return false; } if (resourceBinding.binding != other.resourceBinding.binding) { return false; } if (resourceBinding.msl_buffer != other.resourceBinding.msl_buffer) { return false; } if (resourceBinding.msl_texture != other.resourceBinding.msl_texture) { return false; } if (resourceBinding.msl_sampler != other.resourceBinding.msl_sampler) { return false; } if (requiresConstExprSampler != other.requiresConstExprSampler) { return false; } // If requiresConstExprSampler is false, constExprSampler can be ignored if (requiresConstExprSampler) { if (constExprSampler.coord != other.constExprSampler.coord) { return false; } if (constExprSampler.min_filter != other.constExprSampler.min_filter) { return false; } if (constExprSampler.mag_filter != other.constExprSampler.mag_filter) { return false; } if (constExprSampler.mip_filter != other.constExprSampler.mip_filter) { return false; } if (constExprSampler.s_address != other.constExprSampler.s_address) { return false; } if (constExprSampler.t_address != other.constExprSampler.t_address) { return false; } if (constExprSampler.r_address != other.constExprSampler.r_address) { return false; } if (constExprSampler.compare_func != other.constExprSampler.compare_func) { return false; } if (constExprSampler.border_color != other.constExprSampler.border_color) { return false; } if (constExprSampler.lod_clamp_min != other.constExprSampler.lod_clamp_min) { return false; } if (constExprSampler.lod_clamp_max != other.constExprSampler.lod_clamp_max) { return false; } if (constExprSampler.max_anisotropy != other.constExprSampler.max_anisotropy) { return false; } if (constExprSampler.planes != other.constExprSampler.planes) { return false; } if (constExprSampler.resolution != other.constExprSampler.resolution) { return false; } if (constExprSampler.chroma_filter != other.constExprSampler.chroma_filter) { return false; } if (constExprSampler.x_chroma_offset != other.constExprSampler.x_chroma_offset) { return false; } if (constExprSampler.y_chroma_offset != other.constExprSampler.y_chroma_offset) { return false; } for(uint32_t i = 0; i < 4; ++i) if (constExprSampler.swizzle[i] != other.constExprSampler.swizzle[i]) { return false; } if (constExprSampler.ycbcr_model != other.constExprSampler.ycbcr_model) { return false; } if (constExprSampler.ycbcr_range != other.constExprSampler.ycbcr_range) { return false; } if (constExprSampler.bpc != other.constExprSampler.bpc) { return false; } if (constExprSampler.compare_enable != other.constExprSampler.compare_enable) { return false; } if (constExprSampler.lod_clamp_enable != other.constExprSampler.lod_clamp_enable) { return false; } if (constExprSampler.anisotropy_enable != other.constExprSampler.anisotropy_enable) { return false; } if (constExprSampler.ycbcr_conversion_enable != other.constExprSampler.ycbcr_conversion_enable) { return false; } } return true; } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConversionConfiguration::stageSupportsVertexAttributes() const { return (options.entryPointStage == spv::ExecutionModelVertex || options.entryPointStage == spv::ExecutionModelTessellationControl || options.entryPointStage == spv::ExecutionModelTessellationEvaluation); } // Check them all in case inactive VA's duplicate locations used by active VA's. MVK_PUBLIC_SYMBOL bool SPIRVToMSLConversionConfiguration::isShaderInputLocationUsed(uint32_t location) const { for (auto& si : shaderInputs) { if ((si.shaderInput.location == location) && si.isUsedByShader) { return true; } } return false; } MVK_PUBLIC_SYMBOL uint32_t SPIRVToMSLConversionConfiguration::countShaderInputsAt(uint32_t binding) const { uint32_t siCnt = 0; for (auto& si : shaderInputs) { if ((si.binding == binding) && si.isUsedByShader) { siCnt++; } } return siCnt; } MVK_PUBLIC_SYMBOL void SPIRVToMSLConversionConfiguration::markAllInputsAndResourcesUsed() { for (auto& si : shaderInputs) { si.isUsedByShader = true; } for (auto& rb : resourceBindings) { rb.isUsedByShader = true; } } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConversionConfiguration::matches(const SPIRVToMSLConversionConfiguration& other) const { if ( !options.matches(other.options) ) { return false; } for (const auto& si : shaderInputs) { if (si.isUsedByShader && !containsMatching(other.shaderInputs, si)) { return false; } } for (const auto& rb : resourceBindings) { if (rb.isUsedByShader && !containsMatching(other.resourceBindings, rb)) { return false; } } return true; } MVK_PUBLIC_SYMBOL void SPIRVToMSLConversionConfiguration::alignWith(const SPIRVToMSLConversionConfiguration& srcContext) { for (auto& si : shaderInputs) { si.isUsedByShader = false; for (auto& srcSI : srcContext.shaderInputs) { if (si.matches(srcSI)) { si.isUsedByShader = srcSI.isUsedByShader; } } } for (auto& rb : resourceBindings) { rb.isUsedByShader = false; for (auto& srcRB : srcContext.resourceBindings) { if (rb.matches(srcRB)) { rb.isUsedByShader = srcRB.isUsedByShader; } } } } #pragma mark - #pragma mark SPIRVToMSLConverter MVK_PUBLIC_SYMBOL void SPIRVToMSLConverter::setSPIRV(const uint32_t* spirvCode, size_t length) { _spirv.clear(); // Clear for reuse _spirv.reserve(length); for (size_t i = 0; i < length; i++) { _spirv.push_back(spirvCode[i]); } } MVK_PUBLIC_SYMBOL bool SPIRVToMSLConverter::convert(SPIRVToMSLConversionConfiguration& context, bool shouldLogSPIRV, bool shouldLogMSL, bool shouldLogGLSL) { // Uncomment to write SPIR-V to file as a debugging aid // ofstream spvFile("spirv.spv", ios::binary); // spvFile.write((char*)_spirv.data(), _spirv.size() << 2); // spvFile.close(); _wasConverted = true; _resultLog.clear(); _msl.clear(); _shaderConversionResults.reset(); if (shouldLogSPIRV) { logSPIRV("Converting"); } SPIRV_CROSS_NAMESPACE::CompilerMSL* pMSLCompiler = nullptr; #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS try { #endif pMSLCompiler = new SPIRV_CROSS_NAMESPACE::CompilerMSL(_spirv); if (context.options.hasEntryPoint()) { pMSLCompiler->set_entry_point(context.options.entryPointName, context.options.entryPointStage); } // Set up tessellation parameters if needed. if (context.options.entryPointStage == spv::ExecutionModelTessellationControl || context.options.entryPointStage == spv::ExecutionModelTessellationEvaluation) { if (context.options.tessPatchKind != spv::ExecutionModeMax) { pMSLCompiler->set_execution_mode(context.options.tessPatchKind); } if (context.options.numTessControlPoints != 0) { pMSLCompiler->set_execution_mode(spv::ExecutionModeOutputVertices, context.options.numTessControlPoints); } } // Establish the MSL options for the compiler // This needs to be done in two steps...for CompilerMSL and its superclass. pMSLCompiler->set_msl_options(context.options.mslOptions); auto scOpts = pMSLCompiler->get_common_options(); scOpts.vertex.flip_vert_y = context.options.shouldFlipVertexY; pMSLCompiler->set_common_options(scOpts); // Add shader inputs for (auto& si : context.shaderInputs) { pMSLCompiler->add_msl_shader_input(si.shaderInput); } // Add resource bindings and hardcoded constexpr samplers for (auto& rb : context.resourceBindings) { auto& rbb = rb.resourceBinding; pMSLCompiler->add_msl_resource_binding(rbb); if (rb.requiresConstExprSampler) { pMSLCompiler->remap_constexpr_sampler_by_binding(rbb.desc_set, rbb.binding, rb.constExprSampler); } } _msl = pMSLCompiler->compile(); if (shouldLogMSL) { logSource(_msl, "MSL", "Converted"); } #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS } catch (SPIRV_CROSS_NAMESPACE::CompilerError& ex) { string errMsg("MSL conversion error: "); errMsg += ex.what(); logError(errMsg.data()); if (shouldLogMSL && pMSLCompiler) { _msl = pMSLCompiler->get_partial_source(); logSource(_msl, "MSL", "Partially converted"); } } #endif // Populate the shader conversion results with info from the compilation run, // and mark which vertex attributes and resource bindings are used by the shader populateEntryPoint(pMSLCompiler, context.options); _shaderConversionResults.isRasterizationDisabled = pMSLCompiler && pMSLCompiler->get_is_rasterization_disabled(); _shaderConversionResults.needsSwizzleBuffer = pMSLCompiler && pMSLCompiler->needs_swizzle_buffer(); _shaderConversionResults.needsOutputBuffer = pMSLCompiler && pMSLCompiler->needs_output_buffer(); _shaderConversionResults.needsPatchOutputBuffer = pMSLCompiler && pMSLCompiler->needs_patch_output_buffer(); _shaderConversionResults.needsBufferSizeBuffer = pMSLCompiler && pMSLCompiler->needs_buffer_size_buffer(); _shaderConversionResults.needsInputThreadgroupMem = pMSLCompiler && pMSLCompiler->needs_input_threadgroup_mem(); _shaderConversionResults.needsDispatchBaseBuffer = pMSLCompiler && pMSLCompiler->needs_dispatch_base_buffer(); for (auto& ctxSI : context.shaderInputs) { ctxSI.isUsedByShader = pMSLCompiler->is_msl_shader_input_used(ctxSI.shaderInput.location); } for (auto& ctxRB : context.resourceBindings) { ctxRB.isUsedByShader = pMSLCompiler->is_msl_resource_binding_used(ctxRB.resourceBinding.stage, ctxRB.resourceBinding.desc_set, ctxRB.resourceBinding.binding); } delete pMSLCompiler; // To check GLSL conversion if (shouldLogGLSL) { SPIRV_CROSS_NAMESPACE::CompilerGLSL* pGLSLCompiler = nullptr; #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS try { #endif pGLSLCompiler = new SPIRV_CROSS_NAMESPACE::CompilerGLSL(_spirv); auto options = pGLSLCompiler->get_common_options(); options.vulkan_semantics = true; options.separate_shader_objects = true; pGLSLCompiler->set_common_options(options); string glsl = pGLSLCompiler->compile(); logSource(glsl, "GLSL", "Estimated original"); #ifndef SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS } catch (SPIRV_CROSS_NAMESPACE::CompilerError& ex) { string errMsg("Original GLSL extraction error: "); errMsg += ex.what(); logMsg(errMsg.data()); if (pGLSLCompiler) { string glsl = pGLSLCompiler->get_partial_source(); logSource(glsl, "GLSL", "Partially converted"); } } #endif delete pGLSLCompiler; } return _wasConverted; } // Appends the message text to the result log. void SPIRVToMSLConverter::logMsg(const char* logMsg) { string trimMsg = trim(logMsg); if ( !trimMsg.empty() ) { _resultLog += trimMsg; _resultLog += "\n\n"; } } // Appends the error text to the result log, sets the wasConverted property to false, and returns it. bool SPIRVToMSLConverter::logError(const char* errMsg) { logMsg(errMsg); _wasConverted = false; return _wasConverted; } // Appends the SPIR-V to the result log, indicating whether it is being converted or was converted. void SPIRVToMSLConverter::logSPIRV(const char* opDesc) { string spvLog; mvk::logSPIRV(_spirv, spvLog); _resultLog += opDesc; _resultLog += " SPIR-V:\n"; _resultLog += spvLog; _resultLog += "\nEnd SPIR-V\n\n"; // Uncomment one or both of the following lines to get additional debugging and tracability capabilities. // The SPIR-V can be written in binary form to a file, and/or logged in human readable form to the console. // These can be helpful if errors occur during conversion of SPIR-V to MSL. // writeSPIRVToFile("spvout.spv"); // printf("\n%s\n", getResultLog().c_str()); } // Writes the SPIR-V code to a file. This can be useful for debugging // when the SPRIR-V did not originally come from a known file void SPIRVToMSLConverter::writeSPIRVToFile(string spvFilepath) { vector fileContents; spirvToBytes(_spirv, fileContents); string errMsg; if (writeFile(spvFilepath, fileContents, errMsg)) { _resultLog += "Saved SPIR-V to file: " + absolutePath(spvFilepath) + "\n\n"; } else { _resultLog += "Could not write SPIR-V file. " + errMsg + "\n\n"; } } // Validates that the SPIR-V code will disassemble during logging. bool SPIRVToMSLConverter::validateSPIRV() { if (_spirv.size() < 5) { return false; } if (_spirv[0] != spv::MagicNumber) { return false; } if (_spirv[4] != 0) { return false; } return true; } // Appends the source to the result log, prepending with the operation. void SPIRVToMSLConverter::logSource(string& src, const char* srcLang, const char* opDesc) { _resultLog += opDesc; _resultLog += " "; _resultLog += srcLang; _resultLog += ":\n"; _resultLog += src; _resultLog += "\nEnd "; _resultLog += srcLang; _resultLog += "\n\n"; } void SPIRVToMSLConverter::populateWorkgroupDimension(SPIRVWorkgroupSizeDimension& wgDim, uint32_t size, SPIRV_CROSS_NAMESPACE::SpecializationConstant& spvSpecConst) { wgDim.size = max(size, 1u); wgDim.isSpecialized = (uint32_t(spvSpecConst.id) != 0); wgDim.specializationID = spvSpecConst.constant_id; } // Populates the entry point with info extracted from the SPRI-V compiler. void SPIRVToMSLConverter::populateEntryPoint(SPIRV_CROSS_NAMESPACE::Compiler* pCompiler, SPIRVToMSLConversionOptions& options) { if ( !pCompiler ) { return; } SPIRV_CROSS_NAMESPACE::SPIREntryPoint spvEP; if (options.hasEntryPoint()) { spvEP = pCompiler->get_entry_point(options.entryPointName, options.entryPointStage); } else { const auto& entryPoints = pCompiler->get_entry_points_and_stages(); if ( !entryPoints.empty() ) { auto& ep = entryPoints[0]; spvEP = pCompiler->get_entry_point(ep.name, ep.execution_model); } } auto& ep = _shaderConversionResults.entryPoint; ep.mtlFunctionName = spvEP.name; SPIRV_CROSS_NAMESPACE::SpecializationConstant widthSC, heightSC, depthSC; pCompiler->get_work_group_size_specialization_constants(widthSC, heightSC, depthSC); auto& wgSize = ep.workgroupSize; populateWorkgroupDimension(wgSize.width, spvEP.workgroup_size.x, widthSC); populateWorkgroupDimension(wgSize.height, spvEP.workgroup_size.y, heightSC); populateWorkgroupDimension(wgSize.depth, spvEP.workgroup_size.z, depthSC); }